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Abstract

Cohesive element formulations proposed for simulating mixed-mode delamination in
laminated composites assume that Mode II and Mode III fracture processes, and hence
traction-separation laws, are identical. However, experimental observations suggest that
such an assumption may not hold in general. The approach described herein consists of a
cohesive element formulation in which the assumption of identical Mode II and Mode III
fracture processes is not required. This assumption is alleviated by estimating the normal to
the delamination front based on the gradient of the displacement jumps determined within
each element. The estimated normal is used to rotate the cohesive element coordinate
system. Determining the displacement jumps in the rotated coordinate system enables the
distinction between Mode II sliding, and Mode III tearing. This information is subsequently
used to extend a recently proposed cohesive formulation, resulting in an approach that can
simulate mixed-mode I/II/III fracture via prescribing piecewise-linear traction-separation
laws combined with a 3D mixed-mode fracture criteria.

1 Introduction

Several cohesive element formulations for simulating mixed-mode delamination in
laminated composites have been proposed, however, these formulations do not consider
Mode II and Mode III critical energy release rates to be distinct, e.g. [1–6]. However,
experimental evidence suggests that Mode III loading leads to a distinct fracture process
compared to Mode II loading and hence different critical Energy Release Rates (ERR),
similar to what is observed between Mode I and Mode II fracture, e.g. [7]. In the case
of tape-based composites, recent work indicates that delaminations under predominantly
Mode III loading conditions may be difficult to grow in practice [8, 9]. Evidence of
delamination migration arising from intralaminar cracking in Edge Crack Torsion (ECT)
specimens that have been proposed for measuring Mode III critical ERR highlighted
this difficulty [10]. Under Mode III loading, local Mode I echelon micro-cracks develop,
accumulate, and lead to delamination migration unless both bounding plies are oriented to
enable their containment [8]. However, containment conditions seem difficult to enforce in
general [9], and hence may not occur often in practice in tape-based composites. On the
other hand, preliminary work with 2D woven laminates suggests that Mode III delamination
may grow and be contained, and that the associated Mode III critical ERR is distinct from
the Mode II critical ERR [7, 11]. Hence, an accurate and general delamination growth
simulation approach should aim to capture the potential differences between Mode I, II
and III fracture processes and associated critical ERRs.

Recently a cohesive element formulation has been proposed that enables distinct
piecewise-linear Traction-Separation Laws (TSLs) to be prescribed for Mode I and shear
loadings, hence assuming that the Mode II and III fracture processes are identical [12].
The prescribed TSLs are followed exactly if the loading modes are pure Mode I or pure
shear. Under mixed-mode loading conditions, the pure mode TSLs are scaled such that
the energy dissipated equals the critical ERR determined by the selected mixed-mode
fracture criterion. In addition, the scaling procedure is defined such that it ensures that
the formulation satisfies the thermodynamic consistency condition proposed in [5].
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In the present work, the formulation proposed in [12] is extended to enable distinct
piecewise linear TSLs to be prescribed for pure Mode I, II and III loading. The distinction
between Mode II and III contributions to the fracture process is performed in three steps.
First the normal to the delamination front is estimated based on the gradient of the
magnitude of the displacement jump. Subsequently, the cohesive element local coordinate
system is rotated such that one of the components is aligned with the normal to the
delamination front. Finally, the components of the displacement jump are computed in
the new coordinate system, with Mode II sliding shear given by the component of the
displacement jump determined along the direction normal to the delamination front, and
Mode III tearing shear associated with the component of the displacement jump determined
along the delamination front. The simulation of general mixed-mode I/II/III is enabled by
adopting the 3D mixed-mode fracture criterion proposed in [13] . The fracture criterion in
[13] provides a general expression for the critical ERR as a function of the Mode I, II and
III critical ERRs and the Mode II and III mode-mixities.

In what follows, a summary of the cohesive element formulation is presented,
highlighting the key steps taken to extend the formulation proposed in [12]. In Section
3, results from the verification exercises performed are reported, providing a preliminary
assessment of the accuracy of the approach when used to simulate Mode I, II, III and mixed-
mode I/II/III delamination growth. Finally, a summary of the key findings is presented in
Section 4.

2 Cohesive Formulation

This section details how the formulation proposed in [12] can be extended to enable
the simulation of general mixed-mode I/II/III fracture in which the fracture processes
associated with Mode II and Mode III loading may be distinct. In Section 2.1 the
procedure used to estimate the normal to the delamination front and distinguish between
Mode II sliding and Mode III tearing is provided. In section 2.2 the calculation of the
displacement jumps associated with Mode II and Mode III is illustrated. An overview of the
piecewise-linear TSL definition adopted in [12] is provided in Section 2.3 for completeness.
Subsequently, the treatment of mixed-mode conditions discussed in [12] is extended to
account for the distinction between Mode II and Mode III contributions to the fracture
process. This distinction also requires revisiting the fracture criterion used [12] and
adopting a 3D fracture criterion, Section 2.5. Finally, the expression for the secant stiffness
is provided in Section 2.6.

2.1 Calculating a normal to the delamination front

In the present work, the normal to the delamination front, in the element coordinate system,
is assumed to be well estimated by:

nce = �
✓

@�T
@xce

,
@�T
@yce

, 0

◆
(1)

where �T designates the magnitude of the displacement jump and
⇣

@
@xce

, @
@yce

⌘
are the

spatial derivatives in the cohesive element coordinate system. The negative sign reflects
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the fact that the magnitude of the displacement jump tends towards zero approaching the
delamination front, and hence the gradient of the displacement jump is oriented towards
the delamination wake and not the front.

The procedure used to evaluate Eq. 1 is detailed next. Consider a transformation
matrix relating the global coordinate system to the element coordinate system:

xce = Txg (2)

The matrix T can be trivially obtained following [14]. The displacement jump vector �i

between a node on the top surface i+ and a corresponding node i� on the bottom surface
of the cohesive element, can be obtained by:

�i = T(ui+ � ui�) (3)

in which �i = {�s1, �s2, �I}i . The components �s1 and �s2 designate shear displacement
jumps and �I the displacement jump associated with Mode I (opening mode). The
magnitude of a displacement jump is determined by:

�T =
q

(�s1)
2 + (�s2)

2 + (h�Ii)2 (4)

in which the Macaulay bracket in Eq. 4 is defined as hxi = x, if x � 0 and hxi = 0, if x <
0. The element coordinate system is used to calculate the displacement jumps. The
coordinates xce = [xce, yce]>, within the element, relate to the element natural coordinates
via:


xce

yce

�
=


N1(⇠, ⌘) N2(⇠, ⌘) . . . Nn(⇠, ⌘)
N1(⇠, ⌘) N2(⇠, ⌘) . . . Nn(⇠, ⌘)

�
2

6664

x1
ce y1ce

x2
ce y2ce
...

...
xn
ce ynce

3

7775
(5)

where
�
xi
ce,y

i
ce

�
= 1

2

��
x+i
ce,y

+i
ce

�
+
�
x�i
ce,y

�i
ce

��
are average nodal positions of each node pair,

defining the mid-surface of the element [14], and Ni(⇠, ⌘) the respective shape functions.
Note that zce = 0, and hence will be omitted. Using the chain rule, one can relate the
derivates in the natural space to the derivates in the element coordinate system by:

"
@
@⇠
@
@⌘

#
= J

"
@

@xce
@

@yce

#
(6)

in which the matrix J, often named Jacobian, is given by:

J =

"
@xce
@⇠

@yce
@⇠

@xce
@⌘

@yce
@⌘

#
(7)

Given Eq. 5, the Jacobian matrix can be evaluated as:

J =

"
@N1(⇠,⌘)

@⇠
@N2(⇠,⌘)

@⇠ ... @Nn(⇠,⌘)
@⇠

@N1(⇠,⌘)
@⌘

@N2(⇠,⌘)
@⌘ ... @Nn(⇠,⌘)

@⌘

#
2

6664

x1
ce y1ce

x2
ce y2ce
...

...
xn
ce ynce

3

7775
(8)
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and J�1 can be determined by inverting Eq. 8. Knowing J�1, the derivates
⇣

@
@xce

, @
@yce

⌘

in the element coordinate system can be obtained from Eq. 6:
"

@
@xce
@

@yce

#
= J�1

"
@
@⇠
@
@⌘

#
(9)

The gradient of the magnitude of the displacement jump, �T , can be determined by:

"
@�T
@xce
@�T
@yce

#
= J�1

"
@N1(⇠,⌘)

@⇠
@N2(⇠,⌘)

@⇠ ... @Nn(⇠,⌘)
@⇠

@N1(⇠,⌘)
@⌘

@N2(⇠,⌘)
@⌘ ... @Nn(⇠,⌘)

@⌘

#
2

6664

�1T
�2T
...

�nT

3

7775
(10)

in which �iT are determined at each node pair using Eq. 4. The derivates at the centroid
of the element are determined by evaluating Eq. 10 at (⇠, ⌘) = (0, 0). Finally, having
determined

⇣
@�T
@xce

, @�T
@yce

⌘
, the normal to the delamination front is estimated using Eq. 1,

and normalized as:
n̂ce =

nce

kncek
(11)

Further granularity may be achieved by evaluating Eq. 10 and subsequently Eq. 1 at the
integration points. Determining the normal based on single evaluation of Eq. 1 at the
centroid, rather than at the integration points, is an implementation option, (supported by
the smooth variation of the normal across adjacent elements reported in Sections 3.2 and
3.5.2), that can be revisited if required.

2.2 Distinguishing between Mode II sliding and Mode III tearing

To distinguish between the Mode II and Mode III fracture processes, it is necessary to
calculate the displacement jumps associated with Mode II sliding, �II , and Mode III tearing,
�III . Having determined the normal to the crack front n̂ce, Eqs. 1 and 11, �II and �III
can be determined by computing the displacement jumps in a rotated coordinate system,
ce0, with axes across and along the normal to delamination front. An illustration of the
coordinate systems ce and ce0 and n̂ce is provided in Fig. 1. The procedure used to calculate
�II and �III is outlined next. A matrix R relating the coordinate systems ce0 and ce can
be determined as:

R =

2

4
n̂ce1 n̂ce2 0
n̂?
ce2 n̂?

ce2 0
0 0 1

3

5 (12)

in which n̂ce = (n̂ce1 , n̂ce2) and n̂?
ce =

�
n̂?
ce1 , n̂

?
ce2

�
is a vector perpendicular to n̂ce obtained

via a counterclockwise rotation of n̂ce. Using Eq. 12 in Eq. 3, the displacement jumps in
ce0 are given by:

�i
ce0 = RT(ui+ � ui�) (13)

where �i
ce0 = {�II , �III , �I}i.

Before a crack is formed, it is not possible to distinguish between Mode II and Mode
III loading, since their definition implies the existence of a crack. This is reflected in the
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proposed formulation. If the interface is pristine (no delamination) and loaded uniformly,
the magnitude of the displacement gradient is zero, and the normal to the delamination
front cannot be determined, Eq. 1, and hence Mode II and III contributions cannot be
identified. Therefore, at this condition (zero displacement gradient), either Mode II or
Mode III TSL may be used at onset. Investigating the most appropriate assumption to
use at onset may be of interest, but is considered out-of-scope. The present work focuses
in assessing the ability of the approach to simulate delamination growth once damage as
initiated.

Pristine

Failed
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Figure 1: Illustration of coordinate systems ce and ce0. The x axis of ce0 is aligned with
the normal to the crack front. Coordinate system ce0 is used to calculate Mode II sliding,
�II , and Mode III tearing, �III .

2.3 Piecewise-linear Traction Separation Laws

Assume a piecewise-linear TSL defined by points corresponding to a change in slope in
the traction-displacement relationship, S = {p1, ...,pm}, where p1 = (�p1 , �p1). An
illustration of a piecewise-linear TSL is provided in Fig. 2. Based on [12], the critical
energy release rate, Gc, for a generic piecewise-linear TSL with m number of points pj ,
ordered based on their damage state, from pristine to failed, can be determined by:

Gc =
1

2

mX

j=3

(pj ⇥ pj�1) (14)

in which it is assumed that p1 = (0, 0). The first two points, j = 1 and j = 2, prescribe
the interface stiffness prior to damage, and hence are not included in Eq. 14. The critical
displacement jump and stress, leading to damage formation, �c(d), �c(d), can be written as
a function of a single variable d 2 [0, 1] using the parametric form of a 2D line for each line
segment. The variable d represents damage associated with a material point. The material
point is undamaged if d = 0 and fully damaged if d = 1. The value of d associated with
each point pj can be determined by:

dpj =

8
><

>:

0 if j < 3

1
2Gc

jP
i=3

(pj ⇥ pj�1) if j � 3
(15)
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The critical displacement jump as a function of d is given by:

�c(d) =

(
�p2c if d = 0

�
pj�1
c +

�
�
pj
c � �

pj�1
c

�
d�dpj�1

dpj�dpj�1 if dpj�1 < d  dpj
(16)

for j = 3 to m. Similarly for �c(d),

�c(d) =

(
�p2 if d = 0

�pj�1 + (�pj � �pj�1) d�dpj�1

dpj�dpj�1 if dpj�1 < d  dpj
(17)

for j = 3 to m. The energy release rate, G, associated with an applied displacement jump,
�, along a direction corresponding to the the TSL being evaluated can be estimated by:

G =
1

2

mX

j=3

✓
pj

�

�c (d)
⇥ pj�1

�

�c (d)

◆
= Gc

✓
�

�c(d)

◆2

(18)

and is depicted in Fig. 2. The total energy release rate, GT = GI + GII + GIII , can
therefore be computed by:

GT = GIc

✓
h�Ii

�Ic(d)

◆2

+ GIIc

✓
�II

�IIc (d)

◆2

+ GIIIc

✓
�III

�IIIc (d)

◆2

(19)

in which �Ic(d), �IIc(d) and �IIIc(d) are the critical displacement jumps associated with
the Mode I, Mode II and Mode III TSLs. Equation 19 extends the formulation proposed
in [12] by considering separately the Mode II and III contributions.

TSL with 
area, 

TSL with
area, 

Figure 2: Ilustration of a piecewise-linear TSL.

2.4 Mixed-mode response

In the present formulation, using Eq. 18, the local Mode II and Mode III mode-mixities at
each integration point are estimated by:

�II =
GII

GT
=

GIIc

⇣
�II

�c�II(d)

⌘2

GIc

⇣
h�Ii

(�c�I(d))

⌘2
+ GIIc

⇣
�II

�c�II(d)

⌘2
+ GIIIc

⇣
�III

�c�III(d)

⌘2 (20)
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�III =
GIII

GT
=

GIIIc

⇣
�III

�c�III(d)

⌘2

GIc

⇣
h�Ii

(�c�I(d))

⌘2
+ GIIc

⇣
�II

�c�II(d)

⌘2
+ GIIIc

⇣
�III

�c�III(d)

⌘2 (21)

Fracture is assumed to occur if a fracture criterion is exceeded, for example:

fcr =
GT (d)

Gc (�II , �III)
> 1 (22)

where GT (d) is given by Eq. 19 and the expression for Gc (�II , �III) may vary
depending on the the fracture criterion chosen, see Section 2.5. For a given �II

and �III , the TSLs associated with pure mode fracture along each loading direction,
(SIc = {pI1 , ...,pIm}, SIIc = {pII1 , ...,pIIm}, and SIIIc = {pIII1 , ...,pIIIm}) are
scaled to match the critical energy release rate Gc (�II , �III) as determined by the
fracture criterion. Note that SIc, SIIc and SIIIc do not need to have the same
shape, or be defined with the same number of points m. The scaled TSLs, as
a function of the mode-mixities �II and �III , are designated by SI (�II,�III) =
{pI1 (�II,�III) , ...,pIm (�II,�III)}, SII (�II,�III) = {pII1 (�II,�III) , ...,pIIm (�II,�III)}
and SIII (�II,�III) = {pIII1 (�II,�III) , ...,pIIIm (�II,�III)}. The scaled points
pIi(�II,�III), pIIi(�II,�III), and pIIIi(�II,�III) associated with the correspondent TSL
are given by:

pIi (�II,�III) =

0

@�pi
I

s
Gc (�II , �III) (1 � �II � �III)

GIc
, �piI

s
Gc (�II , �III) (1 � �II � �III)

GIc

1

A

(23)

pIIi (�II,�III) =

0

@⌧pi
II

s
Gc (�II , �III) �II

GIIc
, �piII

s
Gc (�II , �III) �II

GIIc

1

A (24)

pIIIi (�II,�III) =

0

@⌧pi
III

s
Gc (�II , �III) �III

GIIIc
, �piIII

s
Gc (�II , �III) �III)

GIIIc

1

A (25)

The scaling procedure described above guarantees that a change in mode-mixity without
damage being formed does not result in artificial fracture or healing, as discussed in detail
in [12]. This can be assessed by noting that the ratio, Gd

Gc
= d, between the energy per unit

area dissipated in the fracture process Gd, depicted in Fig. 2, and the total energy per unit
area required for complete fracture, Gc, is preserved if the mode-mixity changes without
damage being formed, satisfying the thermodynamic consistency condition proposed in [5].

2.5 Fracture Criteria

Fracture criteria are analytical expressions that attempt to heuristically capture the
variation of fracture toughness with mode-mixity, often measured experimentally in
interfacial cracks. The selection of which criteria to use is guided by its ability to fit
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the available experimental data [15, 16]. While other criteria could have been chosen, the
present work uses the 3D mixed-mode criterion proposed in [13], which can be written as:

fcr =
GT

Gc (�II , �III)
= 1 (26)

in which Gc (�II , �III) is given by:

Gc (�II , �III) = GIc +
⇣
(GIIc � GIc) �II + (GIIIc � GIc) �III

⌘
(�II + �III)

⌘�1 (27)

where the constant ⌘ is determined by a best-fit to experimental data. Once fracture occurs,
i.e. fcr > 1, a new d variable is determined such that Eq. 26 is satisfied. Substituting Eq.
19 in Eq. 26, yields:

GIc

⇣
h�Ii

�c�I(d)

⌘2
+ GIIc

⇣
�II

�c�II(d)

⌘2
+ GIIIc

⇣
�III

�c�III(d)

⌘2

Gc(�II , �III)
= 1 (28)

which results in a nonlinear equation to be solved for d. Once d is determined, to prevent
artificial healing, the new damage variable dt at a pseudo-time t is computed by:

dt =

(
d if d > dt��t

dt��t if d  dt��t
(29)

where dt��t is the value of d in the previous time increment.

2.6 Secant stiffness

The equation relating displacement jumps to cohesive tractions is given by:
2

4
⌧II
⌧III
�I

3

5 =

2

4
KII (d) 0 0

0 KIII (d) 0
0 0 KI (d, �n)

3

5

2

4
�II
�III
�I

3

5 (30)

where KII(d) and KIII(d) are given by:

KII (d) =
⌧II(d)

�c�II(d)
(31)

KIII (d) =
⌧III(d)

�c�III(d)
(32)

and KI (d, �I) by:

KI (d, �I) =

8
<

:

�
p2
c�I

�
p2
c�I

if �I < 0

�c�I(d)
�c�I(d)

if �I � 0
(33)

The secant stiffness matrix in Eq. 30 may be fully orthotropic, i.e. KI(d) 6= KII(d) 6=
KIII(d), if the Mode I, Mode II and Mode III fracture processes, and therefore TSLs, are
distinct.

The formulation proposed in the present study reduces to the one proposed in [12] if
identical Mode II and III TSLs are used and the same fracture criterion is selected.

8



3 Finite element model analysis and results

The numerical models used and results obtained to assess and document the performance
of the approach proposed are presented in the following sections. The numerical models
used, including dimensions, mesh and boundary conditions, are discussed in Section 3.1.

As outlined in Section 2.2, determining the normal to the crack front is a key step to
be able to determine the Mode II and Mode III contributions to the fracture process.
Therefore, the verification of the approach proposed starts with an assessment of the
calculation of the normal to the crack front under general conditions (evolving delamination
shape), see Section 3.2. In Section 3.3 further verification results are provided, aiming to
establish whether the proposed approach can simulate a Mode III fracture process that is
distinct from both Mode I and II, which is the key enhancement to [12] put forward in
the present work. In Section 3.4, it is assessed whether considering a Mode III fracture
process that is distinct from either Mode I or Mode II compromises the accuracy with
which Mode I, Mode II and mixed-mode I/II fracture is simulated. Finally the results
compiled in Section 3.5 document the performance of the approach, as a function of mesh
refinement and type, when used to simulate non-self-similar delamination growth under
generic mixed-mode I/II/III conditions.

3.1 Finite element Models

The FE models used to assess the proposed approach were developed in Abaqus/Standardr

and are illustrated in Figs. 3 to 6.
The plate model with a square delamination depicted in Fig. 3 is used to verify the

procedure used to calculate the normal to the crack front. Displacement controlled loading
is applied via two reference nodes, and transmitted to the nodal regions highlighted on
the top and bottom surface via multi-point rigid link constraints. Symmetry boundary
conditions are applied as depicted in Fig. 3 and hence only a quarter of the plate is modeled.
To preserve symmetry, isotropic elastic properties were used, with Young’s modulus, E =
70000 MPa, and Poisson’s ratio, ⌫ = 0.3. The fracture process is assumed to be given by
a single TSL, S =

�
(0.0, 0.0)p1 ,

�
6.0 ⇥ 10�5, 30

�p2 , (1.41 ⇥ 10�2, 0)p3
 
.

Numerical models of the Double Cantilever Beam (DCB), End Notch Flexure (ENF),
and Mixed-Mode Bending (MMB) specimens were also developed, Fig. 4. Dimensions
and boundary conditions are based on the numerical benchmarks summarized in [17].
Similar models have also been used in [12], and are repeated here to confirm that the
modified approach proposed in this work preserves the accuracy demonstrated in [12],
when simulating Mode I, II and mixed-mode I/II fracture. The elastic properties used and
TSLs assumed in the models are given in Tables 1 and 2, respectively.

To assess the adequacy of the approach to simulate Mode III fracture, a model based
on the Split Cantilever Beam (SCB) proposed in [18] was developed and is illustrated
in Fig. 5. Dimensions and boundary conditions are provided in Fig. 5a. The SCB
loading rig was simulated using two rod-based rigid bodies, each connected to the upper
and lower arms of the specimen, as illustrated in Fig. 5b. The connections between
the loading-rig and specimen are defined via displacement constraints (*Equation [21])
in Abaqus/Standardr, coupling the displacement of the rig and specimen along the y
directions. The displacement constraints are established between a single node of the rig
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and multiple nodes along the thickness of the arm, as highlighted in Fig. 5b. The resultant
deformed shape, prior to delamination growth, is depicted in Fig. 5c. The SCB model also
uses the tape-based composite elastic properties, Table 1, used when developing the DCB,
MMB and ENF benchmarks. It is noted (as discussed in the introduction) that a single
Mode III delamination is unlikely to propagate in unidirectional tape-based composites
without accompanying matrix cracks. The tape-based properties were used for simplicity
and consistency with prior work. Given the purpose of the model is to verify the accuracy
of the approach, this can be done independently of the elastic properties used. The TSLs
used are given in Table 2 unless otherwise specified.

The final finite element model developed in this study consists of a specimen with a pre-
inserted chevron-shaped crack loaded via applied displacement along the y and z direction,
as depicted in Fig. 6, imposing general mixed-mode loading conditions. For reference,
the specimen is referred to as split compact tension (SCT). This model was developed to
evaluate the performance of the approach in a general case of non-self-similar delamination
growth under mixed-mode I/II/III loading conditions. Key aspects evaluated in this general
scenario included the calculation of the normal to the crack front, and overall the mesh
independence of the proposed approach. Also, in this case isotropic elastic properties were
used, with Young’s modulus E = 70000 MPa and Poisson’s ratio ⌫ = 0.3. The fracture
process is assumed to be described by the TSLs given in Table 2.

The formulation proposed in the present work was implemented in Abaqus/Standardr

via an iso-parametric 8-noded user-defined element. Details on how to implement a cohesive
formulation via an iso-parametric cohesive element can be found in [14]. A layer of zero-
thickness user-defined cohesive elements, formulated as outlined in Section 2, was inserted
at the center of each specimen. Native Abaqus/Standardr solid C3D8I elements were used
elsewhere.
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L = B = 50
aw = 2aL = 20
Lz = Lxy = 2
2h = 4.5 

xy

z

*xy-plane boundary conditions omitted for clarity

L

Lxy

Lz

Lz

Lxy

2h
x

z

x

y

(*)

B

aw

Uz

െUz

Uz

െUz

Uy = 0

Ux = 0
aw

aL

Region of uniform applied displacement

Figure 3: Plate with initial delamination aw ⇥ aL. Quarter plate modeled using symmetry
boundary conditions. Each arm was discretized with four elements through the thickness.
The in-plane element size was 0.5 mm. All dimensions shown are in mm.
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2L = 90.0
a0 = B = 25.4
2h = 4.5

2h

2L

B

a0

x

z

x

y

Straight
mesh

z

xy

Uz

Ux = 0

Ux = 0

െUz

(a) Double Cantilever Beam (DCB) model.

2L = 100.8
B = a0 = 25.4
2h = 4.5

z

y

L c

2h

2L

B

x

z

x

y

a0

x
Uz = 0 Uz = 0

Displacement 
constraint on Uz

Coincident 
nodes

െUz

(b) Mixed-Mode Bending (MMB) model. A value of c = 41.3 is used to obtain the mixed-

mode ratio � = 0.5 considered in this work. Rigid elements are used to represent the loading

rig, following [19]. Loading rig omitted in the xy view.

L L

L = 50.8
B = a0 = 25.4
2h = 4.5

xy a0

z

x

y

2h

B

x

z

െUz

Uz = 0Uz = 0

(c) End Notch Flexure (ENF) model.

Figure 4: DCB, MMB and ENF models. Dimensions, and boundary conditions based
on [19]. The layup is [0]24. Each arm was discretized with three elements through the
thickness. The in-plane element size in the refined regions was 0.25 mm. All dimensions
shown are in mm.
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y

Ux = Uy = 0

െUy
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L

L = 175
a0 = 110
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2h = 4.5
B = 12.7
O = 10

(a) Dimensions and boundary conditions.

xz

y

Specimen translucent for illustration purposes

Rigid body connected to 
lower arm at the 
highlighted nodes

Rigid body connected 
to upper arm at 
highlighted nodes

(b) Connection of rigs to the nodes of respective arms.

Uy

Uyxz

y

(c) Deformed shape.

Figure 5: Split Cantilever Beam (SCB), based on [18]. The layup is [0]24. Each arm was
discretized with three elements through the thickness. The in-plane element size in the
refined regions was 0.25 mm. All dimensions shown are in mm.
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A A

Figure 6: Split Compact Tension specimen (SCT). Three models were generated with
different discretizations along the crack plane: “Conformal”, “Regular” and “Regular coarse”.
The size of the elements within the delamination plane is approximately 0.25 mm in both
the “Conformal” and “Regular” meshes, and 0.5 mm in the “Regular coarse” mesh.

Table 1: Elastic properties used in the DCB, MMB, ENF and SCB models [19, 20].

E11

(GPa)
E22 = E33

(GPa)
⌫12 = ⌫13 ⌫23 G12 = G13

(GPa)
G23

(GPa)

161 11.38 0.32 0.44 5.17 3.98

Table 2: Mode I to III TSLs with GIc = 0.212N/mm, GIIc = 0.774N/mm and GIIIc =
1.548N/mm. Tractions given in MPa and displacement jumps in mm. First point defining
the TSLs corresponds to the origin, (0, 0)p1 . The shape of the TSLs and GIIIc are assumed
for illustration purposes; GIc and GIIc were obtained from [19, 20]

Mode I: SIc =
��

1.20 ⇥ 10�4, 60
�p2 , (7.07 ⇥ 10�3, 0)p3

 

Mode II: SIIc =
��

1.20 ⇥ 10�4, 60
�p2 , (2.58 ⇥ 10�2, 0)p3

 

Mode III: SIIIc =
��

1.20 ⇥ 10�4, 60
�p2 , (5.16 ⇥ 10�2, 0)p3
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3.2 Estimating the normal to delamination front

In Section 2.1, the procedure used to estimate the normal to the delamination front at each
element is outlined. As described in Section 2.2, distinguishing between Mode II and Mode
III contributions relies on the estimate of the normal to the delamination front calculated
at the centroid of each element. Hence, establishing whether the procedure proposed in
Section 2.1 is general and performs as intended is key to the verification of the approach
proposed. The model depicted in Fig. 3 was developed to provide an assessment of the
procedure used to estimate the normal to the delamination front in the general scenario of a
delamination growing in a non-self-similar fashion. The initial delamination is rectangular
as depicted in Fig. 3. However, given the symmetry of the geometry and loading, the
delamination is expected to transition from a rectangular to a circular shape as it grows.

The delamination propagation results obtained are illustrated in Fig. 7. Figure 7
provides four snapshots of the damage state along the delamination plane taken at different
solution times, as well as the normal to the delamination front calculated at each element
within the process zone. The damage state is illustrated via colored dots. Each dot is
located at the centroid of an element and is colored according to the value of the maximum
d registered at the integration points within an element. The dot is colored red if the
corresponding element has an integration point that is fully damaged, d = 1, and dark blue
if the maximum value of d registered at any of the integration points is very small but larger
than zero. Undamaged elements, with d = 0 at all integration points, are not depicted.
Each arrow in Fig. 7 depicts the normal to the crack front calculated at the centroid of the
respective element. At each solution time, the normal associated with a given element is
depicted for all elements that have at least one integration point with d > 0 and d < 1. The
results in Fig. 7 indicate that the orientation of the normal to the crack front is consistent
with the delamination shape, suggesting the adequacy of the procedure outlined in Section
3.2. No spurious orientations are observed. For each element, the calculated normal seems
to be correctly determined at onset and throughout the fracture process, changing as the
delamination shape evolves. This is highlighted in Fig. 8 where the orientation associated
with a single element is highlighted and plotted just after onset, Fig. 8a, and just before
final failure, Fig. 8b.
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Figure 7: Delamination shape as a function of the load. Dots correspond to centroids of the
elements and are colored as a function of the damage state (from red to blue). The vectors
represent the normal n calculated using Eq. 1 at the centroid of each element within the
process zone.
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Figure 8: Normal to the delamination front calculated at onset (a) and failure (b) of an
element within the process zone

3.3 Mode III fracture

To investigate whether the approach can adequately simulate Mode III fracture, the model
depicted in Fig. 5 was developed, based on the Split Cantilever Beam (SCB) Mode III
characterization specimen proposed in [18]. First, in Section 3.3.1 below, the Mode I to III
ERRs obtained along the delamination front using the Virtual Crack Closure Technique
(VCCT) are reported for reference. The results in Section 3.3.1 aim to document that the
delamination front in the SCB model is loaded predominantly under Mode III conditions
as intended and provide an additional quantitative reference for the results obtained with
the proposed approach. Subsequently, the results obtained with the proposed approach are
provided in Section 3.3.2 and compared to reference solutions to assess the adequacy of the
approach to simulate Mode III fracture.

3.3.1 Mode-mixity along the delamination front - VCCT

The Virtual Crack Closure Technique (VCCT) technique, as implemented in
Abaqus/Standardr, was used to determine the ERRs along the crack front of the SCB
model illustrated in Fig. 5. In order to use the VCCT in Abaqus/Standardr, cohesive
elements were replaced by a VCCT interface definition, following [17, 21]. The Mode I, II
and III ERRs, corresponding to an applied displacement Uy = 1mm, are shown in Fig.
9a, normalized by the maximum value of ERR determined. The Mode I component is
approximately zero throughout the crack front. The Mode II component is small relative
to the Mode III component, except at the specimen edges. Overall, the results in Fig.
9a indicate that the SCB delamination front is loaded predominantly under Mode III
conditions as intended and agree qualitatively with the results reported in [18]. Figure 9b
depicts the fracture criterion, given by Eq. 26, evaluated along the crack front, based on
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the energy release rates computed using VCCT and illustrated in Fig. 9a. The dashed
lines labeled “min fcrV CCT ” and “avg fcrV CCT ” correspond, respectively, to the minimum
and average values of the normalized fracture criterion along the front. Assuming a linear
elastic model, the average and minimum values of the fracture criterion can be used to
determine correspondent critical force-displacement values. In the subsequent section, the
critical force-displacement values determined based on the average and minimum values of
the fracture criterion are used for reference when analyzing the results obtained with the
proposed approach.
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(a) Normalized ERR.
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(b) Normalized fracture criterion.

Figure 9: Normalized ERR and fracture criterion along the crack front of the SCB specimen.

3.3.2 Simulation of the SCB

In this section, the ability of the proposed approach to simulate a Mode III fracture process
that is distinct from Mode II fracture is assessed. In the absence of a numerical benchmark,
two reference simulations were obtained in which the Mode II and Mode III fracture
processes were assumed to be the same. In the first simulation, labeled “Ss = SII ”, the TSL
used in the presence of shear loading Ss,(resulting from either Mode II or Mode III loading),
was assumed to be equal to the Mode II TSL given in Table 2. This simulation provides a
reference force-displacement curve for a case in which Mode III fracture is assumed to be
equal to Mode II fracture. This is the typical assumption used in most cohesive element
delamination simulations, and hence the expected result when using approaches that are
not able to distinguish between Mode III and Mode II. As a result, these approaches
assume the Mode III and Mode II fracture processes are identical; see for example [12].
In the second reference simulation, labeled “Ss = SIIIc”, the TSL used in the presence of
shear loading is assumed to be equal to the Mode III TSL given in Table 2. Assuming
“Ss = SIIIc” enforces the Mode III TSL to be used in the presence of any shear loading,
Mode II or Mode III. Given that the delamination in the SCB model is predominantly
loaded in Mode III, the force-displacement curve obtained in the case “Ss = SIIIc” is
expected to be similar to the force displacement curve obtained with an approach that is
capable of correctly reproducing the Mode III fracture process, but that does not require
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assuming Ss = SIIIc. Therefore, “Ss = SIIIc” provides a target load-displacement curve for
approaches, such as the one proposed, that aim to be able to reproduce distinct Mode III
and Mode II fracture processes and hence do not assume Ss = SII or Ss = SIII . Finally, a
simulation was performed using the TSLs given in Table 2, that represent a case in which
the Mode II and Mode III fracture processes are distinct, labeled “SIIc, SIIIc”. As can be
observed in Fig. 10, the load-displacement curve obtained with the present approach is very
close to the reference case Ss = SIIIc. This indicates that the approach correctly simulates
the Mode III fracture process, without needing to assume that Ss = SIIIc. The peak force
obtained is slightly smaller than the peak force obtained assuming Ss = SIIIc, which may
reflect the presence of Mode II loading and the respective critical ERR, which is lower than
the Mode III critical ERR. In Figure 10 the critical force-displacements determined based
on the minimum and average values of the fracture criterion calculated in the previous
section are also indicated, “Fcr (min fcrV CCT )” and “Fcr (avg fcrV CCT )”, respectively. The
critical force-displacement is the load required for the value of the fracture criterion to
equal one. Therefore, more load is required for the minimum value of fcrV CCT to equal
one than for its average, hence “Fcr (min fcrV CCT )” is higher than “Fcr (avg fcrV CCT )”. As
can be seen, the predicted maximum force-displacement agrees well with the critical force-
displacement obtained using the average value of the fracture criterion. This reflects the
fact that fracture criterion value along most of the crack front is very close to the average
fracture criterion; see Fig. 9b.
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Figure 10: Force-displacement curves predicted for the SCB specimen. The curves labeled
“Ss = SIIc” and “Ss = SIIIc” assume a single fracture process under shear loading given
by the Mode II or the Mode III TSLs in Table 2, SIIc and SIIIc, respectively. The force-
displacement curve labeled “SIIc, SIIIc” uses the proposed formulation and considers that
the Mode II and Mode III fracture processes are distinct, and defined by SIIc and SIIIc,
respectively. Points “Fcr (min fcrV CCT )” and “Fcr (avg fcrV CCT )” correspond to the critical
force-displacement predicted based on the minimum and average values of the fracture
criterion calculated using VCCT.
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3.4 Mode I, II and Mixed-Mode I/II fracture

Figures 11 to 13 compare the force-displacement curves obtained when simulating
delamination growth using the models in Fig. 4 to the respective Linear Elastic Fracture
Mechanics (LEFM) 2D benchmarks. For convenience, the DCB benchmark was obtained by
re-deriving the benchmark reported in [22] using the elastic properties given in Table 1. The
MMB and ENF benchmarks were obtained from [19, 20]. The DCB, ENF and MMB models
were chosen to assess the accuracy of the approach when simulating delamination growth
under Mode I, Mode II and Mixed-Mode I/II conditions, respectively, while assuming
distinct Mode I, Mode II and Mode III fracture processes. The TSLs summarized in Table
2 were used in all cases. The results obtained show good agreement between the predicted
load-displacement curves and the respective benchmarks. In Figs. 12 and 13, the predicted
peak force is slightly lower than the benchmark. This discrepancy is attributed to the
development of a non-negligible process zone prior to steady state fracture when simulating
delamination growth using the cohesive approach proposed. In the LEFM benchmark, the
process zone is assumed to be zero. The size of the process zone, hence the discrepancy
relative to the LEFM solution, can be controlled by modifying the shape of the TSLs used
[12].
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Figure 11: Double Cantilever Beam (DCB), force-displacement curve predicted with the
proposed approach compared to the DCB benchmark reported in [22] re-derived using the
elastic properties in Table 1.
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Figure 12: Mixed-Mode Bending (MMB), force-displacement curve predicted with the
proposed approach compared to the MMB benchmark reported in [23].
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Figure 13: End Notch Flexure (ENF), force-displacement curve predicted with the proposed
approach compared to the ENF benchmark reported in [20].

3.5 Mixed-Mode I, II and III fracture

In this section, the SCT model, (as illustrated in Fig. 6), is used to further generalize
the assessment of the approach, focusing on studying the ability of the approach to
obtain a mesh independent solution when simulating non-self-similar delamination growth
under general mixed-mode conditions. The first step in this assessment was similar to
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Section 3.3 where a VCCT analysis of the specimen (this time a SCT specimen) was
conducted to assess the mode-mixity along a straight crack front resulting from the global
loading applied, and provide an additional quantitative reference to evaluate the approach
proposed. Subsequently, the results obtained from the simulation of the SCT model are
reported, focusing on examining the force-displacement curves, the predicted delamination
shapes, and the calculation of the normal to the delamination front at each element, as a
function of mesh size, and type (structured vs. unstructured).

3.5.1 Mode-mixity along the delamination front

Similar to what was performed in Section 3.3.1, the VCCT, as implemented in
Abaqus/Standardr, was used to determine the ERRs along the delamination front of the
SCB model illustrated in Fig. 9. The straight delamination, with length a0 = a1 = 36
mm, was chosen to provide a reference for the steady state propagation, expected to occur
once the crack evolves past the initial chevron region defined in the cohesive zone models,
and illustrated in Fig. 6. The normalized components of the ERR are given in Fig.
14a. The delamination is loaded predominantly under mixed-mode I/III conditions at the
center, changing to predominantly Mode II loading at the edges. The ERR components
illustrated in Fig. 14a were subsequently used to evaluate the fracture criterion, Eq. 22,
along the crack front. The normalized values of the fracture criterion evaluated along
the crack front are reported in Fig. 14b. The dashed lines labeled “Avg fcrV CCT ” and
“Min fcrV CCT ” correspond, respectively, to the average and minimum values of the fracture
criterion along the front. Note that contrarily to what observed in Fig. 9b, the fracture
criterion varies significantly along the delamination front, and is below average along most
of the delamination front. The minimum and average value of the fracture criterion and
their correspondent critical force-displacement values are used for reference in the following
section.
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Figure 14: Normalized ERR and fracture criterion along a straight crack front (i.e. a0 =
a1 = 36 mm in Fig. 6) in the SCT specimen.
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3.5.2 Simulation of the SCT specimen

The force-displacement curves obtained when simulating the SCT specimen are illustrated
in Fig. 15. The resultant force, Fres, and displacement, Ures, are calculated as Fres =q

F 2
y + F 2

z and Ures =
q

U2
y + U2

z . The applied Uy and Uz relate as Uz
Uy

= 10. The curves
labeled “Conformal”, “Regular”, and “Regular Coarse” are obtained with the correspondent
meshes illustrated in Fig. 6. The mapping of the chevron crack onto the regular meshes
leads to an approximation of delamination shape and area. This approximation is reflected
in the discrepancy between the three curves “Conformal”, “Regular” and “Regular coarse”,
prior to delamination growth. Nevertheless, the difference between the curves is always
small and the curves ultimately converge once steady state crack propagation is achieved.
The dashed curve, labeled “Regular straight” was obtained by simulating the growth of a
straight delamination with a0 = a1 = 36mm using the approach proposed and the regular
mesh depicted in Fig. 6. By choosing a0 = 36mm, corresponding to the end of the chevron,
this simulation provides a qualitative reference for the expected force-displacement curve
once steady state delamination growth is obtained, and helps confirm that no spurious
history dependence effects are introduced as a result of the discretization choice or due to
the simulation of non-self-similar delamination growth. Furthermore, it provides a more
direct comparison to the critical force-displacement points (shown as crosses along the
dashed curve labeled “VCCT”) determined based on the fracture criterion values calculated
using VCCT, since a straight crack with a0 = 36 mm was also assumed in the VCCT
model. The peak of “Regular straight” is between the critical force-displacement calculated
using VCCT based on the average fracture criterion, “Fcr (avg fcrV CCT )”, and the minimum,
“Fcr (min fcrV CCT )”. This can be qualitatively explained by noting, in Fig. 14b, that the
value of the fracture criterion along the crack front is not uniform, and that the average
value is larger than what registered in most of the crack front.
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Figure 15: SCT force-displacement. Points “Fcr (min fcrV CCT )” and “Fcr (avg fcrV CCT )”
correspond to the critical force-displacement predicted based on the minimum and average
values of the fracture criterion calculated using VCCT for a straight crack with a0 = 36mm.

In Figure 16 the crack shape as well as the normals determined at the centroid of
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each element within the process zone obtained with “Conformal", “Regular” and “Regular
coarse” meshes at the same applied displacements are depicted for comparison. The results
obtained indicate that, as the process zone develops, Fig. 16a, the orientation of the normals
as well as the shape of the process zone become similar, despite the differences in the initial
crack shape and underlying mesh. As the crack progresses, Fig 16b, the differences are
further attenuated, and at steady state, Fig 16c, the crack shape and normals calculated
within the process zone are almost identical.
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Figure 16: Delamination shape and normals to the crack front calculated at the centroid of
the elements obtained with the “Conformal”, “Regular” and “Regular Coarse” meshes, see
Fig. 6, as a function of the applied displacement.
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4 Concluding Remarks

A cohesive element formulation is proposed that can simulate delamination growth along
interfaces that exhibit different Mode II and Mode III fracture processes. To distinguish
between Mode II and Mode III loadings, the normal to the crack front is estimated within
each element, based on the gradient of the total displacement jump. Knowing the normal
to the crack front allows the partitioning of the shear displacement jump between Mode
II sliding (shear displacement jump along the normal to the crack front), and Mode III
tearing (shear displacement jump along the crack front). With the Mode II and Mode
III displacement jumps identified, the formulation proposed in [12] is extended to enable
distinct Mode II and Mode III traction separation laws to be prescribed, representing
dissimilar fracture processes. In addition, a 3D mixed-mode fracture criterion is chosen to
reflect the possible difference between Mode II and Mode III critical ERRs. The resultant
formulation preserves all the key features of [12] such as thermodynamic consistency, and
the ability to use any pure mode traction separation law shape that can be approximated
via piecewise-linear function.

In the formulation proposed, determining the normal to the delamination front is key
to distinguish Mode II and III fracture processes. The preliminary verification results
obtained indicate that the procedure proposed to estimate the normal to the crack front
provides adequate results for the general case of non-self-similar delamination growth.
The subsequent verification exercises performed suggest that the approach is capable of
simulating Mode I, II, mixed-mode I/II and Mode III fracture, for a case in which distinct
Mode I, II and III fracture processes are assumed. Finally, the approach was applied to
the general case of a delamination growing under mixed-mode I, II, III conditions in a non-
self-similar fashion. The results obtained showed consistent force-displacement, crack shape
and normal-to-the-crack-front calculations, for the mesh types (structured vs unstructured)
and changes in mesh refinement considered. Furthermore, no spurious history effects were
observed. In addition, the results were within the bounds of what would be expected based
on the ERRs calculated using VCCT, assuming straight cracks, prior to growth onset.

The preliminary results obtained in this study suggest that the proposed approach is
capable of correctly simulating delamination growth along an interface that exhibits distinct
Mode I, II and III fracture processes. This capability eliminates the assumption that the
Mode II and III fracture processes are identical, which is typically required when simulating
delamination growth using cohesive element approaches.

The accuracy of the approach was demonstrated by comparison to LEFM benchmarks
and reference solutions. Further work is required to generalize the accuracy assessment for
fracture processes that depart from LFEM. The approach relies the characterization of pure
mode TSLs and a 3D mixed-mode fracture criterion. For the approach to be applicable,
these properties should adequately describe the fracture process being simulated.

In general applications, delamination may not occur in isolation and consideration of
other damage modes (such as fiber kinking, fiber tensile fracture, or matrix cracks) may
be required to adequately simulate damage onset and growth in composite laminates.
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