
DRAFT VERSION FEBRUARY 28, 2022
Typeset using LATEX twocolumn style in AASTeX62

HARM3D+NUC: A new method for simulating the post-merger phase of binary neutron star mergers with GRMHD, tabulated
EOS and neutrino leakage

ARIADNA MURGUIA-BERTHIER,1, 2 SCOTT C. NOBLE,3 LUKE F. ROBERTS,4 ENRICO RAMIREZ-RUIZ,1, 2 LEONARDO R. WERNECK,5

MICHAEL KOLACKI,6, 7 ZACHARIAH B. ETIENNE,8, 5 MARK AVARA,9 MANUELA CAMPANELLI,9, 10, 7 RICCARDO CIOLFI,11, 12

FEDERICO CIPOLLETTA,13 BRENDAN DRACHLER,14, 7 LORENZO ENNOGGI,9 JOSHUA FABER,9, 10, 7 GRACE FIACCO,14, 7

BRUNO GIACOMAZZO,15, 16, 17 TANMAYEE GUPTE,14, 7 TRUNG HA,14 BERNARD J. KELLY,18, 3, 19 JULIAN H. KROLIK,20

FEDERICO G. LOPEZ ARMENGOL,14 BEN MARGALIT,21 TIM MOON,9, 10 RICHARD O’SHAUGHNESSY,9, 10, 7

JESÚS M. RUEDA-BECERRIL,9 JEREMY SCHNITTMAN,3 YOSSEF ZENATI,20 AND YOSEF ZLOCHOWER9, 10, 7

1Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
2DARK, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

3Gravitational Astrophysics Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
4NSCL, Michigan State University, East Lansing, MI 48824, USA

5Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505
6Center for Computational Relativity, Rochester Institute of Technology, Rochester, New York 14623, USA

7School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
8Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506

9Center for Computational Relativity and Gravitation, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, New York 14623, USA
10School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA

11INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
12INFN, Sezione di Padova, Via Francesco Marzolo 8, I-35131 Padova, Italy

13Leonardo Corporate LABS - via Raffaele Pieragostini 80, 16149 Genova GE - Italy
14Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, New York 14623, USA

15Universitá degli Studi di Milano - Bicocca, Dipartimento di Fisica G. Occhialini, Piazza della Scienza 3, I-20126 Milano, Italy
16INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy

17INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (LC), Italy
18Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250, USA

19Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
20Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218, USA

21Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, Berkeley, CA 94720, USA

ABSTRACT

The first binary neutron star merger has already been detected in gravitational waves. The signal was accom-
panied by an electromagnetic counterpart including a kilonova component powered by the decay of radioactive
nuclei, as well as a short γ-ray burst. In order to understand the radioactively-powered signal, it is necessary to
simulate the outflows and their nucleosynthesis from the post-merger disk. Simulating the disk and predicting
the composition of the outflows requires general relativistic magnetohydrodynamical (GRMHD) simulations
that include a realistic, finite-temperature equation of state (EOS) and self-consistently calculating the impact
of neutrinos. In this work, we detail the implementation of a finite-temperature EOS and the treatment of neu-
trinos in the GRMHD code HARM3D+NUC, based on HARM3D. We include formal tests of both the finite-
temperature EOS and the neutrino leakage scheme. We further test the code by showing that, given conditions
similar to those of published remnant disks following neutron star mergers, it reproduces both recombination of
free nucleons to a neutron-rich composition and excitation of a thermal wind.

Keywords: accretion disks- general relativistic magnetohydrodynamical simulations, neutrino leakage

1. INTRODUCTION

On August 17, 2017, the LIGO/VIRGO collaboration de-
tected the first gravitational wave signal arising from the
merger of two neutron stars (Abbott et al. 2017a). This signal
was accompanied by a counterpart observed all over the elec-

tromagnetic spectrum (Abbott et al. 2017b; Murguia-Berthier
et al. 2017; Coulter et al. 2017; Shappee et al. 2017). This
event, named GW170817, gave credence to the idea that at
least a subset of neutron star mergers give rise to short γ-ray
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bursts (sGRBs; Eichler et al. 1989; Narayan et al. 1992; Lee
& Ramirez-Ruiz 2007; Nakar 2007).

In order to understand the electromagnetic emission, we
need to study the properties of merger. After the two neu-
tron stars merge, the fate of the remnant depends on the final
mass of the resulting object. If the final mass is less than
the mass allowed for an object with rigid rotation, then the
remnant will be a stable neutron star. On the other hand,
if the final mass is larger, then it can result in a hot hyper-
massive neutron star (HMNS), supported by differential ro-
tation, or it can promptly collapse to a black hole (Shibata
& Taniguchi 2006; Baiotti et al. 2008; Ravi & Lasky 2014).
In both cases, the compact object will be surrounded by an
accretion disk (Eichler et al. 1989; Baiotti et al. 2008). If the
result is an HMNS, there will be transport of mass and angu-
lar momentum from the inner edge to the outer edge that will
drive the HMNS to rigid rotation, where it can either remain
stable, or undergo a delayed collapse to a black hole (BH;
see Nakar 2019, for a recent review). It is widely believed
that GW170817 resulted in a delayed collapse to a black hole
(Margalit & Metzger 2017). In any case, the compact ob-
ject is left surrounded by an accretion disk containing highly
neutron-rich material (Lee & Ramirez-Ruiz 2007).

The post-merger accretion disk will be entirely opaque to
photons (Popham et al. 1999; Narayan et al. 2001; Lee et al.
2004, 2005, 2009). As we go deeper in the disk, due to the
high density and temperature, neutrinos (and anti-neutrinos)
will be created via the charged β-process, electron-positron
annihilation, and plasmon decay (Narayan et al. 2001; Di
Matteo et al. 2002; Chen & Beloborodov 2007). In the re-
gion where the neutrinos are created, matter will be optically
thin to neutrinos. In even deeper regions, matter will be op-
tically thick to neutrinos. In the optically thin region, free
neutrinos will carry energy away, and cool the disk, making
it geometrically thinner (Chevalier 1989; Houck & Chevalier
1991).

Further out in the the disk, where neutrinos are no longer
created in substantial numbers, free nucleons will recombine
into α-particles. The photons will still be trapped in the disk,
therefore the disk will be thicker and radiatively inefficient
(Popham et al. 1999; Narayan et al. 2001; Lee et al. 2004,
2005, 2009). An outflow arises due to instabilites in the ac-
cretion disk from its magnetic field (Balbus & Hawley 1998).
The instabilities will transport angular momentum at signifi-
cant rates, dissipating energy and driving a high velocity out-
flow. In addition, the recombination of free nucleons into
α−particles is capable of unbinding part of the material from
the disk (Lee et al. 2009; Fernández & Metzger 2013a).

Aside from material ejected from the disk, there are other
outflows from the binary merger that will significantly con-
tribute to the electromagnetic emission, including a dynami-
cal ejecta (see, for example Rosswog et al. 1999; Fernández

et al. 2015; Radice et al. 2016), and a neutrino-driven wind
(Dessart et al. 2009; Fernández & Metzger 2013a; Perego
et al. 2014; Kasen et al. 2017; Fernández et al. 2017). As
the different outflows expand and cool down, heavy ele-
ments are synthesised via the rapid neutron capture process
(r-process) (Freiburghaus et al. 1999; Kulkarni 2005; Fernán-
dez & Metzger 2013b; Lippuner & Roberts 2015; Palenzuela
et al. 2015; Radice et al. 2016; Roberts et al. 2017; Fernández
et al. 2017; Lippuner et al. 2017; Radice et al. 2018; Zenati
et al. 2019; Radice et al. 2020). After neutrons are exhausted,
elements will radioactively decay and heat the surrounded
material, which will thermally emit in the optical/IR bands
(Li & Paczyński 1998; Metzger et al. 2010; Roberts et al.
2011; Kasen et al. 2013; Barnes & Kasen 2013; Tanaka &
Hotokezaka 2013; Grossman et al. 2014; Kasen et al. 2015;
Barnes et al. 2016; Rosswog et al. 2017; Kasen & Barnes
2019; Siegel 2019); in particular, see Metzger (2019) and
references within. This emission, called a kilonova, was de-
tected for GW170817 (Drout et al. 2017; Kilpatrick et al.
2017; Soares-Santos et al. 2017; Tanvir et al. 2017; Smartt
et al. 2017; Nicholl et al. 2017; Cowperthwaite et al. 2017;
Villar et al. 2017; Kasen et al. 2017; Pian et al. 2017; Kasli-
wal et al. 2019). It is predicted that if the composition of the
ejecta includes lanthanides, the emission tends to be more
red and peak at later times, whereas if there are no third peak
elements, the emission tends to be bluer and peaks earlier
(Barnes & Kasen 2013; Tanaka & Hotokezaka 2013). Under-
standing the nucleosynthesis, and the amount of mass ejected
is therefore important when deciding the best strategy to ob-
serve and perform surveys for kilonovae. This paper will fo-
cus on the disk ejecta.

The key parameter in determining the rate of nucleosynthe-
sis, and in particular whether third peak r-process elements
(including the lanthanides) are created in the disk ejecta, is
the electron fraction of the ejected material (Kasen et al.
2013; Lippuner & Roberts 2015; Roberts et al. 2017; Lip-
puner et al. 2017; Kasen et al. 2017; Just et al. 2021). The
problem is that the composition of these ejecta varies be-
tween different simulations with results ranging from compo-
sitions dominated by iron peak elements to ejecta dominated
by lanthanides (e.g., Janiuk 2014; Fernández et al. 2015;
Foucart et al. 2018; Janiuk 2019; Siegel & Metzger 2018;
Miller et al. 2019b). One of the significant differences be-
tween the simulations is in the neutrino treatment. Neutrinos
carry away energy and lepton number, altering the electron
fraction and the final ejecta mass and they significantly alter
the composition of the ejected material. Thus, simulations
need to model the composition and thermodynamic state of
the ejecta as realistically as possible to understand and model
the kilonova emission.

In order to model the post-merger disk, we need to self-
consistently include multiple relevant physical processes.
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Due to the compact nature of the BH, we need to consider
general relativity (GR). Due to the importance of the mag-
netic stresses we need to include magneto-hydrodynamics
(MHD). Additionally, to self-consistently include the addi-
tion of neutrinos and recombination energy, we need both a
realistic equation of state (EOS) and a way in which to con-
sider the impact of neutrinos in the optically thick and thin
regions.

There have been many previous efforts to simulate a black
hole surrounded by an accretion disk in the context of a bi-
nary neutron star. A brief (and certainly incomplete) sum-
mary of the numerical efforts is below.

Numerical simulations initially added neutrino physics by
adding pressure terms in the EOS and adding emission and
heating/cooling terms from weak reactions in hydrodynam-
ical simulations (Popham et al. 1999; Narayan et al. 2001;
Di Matteo et al. 2002; Kohri & Mineshige 2002; Lee et al.
2004, 2005; Metzger et al. 2008; Zalamea & Beloborodov
2011). There have been general relativistic magnetohydrody-
namical (GRMHD) simulations in 2d with analytical terms
for the neutrino pressure with approximations by Di Mat-
teo et al. (2002) that also include nuclear reactions using the
GRMHD code HARM2D (Janiuk et al. 2013; Janiuk 2014,
2019). There have been efforts performing simulations of bi-
nary neutron stars, or a hyper-massive NS, with an accretion
disk in 3d with GRMHD but without neutrinos (for example,
Siegel et al. 2014; Kiuchi et al. 2014, 2015; Dionysopoulou
et al. 2015; Ruiz et al. 2016; Ciolfi et al. 2017; Kiuchi et al.
2018; Ruiz et al. 2018). Also, groups simulated disks af-
ter the merger of binary NS including GR with some kind
of neutrino transport but including no magnetic fields (Fou-
cart et al. 2016; Fujibayashi et al. 2017; Nedora et al. 2021).
Other groups performed hydrodynamical calculations with
neutrino physics, including neutrino leakage schemes and a
transport scheme but no magnetic fields (Ruffert et al. 1996;
Rosswog & Liebendörfer 2003; Metzger & Fernández 2014;
Perego et al. 2014; Martin et al. 2015; Fernández et al. 2015;
Just et al. 2015).

Foucart et al. (2015, 2018) performed general relativis-
tic hydrodynamical (GRHD) simulations and compared dif-
ferent neutrino treatments, including neutrino transport and
leakage schemes. Additionally, Siegel & Metzger (2018)
and De & Siegel (2020) performed GRMHD simulations of
a magnetized torus with a neutrino leakage scheme and the
Helmholtz equation of state. Hossein Nouri et al. (2018)
compared 3d simulations of magnetized and unmagnetized
accretion disks with GRMHD including a neutrino leakage
scheme. Li & Siegel (2021) performed an M1 scheme with
neutrino conversions. There have also been GRMHD simu-
lations that included a tabulated EOS with neutrino transport
using Monte-Carlo methods (Miller et al. 2019a,b).

In this paper, we present simulations using HARM3D+NUC,
based on HARM3D, considering the impact of neutrinos
through a leakage scheme and a multi-component, finite-
temperature EOS. HARM3D is a versatile GRMHD code
that has been well tested and used in many astrophysical
scenarios. It uses arbitrary coordinates, allowing for a more
accurate conservation of angular momentum. Additionally, it
has copious analysis tools developed over the years. The ad-
dition of a neutrino leakage scheme and tabulated EOS into
HARM3D+NUC is a stepping stone that allows for further
advances. The paper is structured as follows: in Section 2
we discuss how we implemented the realistic EOS and the
leakage scheme. In Section 3 we describe the tests we per-
formed to validate the implementation of the tabulated EOS
including a torus in hydrostatic equilibrium. In Section 4
we describe the tests we performed to validate the leakage
scheme, and in Section 5 we use both the tabulated EOS and
leakage scheme to better simulate a torus with a magnetic
field.

2. METHODS

In order to accurately simulate accretion disks, we need
the ability to solve the general relativistic magnetohydrody-
namics (GRMHD) equations with a realistic equation of state
(EOS) and a way to account for the effect neutrinos and anti-
neutrinos have on the material’s energy and electron fraction.
In this section, we explain how we added a tabulated EOS
and neutrino leakage scheme to HARM3D, in a new code
called HARM3D+NUC.

2.1. HARM3D+NUC

HARM3D (Gammie et al. 2003; Noble et al. 2006,
2009) solves the GRMHD equations in conservative form.
HARM3D is a well tested code that can handle arbitrary co-
ordinate systems, which allows for less numerical diffusion
and better conservation of angular momentum when using
coordinate systems that more closely conform to local sym-
metries of the problem (Zilhão & Noble 2014). Below we
set G = c = 1. The GRMHD equations of motion include the
baryon conservation equation,

∇µ (nbuµ) = 0 , (1)

the energy-momentum conservation equations (with a heat-
ing/cooling source, neglecting momentum transfer)

∇µTµ
ν =Quν , (2)

and Maxwell’s equations

∇ν
∗
F
µν

= 0 , (3)

∇νFµν = Jµ , (4)
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where uµ is the 4-velocity of the fluid,Q is the energy change
rate per volume in the comoving fluid frame (due to neutrino
heating/cooling), nb is the number density of baryons, Fµν

is the Faraday tensor times 1/
√

4π,
∗
F
µν

is the dual of this
tensor or the Maxwell tensor times 1/

√
4π, and Jµ is the 4-

current1. In practice, we don’t use Eq. (4), since we work in
the limit of ideal MHD. The change in the conservation of
lepton number is

∇µ (neuµ) =R/mb , (5)

where ne is the number density of electrons,R = −Rνe +Rν̄e

is the difference in the net rate of neutrino and anti-neutrino
number per volume in the comoving fluid frame.

Note that the rest-mass density of the gas (mass per unit
volume) is dominated by the baryon mass, ρ ≈ mbnb, where
mb is the baryon mass. The baryon number conservation
equation can then be replaced by the regular continuity equa-
tion:

0 = mb∇µ (nbuµ) =∇µ (mbnbuµ) =∇µ (ρuµ) . (6)

Instead of using ne and nb, we may use the fluid density ρ and
the electron fraction Ye:

Ye ≡
ne

nb
=

ne

ρ/mb
=

mbne

ρ
(7)

or Yeρ = mbne and we can therefore multiply Eq. (5) by mb to
yield the electron fraction equation:

∇µ (ρYeuµ) =R . (8)

The total stress-energy tensor is the sum of the fluid part,

Tµν
fluid = ρhuµuν + Pgµν , (9)

and the electromagnetic part

Tµν
EM = FµλFν

λ −
1
4

gµνFλκFλκ (10)

= ||b||2uµuν +
1
2
||b||2gµν

− bµbν , (11)

where we adopt the ideal MHD condition

uλFλκ = 0 , (12)

and where gµν is the metric, h =
(
1 + ε+ P/ρ

)
is the spe-

cific enthalpy, P is the pressure, ε is the specific internal en-
ergy density, bµ =

∗
F
νµ

uν is the magnetic field 4-vector, and
||b||2 ≡ bµbµ is twice the magnetic pressure Pm.

Equations (2-6) can be expressed in flux conservative form

∂tU (P) = −∂iFi (P) + S (P) (13)

1 We follow Gammie et al. (2003) in our definition of the electromagnetic
field tensor and magnetic field variables.

where U is a vector of “conserved” variables, Fi are the
fluxes, S is a vector of source terms, and P is the vector of
primitive variables. Explicitly, these are

P =
[
ρ,Bk, ũi,Ye,T

]T
(14)

U (P) =
√

−g
[
ρut ,T t

t +ρut ,T t
j,Bk,ρYeut]T (15)

Fi (P) =
√

−g
[
ρui,T i

t +ρui,T i
j,
(
biuk

− bkui) ,ρYeui]T (16)

S (P) =
√

−g
[
0,Tκ

λΓλ
tκ +Qut ,Tκ

λΓλ
jκ +Qui,0,R

]T
,

(17)
where g is the determinant of the metric, Γλ

µκ, is the metric’s
affine connection, T is the temperature, and Bi = Bi/α =

∗
F

it

is the magnetic field.
The primitive velocity is the flow’s 4-velocity projected

into a frame moving orthogonal to the space-like hypersur-
face:

ũµ = (δµν + nµnν)uν (18)

which only has spatial coefficients

ũi = ui
+αγgti , (19)

where α = 1/
√

−gtt is the lapse function, βi = −gti/gtt is the
shift function, γ = αut is the Lorentz factor, and nµ is the 4-
velocity of the orthogonal frame: nµ = [−α,0,0,0] and nµ =
[1/α,−βi/α]T . Defining a fluid three-velocity vi = ũi/γ, it
can be shown that γ = 1/

√
1 − v2, where v2 = vivi.

2.2. Implementation of a tabulated EOS in HARM3D+NUC

In the following section, we describe the implementation
of a tabulated EOS in HARM3D+NUC.

The tables and routines for interpolating tabulated quanti-
ties are provided by2 O’Connor & Ott (2010) and Schnei-
der et al. (2017). The finite-temperature tables give ther-
modynamic variables, including, for example, the sound
speed, and the chemical potentials of the nucleons, elec-
trons/positrons and neutrinos/anti-neutrinos, as a function of
the temperature (T ), the electron fraction (Ye), and the rest-
mass density (ρ). The linear interpolation routines are pro-
vided by O’Connor & Ott (2010) and Schneider et al. (2017).
The interpolation is done in logT , logρ, Ye space for logε,
logP, and the rest of the thermodynamical variables.

The tables consider an interpolation between a single nu-
cleus approximation (SNA) in the high density regime and

2 The link to the tabulated EOS is the following:
https://stellarcollapse.org/SROEOS, and the link to the interpolation
routines is: https://bitbucket.org/zelmani/eosdrivercxx/src
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nuclear statistical equilibrium (NSE) of several nucleides in
the low density regime. The SNA is composed of free nu-
cleons, electrons, positrons, α−particles, and photons. In the
high density regime, nuclei are included using the liquid drop
model. The regimes are smoothly interpolated. Using the ta-
bles, we have the advantage that the nuclear binding energy
release due to recombination energy from the α-particles is
included.

There are three main calls to the EOS in HARM3D+NUC:

• We call the EOS when setting the characteristic veloc-
ity in order to solve the Riemann problem (Gammie
et al. 2003). The wave velocities depend on the rela-
tivistic sound speed (Gammie et al. 2003), which can
be interpolated directly from the tables.

• We replaced the primitive variable u = ρε with the tem-
perature as a reconstructed variable, which makes the
interpolation of the pressure faster as all independent
variables are known and can be used to perform the in-
terpolation immediately.. This means that we call the
EOS to obtain the primitive energy density u after we
update ρ, T , and Ye from the conservation equations.

• We call the EOS repeatedly when converting from con-
served variables to primitive variables.

Our implementation of a tabulated EOS into the conserved
to primitive variables routine in HARM3D+NUC follows
Siegel et al. (2018).

2.2.1. Primary recovery: 3d routine

The primary recovery routine follows a 3-parameter root-
finding method similar to ones implemented in Cerdá-Durán
et al. (2008); Siegel et al. (2018). We call this routine the ‘3d’
routine. For this routine, we reduce the GRMHD equations
into three equations that have three unknowns, allowing us to
solve the following system:

Q̃2 =
(

1 −
1
γ2

)
(B2

+W )2
−

(QµBµ)2(B2 + 2W )
W 2 (20)

Qµnµ = −
B2

2

(
2 −

1
γ2

)
+

(QµBµ)2

2W 2 −W + P(ρ,Ye,T ) (21)

ε = ε(ρ,Ye,T ) . (22)

Using these equations, we perform Newton-Raphson itera-
tions until we obtain sufficiently accurate values for the inde-
pendent variables γ, T and W . Here Qµ = −nνT ν

µ = αT t
µ, W

is related to the specific enthalpy through W = hργ2,
Q̃µ = jµνQν , jµν = gµν + nµnν , and P is the pressure inter-

polated from tables.

2.2.2. Backup recovery 1: 2d routine

We also implemented backup routines that recover the con-
served variables. One of them follows an optimized version
of the "2d" method of Noble et al. (2006). We call this routine
the ‘2d’ routine. In this routine, the independent variables are
W and v2, found using equations (20-21). The previous time
step’s set of primitive variables are used as initial guesses
to the Newton-Raphson procedure. As was done in Siegel
et al. (2018), we obtain the pressure and the temperature for
each W and v2. This is done by first constructing the spe-
cific enthalpy: h = W/(γ2ρ), which can also be constructed
with quantities from the EOS tables: h(ρ,T,Ye). Then, with
the density, the electron fraction and the specific enthalpy,
we perform a Newton-Raphson method to obtain the temper-
ature from the tables, solving the equation: h = h(ρ,T,Ye).
Note that this inversion is time expensive, which is why this
routine is slower than the 3d routine.

2.2.3. Backup recovery 2: 2d ’safe-guess’ routine

If there is non-convergence for this backup routine, we in-
clude an initial ‘safe guess’ as described in Cerdá-Durán et al.
(2008). We call this routine the ‘2d safe guess’ routine. In
this scenario, we use the upper limits of the EOS table to
obtain the maximum thermodynamical quantities:

ρmax = D, (23)

Tmax = Tmax,tables, (24)

Pmax = P(ρmax,Ye,Tmax) . (25)

Were D is the density measured in the orthogonal frame:

D≡ −ρnµuµ = γρ . (26)

Then we can estimate the initial ‘safe guess’ for the root-
finding procedure:

γguess = γmax = 50, (27)

Wguess = Qµnµ + Pmax −
B2

2
. (28)

2.2.4. Backup recovery 3: 2d dog leg routine

If the ’safe guess’ option does not converge, this routine
includes a backup root-finding method: a trust-region, dog
leg routine that is more robust than a Newton-Raphson (Press
et al. 1992; Powell 1968). We call this routine the ‘2d dog
leg’ routine.
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2.2.5. Backup recovery 4: ’Palenzuela’ routine

If all else fails, we use the routine described in Palenzuela
et al. (2015). This routine solves a 1d equation using the
Brent method. In this routine, called ’Palenzuela’, the inde-
pendent variable is a rescaled variable

xpal ≡
ρhγ2

ργ
. (29)

We use the auxiliary rescaled variables:

qpal ≡
−(Qµnµ + D)

D
, rpal ≡

Q̃2

D2 , (30)

spal ≡
B2

D
, tpal ≡

QµBµ
D3/2 . (31)

The independent variable should be bracketed between:

1 + qpal − spal > xpal > 2 + 2qpal − spal . (32)

The method uses an initial guess for xpal from the previous
time step, and gets approximate quantities. Using them, it
updates xpal and iterates again until convergence is reached.
The method is the following (where approximate quantities
will be denoted by a hat):

We obtain an approximate Lorentz factor γ̂−2:

γ̂−2 = 1 −
x2

palrpal + (2xpal + spal)t2
pal

x2
pal(xpal + spal)2

. (33)

With that, we can estimate:

ρ̂ =
D
γ̂

(34)

and an approximate specific energy:

ε̂ = γ̂ − 1 +
xpal

γ̂
(1 − γ̂2) + γ̂

(
qpal − spal +

t2
pal

2x2
pal

+
spal

2γ̂2

)
. (35)

A call to the EOS will give the pressure P̂(ρ̂, ε̂,Ye), and with
all those approximate quantities, we can solve for xpal using
the Brent method by solving:

0 = f (xpal) = xpal − γ̂

(
1 + ε̂+

P̂
ρ̂

)
. (36)

We repeat the estimation of all the hat quantities until the
solution for xpal converges.

2.3. Neutrino leakage scheme

In the following section, we describe how we implemented
a leakage scheme that takes into account the heating/cooling
due to neutrinos, as well as how their emission and absorp-
tion affect the electron fraction. This leakage scheme is
suited to describe the contribution of neutrinos to the com-
position, and energy.

2.3.1. Rates

The scheme calculates the absorption/emission rate as well
as the energy loss rates due to neutrinos. We use these rates
in the source terms of Eq. (2) and Eq. (5). The scheme uses
energy-averaged quantities.

Like Ruffert et al. (1996); Galeazzi et al. (2013); Siegel
& Metzger (2018), we consider the following neutrino reac-
tions, each with their own absorption/emission rate (which
has units of cm−3s−1) and the energy loss rate rate due to neu-
trinos (with units of ergcm−3s−1):

• Charged β-process withRβ
νi

and Qβ
νi

:

e−
+ p→ n +νe (37)

e+
+ n→ p + ν̄e (38)

• Plasmon decay withRγ
νi

and Qγ
νi

:

γ→ νe + ν̄e (39)

γ→ νx + ν̄x (40)

where x is the muon and tauon, and in this case, γ cor-
responds to a photon.

• Electron-positron pair annihilation withRee
νi

and Qee
νi

e−
+ e+→ νe + ν̄e (41)

e−
+ e+→ νx + ν̄x . (42)

Using the above reactions, we calculate the total number
emission in the optically thin regime from species i as (Ruf-
fert et al. 1996):

Rνi =Rβ
νi

+Rγ
νi

+Ree
νi

(43)

and the total energy loss rate rate in the optically thin regime
is:

Qνi =Qβ
νi

+Qγ
νi

+Qee
νi

, (44)

where "i" denotes the different neutrino/anti-neutrino flavors:
electron, or muon and tauon.

The total emission/absorption rates and the energy loss
rates are given by an interpolation between the diffusive op-
tically thick regime and the transparent optically thin regime
(Ruffert et al. 1996):

Reff
νi

=Rνi

(
1 +

tdiff

temission,R

)−1

(45)

Qeff
νi

=Qνi

(
1 +

tdiff

temission,Q

)−1

. . (46)
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Figure 1. Relative error comparing primitive variables created from a grid of density and temperature after we performed the conversion from
conserved variables to primitive variables. The primitive variables were created with Ye = 0.1, the Lorentz factor γ = 2, log Pmag

Pgas
= −5, and a

Minkowski metric. We perturbed them by 5% and then recovered them using our conserved to primitive routines. The error is calculated by
summing over the relative error of each primitive variable compared to the original. We did this for 214 points in the shown range. The 2d
routines failed only once, the 3d routines failed 11 times, and the Palenzuela routine did not fail in this range. Density is in units of g/cm3, and
temperature is in units of Kelvin. Here we compare different routines, described in the text.

Here the diffusion timescale is given by:

tdiff =
Ddiffτ

2

cκνi

, (47)

where Ddiff = 6 (Rosswog & Liebendörfer 2003; O’Connor
& Ott 2010; Siegel & Metzger 2018) and τ is the optical
depth, and κνi the energy averaged opacity (in units of cm−1)
of νi. The absorption/emission and energy loss timescales
are temission,R =Rνi/nνi , with nνi being the neutrino number
density (at chemical equilibrium), and temission,Q = Qνi/ενi ,
with ενi being the neutrino energy density. In the opti-
cally thick regime, the neutrino loss rate is less than the
diffusion time, which results in Reff

νi
= nνi/tdiff and Qeff

νi
=

ενi/tdiff, whereas in the optically thin regime, we recover the
rates from equation (43) and (44). The rates for the muon
and tauon neutrinos/anti-neutrinos estimated in Ruffert et al.
(1996) take into account all four of those species. We also
note that several quantities, including the chemical poten-
tials, are obtained from EOS table interpolation.

2.3.2. Optical depth

The transition between the two regimes will be set by the
optical depth τνi , which is also needed to obtain the diffusion
timescale. In order to get the optical depth, we consider the
following reactions as the source of neutrino opacity:

νe + n→ p + e− (48)

ν̄e + p→ n + e+ (49)

νi + p→ νi + p (50)

νi + n→ νi + n. (51)

The opacities are obtained from Ruffert et al. (1996). Elec-
tron scattering is neglected.

The usual global approach to calculate the optical depth
of a point in the flow would be to integrate the opacity over
all directions and determine the path of minimal absorption.
This approach assumes that the neutrino will follow a straight
path. However, we follow Neilsen et al. (2014); Siegel &
Metzger (2018), where a local, iterative approach is used
instead of a global calculation, and where crooked minimal
paths are acceptable. The optical depth is calculated by ob-
taining the shortest path of the neutrino out of the star using
its neighbors. For the first timestep, we begin by initializing
the optical depth grid to zero. Next, we perform the first it-
eration, where we estimate the optical depth at each cell as
the minimum of the optical depth of its neighbor (τνi,neighbor)
plus the optical depth needed for the neutrino to reach that
neighbor (κ̄νi (gk jdxkdx j)1/2):

τνi = min
(
τνi,neighbor + κ̄νi (gk jdxkdx j)

1/2)
(52)

where τνi,neighbor is the optical depth of the neighboring cell,
κ̄νi is the average opacity between the cell and its neighbor,
and (gk jdxkdx j)1/2 is the distance to the neighboring cell cal-
culated by taking the average value of gk j between the local
and neighboring cells. We minimize over all neighbors.

This essentially traces the path of least resistance of the
neutrino to a neighbor. We update the entire grid, and per-
form the next iteration, where again, we minimize over all
the adjacent neighbors. The next iteration will show the path
to the neighbor two cells away. As we do more iterations, we
trace the path of least resistance that the neutrinos will take
out of the star. This will lead us to the final optical depth.
During the first timestep, we initialize the optical depth by
by performing 20Nmax iterations, where Nmax is the maximum
number of cells in each direction, independent of resolution.
This is done to trace a path to the edge of the domain ini-
tially. After the initial calculation, which has a fixed number
of iterations, we continue to do iterations to obtain the final
optical depth, however we impose a convergence criterion in
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order to minimize the number of iterations. In order to con-
verge, we set conditions on the difference between iteration
k − 1 and k:

Rchange,τ (k)≡ |
∑
τk−1 −

∑
τk|∑

τk−1
< ε1 (53)

or
|Rchange,τ (k − 1) − Rchange,τ (k)|

Rchange,τ (k − 1)
< ε2 (54)

where
∑
τk is the sum of all the optical depths in the grid at

iteration k, and ε1 and ε2 are parameters that we choose to be
ε1 = 10−4 and ε2 = 10−3, respectively. Only a few iterations
are needed for convergence after the initial guess.

3. VALIDATION TESTS FOR THE TABULATED EOS

In this section, we describe the tests performed to validate
the implemented EOS tables.

3.1. Testing the conserved to primitive variables routine

In order to validate the routines that transform the con-
served variables into primitive variables with tabulated EOS,
we created primitive variables out of a grid of density and
temperature values within the EOS table. The magnetic field
was set randomly to be either aligned or anti-aligned with the
velocity vector. The magnitude of the magnetic field was set
to be such that: b2/2 =

(
Pmag

Pgas

)
Pgas, where (Pmag/Pgas) is set

as a parameter, Pmag is the magnetic pressure, and Pgas is the
gas pressure. We then obtained a set of conserved variables
based on these primitives. The true primitives were then var-
ied by randomly adding or subtracting a 5% perturbation to
each primitive. This test is based on Siegel et al. (2018).

We then used these primitives as initial guesses for the var-
ious routines that transform the conserved variables to primi-
tive variables and compared the resultant solution to the orig-
inal.

We show the error we obtained for all primitive variables
in Figure 1. It can be seen that the recovery error is low. Ad-
ditionally, the figure shows that the 3d method is less robust,
but more accurate, which is the reason it is set as the primary
routine. The different 2d methods, and the ’Palenenzuela’
routine are more robust, but less accurate (and slower) than
the 3d method, so they serve better as backup routines.

3.2. Torus in hydrostatic equilibrium

To test the EOS implementation, we simulated a non-
magnetized torus that is in hydrostatic equilibrium with no
leakage scheme, following Fishbone & Moncrief (1976).

Figure 2 shows the 3d hydrodynamical evolution of a torus
constructed to be in hydrostatic equilibrium with a tabulated
EOS without neutrino cooling. There are perturbations par-
ticularly near the BH due to accretion onto the BH, but the

Figure 2. Top panel: Evolution of a torus in hydrostatic equilib-
rium with a tabulated EOS and no neutrino leakage scheme.. We
show the meridional (Left) and equatorial (Right) cut. The initial
conditions are set as described in section 3.2. Here x1, x2, x3 corre-
spond to the coordinates x, z, y respectively. Bottom panel: Density
as a function of radius for different times in the equator.

density is low in those regions. As can be seen from the fig-
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Figure 3. Comparison of the semi-analytical solution (dotted line)
with the simulation (solid line) for the evolution of the temperature
and electron fraction of an isotropic, optically thin gas with constant
density.

ure, the torus remains in hydrostatic equilibrium throughout
the simulation.

3.2.1. Initial conditions inside the torus

The specific enthalpy inside the torus is implemented via
Equation (3.6) of Fishbone & Moncrief (1976), but adding
lnhmin to the integration constant (see Section 3.2.2). By con-
struction, the torus is in hydrostatic equilibrium with the am-
bient atmosphere. We also set the torus to be isentropic, and
have uniform electron fraction. Given a specific entropy sdisk,
a specific enthalpy given by Fishbone & Moncrief (1976),
and an electron fraction Ye,disk), the temperature and density
of the disk are found by solving the following equations:

sdisk = s(ρ,T,Ye) (55)

h = h(ρ,T,Ye) (56)

where s is the specific entropy.

0.0 0.1 0.2 0.3 0.4 0.5
Radius (rg)

100

101

102

Op
tic

al 
de

pt
h

1024× 1024× 1
512× 512× 1
256× 256× 1
128× 128× 1
96× 96× 1
48× 48× 1
Analytical solution
Simulation

0.0 0.1 0.2 0.3 0.4 0.5
Radius (rg)

100

101

102

Op
tic

al 
de

pt
h

1024× 1024× 1
512× 512× 1
256× 256× 1
128× 128× 1
96× 96× 1
48× 48× 1

Figure 4. Comparison of the analytical solution (dotted line) of the
optical depth with simulations (solid line) for different resolutions.
The labels indicate the number of cells in each direction. The Top
panel is the anti-neutrino optical depth, and the Bottom panel is the
neutrino optical depth.

3.2.2. Atmosphere

In the classical torus, the boundaries of the torus are de-
fined where h = 1. In the tabulated EOS, though, negative
internal energy densities are allowed since the internal en-
ergy per nucleon is measured relative to the free neutron rest
mass energy. In this case, the minimum specific enthalpy is
not restricted to 1, but rather it can be 1 > hmin > 0, where
hmin is the specific enthalpy from the table given the atmo-
spheric density, and the disk’s electron fraction and specific
entropy. Thus, we set the torus boundary to be where h = hmin.
For the background atmosphere, we set the minimum atmo-
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Figure 5. Comparison of the analytical solution (dotted line) of the
optical depth to neutrinos with simulations (solid line).

spheric density ρatm as a parameter. Then we find the mini-
mum specific enthalpy by doing a table inversion and finding
hmin = h(ρatm,sdisk,Ye,disk). We also find the atmospheric tem-
perature by doing a table inversion Tatm = T (ρatm,sdisk,Ye,disk).

The density in the background is set to:

max
(
ρatm,

ρ0

r2

)
(57)

Where we set ρ0 as a parameter as well. The background
atmosphere temperature is set to:

max
(

Tatm,
T0

r

)
, (58)

where T0 is a parameter. The power-law dependence is set
to provide the background atmosphere with more pressure
support so that it does not rapidly accrete onto the BH. This
ultimately helps with robustness near the BH, as the low den-
sity and low temperature zones with high velocity are where
the conserved to primitive routines tend to fail. We note that
in the region where there is a power-law dependence, the spe-
cific enthalpy is not a constant, whereas once the background
atmosphere is set to be constant, everything is thermodynam-
ically consistent because it was constructed with the tabu-
lated EOS tables.We set the electron fraction of the atmo-
sphere to a constant value found by assuming β-equilibrium
(where the neutrino chemical potential is zero) at Tatm and
ρatm.

The units are normalized so that the maximum density in
the torus is set to ρmax = 1 in code units, which in this case
corresponds to ρmax = 5.4× 108g/cm3 in cgs units. In the

simulation we performed, the torus has a constant electron
fraction of Ye = 0.1 and a specific entropy of 10kB/baryon,
where KB is Boltzmann’s constant. The background at-
mosphere is characterized by ρatm = 6000g/cm3, ρ0 = 3×
105g/cm3, T0 = 0.4MeV. We used the SLy4 table with NSE
from Schneider et al. (2017), and with that table the min-
imum specific enthalpy for our parameters is set to hmin =
0.9974 (in code units), and Tatm = 0.0053MeV. The electron
fraction in the atmosphere, given by β-equilibrium, is set to
Ye,atm = 0.45. The boundary conditions are outflow in the
outer radial boundary, reflective in the angular coordinate θ,
and periodic in the angular coordinate φ. The metric is Kerr-
Schild in spherical coordinates for a non-spinning BH.

4. VALIDATION TESTS FOR THE LEAKAGE SCHEME

In this subsection, we describe how we tested the leak-
age scheme in the optically thin regime and for finite optical
depth.

4.1. Testing the optically thin regime

Following Miller et al. (2019a), we tested the leak-
age scheme in an optically thin regime by considering an
isotropic gas of constant density and temperature such that
the gas is optically thin to neutrinos. We tested both reactions
in the charged β−process separately where we included only
either the neutrinos or the anti-neutrinos.

In this case, the GRMHD equations reduce to:

∂tT t
t =Q. , (59)

∂tYe =R/ρ , (60)

where R and Q are the emission/absorption and energy loss
rates due to neutrinos or anti-neutrinos of the reactions in
β−process separately. The rates need to be calculated semi-
analytically, since they depend on interpolated quantities,
such as the degeneracy parameters. We can then solve the
equations semi-analytically with a set of initial conditions
and compare to simulations. We chose the initial density and
temperature such that the medium is optically thin to neutri-
nos and anti-neutrinos.

For the initial conditions, we used an initial density of
617714g/cm3 and temperature of 1MeV, chosen so that the
medium is optically thin to neutrinos and anti-neutrinos. We
used Ye,0 = 0.5, Ye,0 = 0.005 for the electron neutrino and anti-
neutrino tests respectively. We used 2×2×1 number of cells
in each direction using a Cartesian grid with Minkowski met-
ric.

In Figure 3 we show the comparison between the semi-
analytical solution and the simulation for the β-process both
for neutrinos and anti-neutrinos. We compare the change in
the electron fraction due to the absorption/emission rate, and
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the change in temperature due to the heating/cooling rate.
As can be seen from the figure, HARM3D+NUC is able to
recreate the semi-analytical solution.

4.2. Testing the optically thick regime

4.2.1. Constant density circular disk

In order to test the optical depth calculation, we simulated
a circular disk with uniform density and temperature embed-
ded in an optically thin medium of constant density and tem-
perature. The advantage of this scenario is that we can calcu-
late the opacity inside the circle and then calculate the optical
depth analytically. This way we can compare to the sim-
ulation. The simulations were performed in 2d, and the do-
main is 2rg, where rg = GM/c2 is the gravitational radius. We
used a Minkowski metric with spherical coordinates. There
are outflow conditions on the radial boundaries. The optical
depth in the outer radial boundary was set to zero so that the
neutrinos and anti-neutrinos could escape the domain. We
simulated an optically thick circular disk that has a constant
density of 9.8×1013g/cm3, an electron fraction of 0.1 and a
temperature of 8MeV embedded in an optically thin medium,
with a density of 6× 107g/cm3, an electron fraction of 0.5
and a temperature of 0.01MeV. Figure 4 shows the optical
depth for both the electron neutrino and anti-neutrino for dif-
ferent resolutions. As can be seen from the figure, the initial
guess for the optical depth is accurate and the convergence
to the solution does not change with resolution. At smaller
optical depths, the optical depth is slightly overestimated at
lower resolutions, but as the optical depth increases, the so-
lution doesn’t depend noticeably on resolution.

4.2.2. Stripes

We can also test the optical depth algorithm by simulat-
ing stripes of high density material with low density material
in between. In this scenario, it is expected that a neutrino
created in the region with high optical depth material will
travel to the region with low optical depth and stream freely
from the surface. For the simulation, we used 4096×96×1
cells. The simulations were performed in 2d, and the domain
is 1rg large in radial extent, where rg = GM/c2 is the gravi-
tational radius. We used a Minkowski metric with spherical
coordinates and outflow conditions at the radial boundaries.
The optical depth at the outer radial boundary was set to zero
so that the neutrinos and anti-neutrinos could escape the do-
main. We simulated three stripes of material with high op-
tical depth: ρ = 9.8× 1013g/cm3, Ye = 0.1, T = 8MeV. In
between the stripes, the optically thin gas was initialized to
ρ = 6× 107g/cm3, Ye = 0.5, and T = 0.01MeV. The high
opacity stripes start at r = 0rg, and have a width of r = 0.1rg.
The next stripes are located in r = 0.2rg and r = 0.4rg.

We show the results from this setup in Figure 5, where we
compare the results from the simulation with the analytical

Figure 6. Shown is a meridional cut of the MRI quality factors
Qmri,2 and Qmri,3 at 114ms, where the subscripts for Qmri,2, Qmri,3

correspond to the coordinates θ,φ respectively.

estimate (length units are in rg):

τanalytical =



∫ 0.2
0 κdr r ≤ 0.2∫ 0.25
0.2 κdr 0.2≤ r ≤ 0.25∫ 0.35
0.25 κdr 0.25≤ r ≤ 0.35∫ 0.45
0.4 κdr 0.4≤ r ≤ 0.45∫ 0.55
0.45 κdr 0.45≤ r ≤ 0.55

(61)

5. MAGNETIZED DISK

In this section, we apply our new code HARM3D+NUC
to a magnetized torus in 3d that approximates a post-merger
disk. We use both the tabulated EOS and the leakage scheme
in this test.

5.1. Initial conditions

The initial conditions inside the torus follow a similar setup
to that of section 3.2.1, but with the addition of a poloidal
magnetic field. In order to start with a magnetic field devoid
of magnetic monopoles, we first set the vector potential to
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Figure 7. Top and Middle panel: Shell-integrated mass-weighted
quality factors as a function of radius, averaged over differ-
ent epochs of time. Bottom panel: Mass-weighted quality fac-
tors integrated over angles and radii that are less than 150km:∫ 150km

0km

∫ ∫
Qmriρ

√
−gdrdφdθ/

∫ 150km
0km

∫ ∫ √
−gρdrdφdθ.

a prescribed distribution and calculate its curl using a finite
difference operator compatible with our constrained transport

Figure 8. Density of a magnetized torus including the impact of
neutrinos at 114ms. Shown is an equatorial cut (top panel) and a
meridional cut (bottom panel).

method (see Zilhão & Noble 2014, for further details). Our
poloidal magnetic field distribution results from a vector po-
tential with only one non-zero component:

Aφ = max
(
ρ/ρmax −ρ0,mag ,0

)
(62)

where ρ is the average density at that position, and ρmax =
1.66× 1011g/cm3 is the maximum density of the torus. We
set ρ0,mag = 0.2 in code units, which corresponds to ρ0,mag =
3.33× 1010g/cm3. Then we build the magnetic field with
the vector potential and normalize its magnitude such that
the ratio of the integrated gas pressure to integrated magnetic
pressure is 100. Inside the disk, the matter is set to be neu-
tron rich, Ye = 0.1. The treatment of the atmosphere is the
same as in section 3.2.2, except the density scales as r−3/2.
In the atmosphere, the electron fraction is set to its value in
β-equilibrium, where the chemical potential of the neutrinos
is set to zero. We show the parameters used in Table 1.

The simulations were performed in 3d on a grid designed
to focus more cells about the equator and towards the black
hole horizon. We use the same grid as defined in Noble
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Figure 9. Electron fraction of a magnetized torus including the im-
pact of neutrinos at 114ms. Shown is an equatorial cut (top panel)
and a meridional cut (bottom panel).

et al. (2010) but with different parameters. The azimuthal
grid spacing is uniform. The logarithmic radial grid is such
that ∆r/r is fixed and the ith cell center is located at:

ri = rmin exp
[(

i + 1/2
)

log10 (rmax/rmin)/Nr
]
, (63)

with rmin = 1.303rg, rmax = 2000rg, and i ∈ [0,Nr − 1]. The
θ grid uses a high-order polynomial function to provide a
nearly uniform grid spacing spacing near the equator:

θ j =
π

2

[
1 + (1 − ξ)

(
2x(2)

j − 1
)

+

(
ξ −

2θc

π

)(
2x(2)

j − 1
)n
]
,

(64)
where ξ is a parameter controlling the severity of the fo-
cusing, n is the order of polynomial used in the transforma-
tion, θc is the opening angle of the polar regions we excise,
x(2)

j ≡
(

j + 1/2
)
/Nθ, and j ∈ [0,Nθ − 1] . In our run, we used

θc = π10−14, ξ = 0.65, and n = 7. The number of cells per
dimension used was Nr×Nθ×Nφ = 1024×160×256.

5.2. Scaling tests

We performed scaling tests for this run for 3 different num-
ber of processors: 5120, 2560 and 1280 processors. For this

Figure 10. Zoomed in version of the density of a magnetized torus
including the impact of neutrinos at 114ms. Shown is an equatorial
cut (top panel) and a meridional cut (bottom panel).

Parameter Value

Disk radius of maximum pressure 9rg

Disk inner radius 4rg

Mass of disk 0.03M�

Ye in the disk 0.1
Specific entropy in the disk 7 kb/baryon

(Pgas/Pmag) 100
BH spin 0.9375
BH mass 3M�

Specific enthalpy at boundary 0.9977 [code units]
Temperature at radius of maximum pressure 4.4 MeV

Table 1. Parameters used in the simulation.

setup, the number of time steps in the code per second per
processor were: 0.000723, 0.000781, 0.000868 respectively.
The difference between 5120 and 1280 processors is around
17%. If we do not include the neutrino leakage scheme but
include only a tabulated EOS, for 2560 processors, the num-
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Figure 11. Zoomed in version of the electron fraction of a magne-
tized torus including the impact of neutrinos at 114ms. Shown is an
equatorial cut (top panel) and a meridional cut (bottom panel).

ber of steps per second per processor is 0.001328, which
makes the leakage 58% slower than only considering the tab-
ulated EOS.

5.3. Magnetic turbulence

In order to confirm that we are adequately resolving mag-
netic turbulence, we display in Figure 6 the number of grid
cells per wavelength of the fastest growing mode of the
magneto-rotational instability (MRI), defined as (Noble et al.
2010; Hawley et al. 2011; Sorathia et al. 2012; Hawley et al.
2013):

Qmri,x =
λx,mri

∆x
(65)

where x = θ,φ, ∆x is the cell size, and the wavelength of the
fastest MRI growing mode is:

λx,mri =
2π
Ω

|bx|√
ρh + b2

. (66)

As can be seen in Fig 7, our grid satisfies the criterion of
Sano et al. (2004) everywhere except for later times within
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Figure 12. Shown is the geometrical thickness (H/r) of the disk,
as a function of radius. The thickness is averaged between the indi-
cated time in the legend.

r < 50km. While our results fail to meet criteria for asymp-
totic MRI convergence set forth in Hawley et al. (2011), our
disk does satisfy Qmri,3 > 10 everywhere, and Qmri,2 > 6 for
r & 50km for most of the run. One reason why our simulation
may not reach larger Qmri values is because we used the same
random perturbations across all MPI processes in the initial
conditions. Because we used 16 subdomains in the azimuthal
dimension, this means that the simulation is nearly periodic
over ∆φ = π/8, and the azimuthal modes with m< 8 start off
significantly weaker as they are seeded with perturbations at
only the round-off error level.

5.4. Impact of neutrinos and EOS

Magnetic stresses will transport angular momentum in the
disk, heating the gas, which will produce a high velocity out-
flow (Fernández & Metzger 2013a; Siegel & Metzger 2018).
This outflow will be affected by the addition of neutrinos
formed through weak reactions. In the midplane, neutrinos
will carry significant amounts of energy, which will cool and
make the disk geometrically thinner. Another outflow is also
expected to occur in the outer regions of the disk due to the
release in nuclear binding energy when there is recombina-
tion of free nucleons into α−particles, which produces en-
thalpy and unbinds material (Lee et al. 2009; Fernández &
Metzger 2013a). In this subsection we show the impact of
both the emission of neutrinos and the recombination of free
nucleons.

In Figures 8 and 11 we display the outflows that results
from our simulations of a neutrino-cooled magnetized disk
at 114 ms. In Figures 9 and 10 we plot the electron fraction
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Figure 13. Top panel: Mass accretion rate onto the innermost stable
circular orbit (ISCO) of the BH as a function of time. Bottom panel:
Average mass accretion rate as a function of radius. We averaged
the mass accretion rate between the times indicated in the legend.
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Figure 14. Luminosity due to the different neutrino species as a
function of time.

and the density, respectively, at t = 114ms. Movies can be
found here 3.

Neutrino cooling is expected to happen on the diffusion
timescale, which is on the order of milliseconds, much
shorter than our evolution timescale. The inner regions of
the disk are very neutron rich, confirming the self-regulating
phase found in Siegel & Metzger (2017, 2018). In this phase,
there is a balance between the neutrino cooling and the heat-
ing driven by MHD that self-regulates the electron degen-
eracy parameter, and the final state is a neutron rich disk
(Siegel & Metzger 2017, 2018). We note that although this
new code does not include neutrino absorption in the ejecta,
absorption will modify the electron fraction in the outflow
(Just et al. 2021).

In the top panel of Figure 13 we show the mass accretion
rate through the innermost stable circular orbit (ISCO) as a
function of time, and show the accretion rate as a function of
radius in the bottom panel. The outflow can be clearly seen
as a negative mass accretion rate at larger radii, as well as a
settling of the mass accretion rate as time passes.

In Figure 12, we plot the geometrical thickness of the disk,
or H/r. We estimated this thickness using the scale height H
following Noble et al. (2012):

H =
〈ρ√gθθ |θ −π/2|〉

〈ρ〉 (67)

where 〈X〉 is the average of the quantity X over a spherical
shell:

〈X〉 =

∫
X
√

−gdθdφ∫ √
−gdθdφ

. (68)

In the deepest regions of the disk, the heating due to MHD
turbulence helps create neutrinos/anti-neutrinos, which es-
cape, remove energy, and geometrically thin the disk. Re-
combination of free nucleons into α-particles releases bind-
ing energy, effectively increasing the enthalpy and unbinds
material. The effect of recombination is less severe than the
geometrically thinning due to neutrino/anti-neutrino losses.
This transition can be seen at around 150km.

We may obtain the amount of energy radiated by each
species of neutrino and anti-neutrino as was done in Siegel
& Metzger (2018):

Lνi =
∫
αγQeff

νi

√
−gd3x . (69)

In Figure 14, we show the luminosity for each species. It can
be seen that the electron neutrino (and anti-neutrino) dom-
inate the emission over all of the other species of neutrino.
The luminosity roughly follows the mass accretion rate as

3 https://www.youtube.com/playlist?list=
PLurnnzvqZvZaqLWlT2BVmPOlDm5P3BUOz

https://www.youtube.com/playlist?list=PLurnnzvqZvZaqLWlT2BVmPOlDm5P3BUOz
https://www.youtube.com/playlist?list=PLurnnzvqZvZaqLWlT2BVmPOlDm5P3BUOz
https://www.youtube.com/playlist?list=PLurnnzvqZvZaqLWlT2BVmPOlDm5P3BUOz
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seen in Figure 13, as heating from the magnetic stresses ig-
nite the creation of neutrinos/anti-neutrinos. This suggests
the radiative efficiency of neutrino/anti-neutrinos emission
remains relatively steady.

Our initial conditions are similar (although not identical) to
the initial conditions in Siegel & Metzger (2018). They per-
formed 3d simulations of a post-merger accretion disk with
a relatively higher specific entropy and lower spin than this
simulation. They used Cartesian coordinates, a Helmholtz
EOS for relatively low densities, and a neutrino leakage
scheme. They evolved the disk for longer times (380 ms).
Even though we use a different EOS (Sly4), the disk thick-
ness is qualitatively similar. At the inner regions of the
disk, neutrino cooling dominates, whereas at outer regions
(at radius higher than around 100km), recombination is re-
sponsible for making the disk geometrically thicker. The
neutrino/anti-neutrino luminosities are comparable, Siegel &
Metzger (2018) has a higher luminosity, but that could be
attributed to the difference in the initial disk specific entropy.

As the outflow expands, it will cool, and heavy elements
will be created via the r−process. We will explore this nucle-
osynthesis in a future paper.

6. SUMMARY

GRMHD simulations of post-merger accretion disks have
advanced over the last few years with better treatment of neu-
trinos and a more realistic EOS. In this paper we present
the addition of a neutrino leakage scheme and a tabulated
EOS into the computationally efficient, versatile GRMHD
code HARM3D. This new addition to HARM3D, called
HARM3D+NUC, has the potential to be used in a range of
simulations where neutrinos are present. In the paper, we use
the new code HARM3D+NUC to simulate an accretion disk
resembling the post-merger phase of a binary neutron star,
though other applications include collapsars (e.g., Siegel
et al. 2019; Miller et al. 2020).

The paper shows how we implemented the tabulated EOS
in the conserved variable to primitive variable routines, and
the different methods we implemented and tested for per-
forming this inversion. We show that using the 3d primary
recovery method is the most accurate and efficient, but least
robust, choice which is why we also employ several 2d and
1d backup routines. The leakage scheme is implemented by
adding the neutrino/anti-neutrino heating/cooling and emis-
sion/absorption terms as source terms in the equations of mo-
tion. We describe in detail an approach to obtain the optical
depth locally and how we can use a convergence criterion
to get the optical depth after a few iterations once the initial
guess is made.

We show several tests for our new code. The tabulated
EOS is tested by determining the relative error between orig-
inal primitive variables and the recovered primitive variables.

We also test the EOS by performing a simulation of a torus
in hydrostatic equilibrium, showing that it stays in hydro-
static equilibrium throughout the entire simulation. We test
the neutrino leakage scheme in the optically thin regime by
investigating the β−process in a constant density gas. We test
the optical depth algorithm in a constant density circular disk
and a stripes setup.

With our new machinery, we simulate a magnetized high-
density torus, which serves as an approximation to the ac-
cretion flow after the merger of two neutron stars. Magnetic
stresses transport angular momentum from the disk, driving a
high velocity outflow. The outflow is affected by both the ad-
dition of neutrinos and the nuclear binding energy released
from the recombination of nucleons to α−particles, which
acts to geometrically thicken the disk. Neutrinos will alter
the electron fraction of the ejecta especially in the inner re-
gions of the disk, whereas the recombination of nucleons is
more prominent in the outer regions of the disk. This high-
lights the importance of modeling the accretion disk includ-
ing neutrinos and an EOS that considers this extra unbinding
of material due to recombination.

We plan to use the new code to do long-term evolutions of
binary neutron star mergers starting from before the neutron
stars merge to the evolution of the outflow. Heavy elements
should be created via the r−process in this outflow as it ex-
pands and cools. We plan to use different codes and methods
to treat the initial data, pre-merger/merger, and post-merger
phases. The initial data for the neutron stars will be con-
structed using a modified version of LORENE (Gourgoulhon
et al. 2016) we have developed. Binaries will be evolved until
they merge and eventually form a black hole surrounded by
an accretion disk using two GRMHD codes: IllinoisGRMHD
(Etienne et al. 2015), and Spritz (Cipolletta et al. 2020). After
the remnant has collapsed to a BH and the numerical metric
has stabilized, we will interpolate the MHD primitives and
numerical metric into the grid of HARM3D+NUC (López
Armengol et al. in prep). After doing the appropriate tenso-
rial transformations from the Cartesian base to the coordinate
base of HARM3D+NUC, we will continue the post-merger
evolution with HARM3D+NUC.
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Li, L.-X., & Paczyński, B. 1998, ApJL, 507, L59,
doi: 10.1086/311680

Li, X., & Siegel, D. M. 2021, arXiv e-prints, arXiv:2103.02616.
https://arxiv.org/abs/2103.02616

Lippuner, J., Fernández, R., Roberts, L. F., et al. 2017, MNRAS,
472, 904, doi: 10.1093/mnras/stx1987

Lippuner, J., & Roberts, L. F. 2015, ApJ, 815, 82,
doi: 10.1088/0004-637X/815/2/82

Margalit, B., & Metzger, B. D. 2017, ApJL, 850, L19,
doi: 10.3847/2041-8213/aa991c

Martin, D., Perego, A., Arcones, A., et al. 2015, ApJ, 813, 2,
doi: 10.1088/0004-637X/813/1/2

Metzger, B. D. 2019, Living Reviews in Relativity, 23, 1,
doi: 10.1007/s41114-019-0024-0

Metzger, B. D., Arcones, A., Quataert, E., & Martínez-Pinedo, G.
2010, MNRAS, 402, 2771,
doi: 10.1111/j.1365-2966.2009.16107.x

Metzger, B. D., & Fernández, R. 2014, MNRAS, 441, 3444,
doi: 10.1093/mnras/stu802

Metzger, B. D., Piro, A. L., & Quataert, E. 2008, MNRAS, 390,
781, doi: 10.1111/j.1365-2966.2008.13789.x

Miller, J. M., Ryan, B. R., & Dolence, J. C. 2019a, ApJS, 241, 30,
doi: 10.3847/1538-4365/ab09fc

Miller, J. M., Sprouse, T. M., Fryer, C. L., et al. 2020, ApJ, 902,
66, doi: 10.3847/1538-4357/abb4e3

Miller, J. M., Ryan, B. R., Dolence, J. C., et al. 2019b, PhRvD,
100, 023008, doi: 10.1103/PhysRevD.100.023008

Murguia-Berthier, A., Ramirez-Ruiz, E., Kilpatrick, C. D., et al.
2017, ApJL, 848, L34, doi: 10.3847/2041-8213/aa91b3

Nakar, E. 2007, PhR, 442, 166, doi: 10.1016/j.physrep.2007.02.005

—. 2019, arXiv e-prints, arXiv:1912.05659.
https://arxiv.org/abs/1912.05659

Narayan, R., Paczynski, B., & Piran, T. 1992, ApJL, 395, L83,
doi: 10.1086/186493

Narayan, R., Piran, T., & Kumar, P. 2001, ApJ, 557, 949,
doi: 10.1086/322267

Nedora, V., Bernuzzi, S., Radice, D., et al. 2021, ApJ, 906, 98,
doi: 10.3847/1538-4357/abc9be

Neilsen, D., Liebling, S. L., Anderson, M., et al. 2014, PhRvD, 89,
104029, doi: 10.1103/PhysRevD.89.104029

Nicholl, M., Berger, E., Kasen, D., et al. 2017, ApJL, 848, L18,
doi: 10.3847/2041-8213/aa9029

Noble, S. C., Gammie, C. F., McKinney, J. C., & Del Zanna, L.
2006, ApJ, 641, 626, doi: 10.1086/500349

Noble, S. C., Krolik, J. H., & Hawley, J. F. 2009, ApJ, 692, 411,
doi: 10.1088/0004-637X/692/1/411

—. 2010, ApJ, 711, 959, doi: 10.1088/0004-637X/711/2/959

Noble, S. C., Mundim, B. C., Nakano, H., et al. 2012, ApJ, 755,
51, doi: 10.1088/0004-637X/755/1/51

O’Connor, E., & Ott, C. D. 2010, Classical and Quantum Gravity,
27, 114103, doi: 10.1088/0264-9381/27/11/114103

Palenzuela, C., Liebling, S. L., Neilsen, D., et al. 2015, PhRvD, 92,
044045, doi: 10.1103/PhysRevD.92.044045

Perego, A., Rosswog, S., Cabezón, R. M., et al. 2014, MNRAS,
443, 3134, doi: 10.1093/mnras/stu1352

Pian, E., D’Avanzo, P., Benetti, S., et al. 2017, Nature, 551, 67,
doi: 10.1038/nature24298

Popham, R., Woosley, S. E., & Fryer, C. 1999, ApJ, 518, 356,
doi: 10.1086/307259

Powell, M. J. 1968, A Fortran subroutine for solving systems of
nonlinear algebraic equations, Tech. rep., United Kingdom
Atomic Energy Authority

https://arxiv.org/abs/2102.08387
http://doi.org/10.1093/mnras/stv1892
http://doi.org/10.1088/0004-637X/774/1/25
http://doi.org/10.3847/1538-4357/ab06c2
http://doi.org/10.1093/mnras/stv721
http://doi.org/10.1038/nature24453
http://doi.org/10.1093/mnrasl/slz007
http://doi.org/10.1126/science.aaq0073
http://doi.org/10.1103/PhysRevD.97.124039
http://doi.org/10.1103/PhysRevD.90.041502
http://doi.org/10.1103/PhysRevD.92.064034
http://doi.org/10.1086/342166
https://arxiv.org/abs/astro-ph/0510256
http://doi.org/10.1088/1367-2630/9/1/017
http://doi.org/10.1088/0004-637X/699/2/L93
http://doi.org/10.1086/422217
http://doi.org/10.1086/432373
http://doi.org/10.1086/311680
https://arxiv.org/abs/2103.02616
http://doi.org/10.1093/mnras/stx1987
http://doi.org/10.1088/0004-637X/815/2/82
http://doi.org/10.3847/2041-8213/aa991c
http://doi.org/10.1088/0004-637X/813/1/2
http://doi.org/10.1007/s41114-019-0024-0
http://doi.org/10.1111/j.1365-2966.2009.16107.x
http://doi.org/10.1093/mnras/stu802
http://doi.org/10.1111/j.1365-2966.2008.13789.x
http://doi.org/10.3847/1538-4365/ab09fc
http://doi.org/10.3847/1538-4357/abb4e3
http://doi.org/10.1103/PhysRevD.100.023008
http://doi.org/10.3847/2041-8213/aa91b3
http://doi.org/10.1016/j.physrep.2007.02.005
https://arxiv.org/abs/1912.05659
http://doi.org/10.1086/186493
http://doi.org/10.1086/322267
http://doi.org/10.3847/1538-4357/abc9be
http://doi.org/10.1103/PhysRevD.89.104029
http://doi.org/10.3847/2041-8213/aa9029
http://doi.org/10.1086/500349
http://doi.org/10.1088/0004-637X/692/1/411
http://doi.org/10.1088/0004-637X/711/2/959
http://doi.org/10.1088/0004-637X/755/1/51
http://doi.org/10.1088/0264-9381/27/11/114103
http://doi.org/10.1103/PhysRevD.92.044045
http://doi.org/10.1093/mnras/stu1352
http://doi.org/10.1038/nature24298
http://doi.org/10.1086/307259


HARM3D+NUC: GRMHD, NUCLEAR TABLES AND NEUTRINO LEAKAGE 19

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P.
1992, Numerical Recipes in C, 2nd edn. (Cambridge, USA:
Cambridge University Press)

Radice, D., Bernuzzi, S., & Perego, A. 2020, Annual Review of
Nuclear and Particle Science, 70, 95,
doi: 10.1146/annurev-nucl-013120-114541

Radice, D., Galeazzi, F., Lippuner, J., et al. 2016, MNRAS, 460,
3255, doi: 10.1093/mnras/stw1227

Radice, D., Perego, A., Hotokezaka, K., et al. 2018, ApJ, 869, 130,
doi: 10.3847/1538-4357/aaf054

Ravi, V., & Lasky, P. D. 2014, MNRAS, 441, 2433,
doi: 10.1093/mnras/stu720

Roberts, L. F., Kasen, D., Lee, W. H., & Ramirez-Ruiz, E. 2011,
ApJL, 736, L21, doi: 10.1088/2041-8205/736/1/L21

Roberts, L. F., Lippuner, J., Duez, M. D., et al. 2017, MNRAS,
464, 3907, doi: 10.1093/mnras/stw2622

Rosswog, S., Feindt, U., Korobkin, O., et al. 2017, Classical and
Quantum Gravity, 34, 104001, doi: 10.1088/1361-6382/aa68a9

Rosswog, S., & Liebendörfer, M. 2003, MNRAS, 342, 673,
doi: 10.1046/j.1365-8711.2003.06579.x

Rosswog, S., Liebendörfer, M., Thielemann, F. K., et al. 1999,
A&A, 341, 499. https://arxiv.org/abs/astro-ph/9811367

Ruffert, M., Janka, H. T., & Schaefer, G. 1996, A&A, 311, 532.
https://arxiv.org/abs/astro-ph/9509006

Ruiz, M., Lang, R. N., Paschalidis, V., & Shapiro, S. L. 2016,
ApJL, 824, L6, doi: 10.3847/2041-8205/824/1/L6

Ruiz, M., Shapiro, S. L., & Tsokaros, A. 2018, PhRvD, 97,
021501, doi: 10.1103/PhysRevD.97.021501

Sano, T., Inutsuka, S.-i., Turner, N. J., & Stone, J. M. 2004, ApJ,
605, 321, doi: 10.1086/382184

Schneider, A. S., Roberts, L. F., & Ott, C. D. 2017, PhRvC, 96,
065802, doi: 10.1103/PhysRevC.96.065802

Shappee, B. J., Simon, J. D., Drout, M. R., et al. 2017, Science,
358, 1574, doi: 10.1126/science.aaq0186

Shibata, M., & Taniguchi, K. 2006, PhRvD, 73, 064027,

doi: 10.1103/PhysRevD.73.064027

Siegel, D. M. 2019, European Physical Journal A, 55, 203,

doi: 10.1140/epja/i2019-12888-9

Siegel, D. M., Barnes, J., & Metzger, B. D. 2019, Nature, 569, 241,

doi: 10.1038/s41586-019-1136-0

Siegel, D. M., Ciolfi, R., & Rezzolla, L. 2014, ApJL, 785, L6,

doi: 10.1088/2041-8205/785/1/L6

Siegel, D. M., & Metzger, B. D. 2017, PhRvL, 119, 231102,

doi: 10.1103/PhysRevLett.119.231102

—. 2018, ApJ, 858, 52, doi: 10.3847/1538-4357/aabaec

Siegel, D. M., Mösta, P., Desai, D., & Wu, S. 2018, ApJ, 859, 71,

doi: 10.3847/1538-4357/aabcc5

Smartt, S. J., Chen, T. W., Jerkstrand, A., et al. 2017, Nature, 551,

75, doi: 10.1038/nature24303

Soares-Santos, M., Holz, D. E., Annis, J., et al. 2017, ApJL, 848,

L16, doi: 10.3847/2041-8213/aa9059

Sorathia, K. A., Reynolds, C. S., Stone, J. M., & Beckwith, K.

2012, ApJ, 749, 189, doi: 10.1088/0004-637X/749/2/189

Tanaka, M., & Hotokezaka, K. 2013, ApJ, 775, 113,

doi: 10.1088/0004-637X/775/2/113

Tanvir, N. R., Levan, A. J., González-Fernández, C., et al. 2017,

ApJL, 848, L27, doi: 10.3847/2041-8213/aa90b6

Villar, V. A., Guillochon, J., Berger, E., et al. 2017, ApJL, 851,

L21, doi: 10.3847/2041-8213/aa9c84

Zalamea, I., & Beloborodov, A. M. 2011, MNRAS, 410, 2302,

doi: 10.1111/j.1365-2966.2010.17600.x

Zenati, Y., Perets, H. B., & Toonen, S. 2019, MNRAS, 486, 1805,

doi: 10.1093/mnras/stz316

Zilhão, M., & Noble, S. C. 2014, Classical and Quantum Gravity,

31, 065013, doi: 10.1088/0264-9381/31/6/065013

http://doi.org/10.1146/annurev-nucl-013120-114541
http://doi.org/10.1093/mnras/stw1227
http://doi.org/10.3847/1538-4357/aaf054
http://doi.org/10.1093/mnras/stu720
http://doi.org/10.1088/2041-8205/736/1/L21
http://doi.org/10.1093/mnras/stw2622
http://doi.org/10.1088/1361-6382/aa68a9
http://doi.org/10.1046/j.1365-8711.2003.06579.x
https://arxiv.org/abs/astro-ph/9811367
https://arxiv.org/abs/astro-ph/9509006
http://doi.org/10.3847/2041-8205/824/1/L6
http://doi.org/10.1103/PhysRevD.97.021501
http://doi.org/10.1086/382184
http://doi.org/10.1103/PhysRevC.96.065802
http://doi.org/10.1126/science.aaq0186
http://doi.org/10.1103/PhysRevD.73.064027
http://doi.org/10.1140/epja/i2019-12888-9
http://doi.org/10.1038/s41586-019-1136-0
http://doi.org/10.1088/2041-8205/785/1/L6
http://doi.org/10.1103/PhysRevLett.119.231102
http://doi.org/10.3847/1538-4357/aabaec
http://doi.org/10.3847/1538-4357/aabcc5
http://doi.org/10.1038/nature24303
http://doi.org/10.3847/2041-8213/aa9059
http://doi.org/10.1088/0004-637X/749/2/189
http://doi.org/10.1088/0004-637X/775/2/113
http://doi.org/10.3847/2041-8213/aa90b6
http://doi.org/10.3847/2041-8213/aa9c84
http://doi.org/10.1111/j.1365-2966.2010.17600.x
http://doi.org/10.1093/mnras/stz316
http://doi.org/10.1088/0264-9381/31/6/065013

