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Abstract

In this paper we report the outcome of selected
workshops organized as part of the NATO Applied
Vehicle Technology (AVT)-313 activity Incompressible
Laminar-to-Turbulent Flow Transition Study that fo-
cused on assessing the numerical and modeling accu-
racy of the γ-Reθ and γ transition models coupled to
the k-ω Shear-Stress Transport (SST) two-equation eddy-
viscosity model. Three different test cases involving nom-
inally 2D flow configurations were selected: flow over a
flat plate with two different levels of turbulence intensity
at the inlet; flow around the Eppler 387 foil at a Reynolds
number of 3 × 105 and angles of attack of 1◦ and 7◦;
flow around the NACA 0015 foil at a Reynolds number
of 1.8 × 105 and angles of attack of 5◦ and 10◦. The
flat plate flow conditions correspond to natural and by-
pass transition, whereas the other two test cases include
laminar separation bubbles that lead to separation-induced
transition. For each test case, the selected quantities of in-
terest include both integral and local flow quantities.

Geometrically similar grids with a wide range of
grid refinement ratios were generated for each of the test
cases to allow the estimation of numerical uncertainties
for all quantities of interest selected for this study. Sev-
eral RANS flow solvers were used, employing common
grids with the same boundary conditions and mathemati-
cal models. Therefore, it is possible to analyze the consis-
tency of the results, i.e., to check if the intervals defined
by the different numerical solutions with their respective
uncertainties overlap with each other.

Modeling errors can also be addressed for the se-
lected flow quantities that have experimental data avail-
able. However, the experimental information available
in these cases is not sufficient to guarantee that experi-
ments and simulations are performed with the same set-
tings. Nonetheless, the available experimental data are
sufficient to guarantee that modeling errors are signifi-
cantly reduced with the use of the transition models when
compared to simulations performed using only the k-ω
SST model.

Introduction

Most traditional naval (and aeronautical) fluid flows
occur at large Reynolds numbers (Re > 107), which of-
ten restricts the laminar part of the boundary layer to a
very small region near the stagnation point. In these con-
ditions, the accurate prediction of transition from laminar
to turbulent flow is irrelevant. On the other hand, model
testing leads to flows at Reynolds numbers of the order of
106 or even less. However, it is standard practice to force
transition to turbulent flow close to the stagnation region
to mimic full-scale conditions. Therefore, the well-known
early transition predicted by the most popular Reynolds-
averaged Navier Stokes (RANS) turbulence models (see
for example Eça and Hoekstra [2008]) is actually useful
in such cases.

Currently, there is an increased interest in unmanned
vehicles with Reynolds numbers in the range of 105 to
106. In these conditions, the traditional RANS turbulence
models become unacceptably inaccurate due to their in-

1



ability to correctly simulate the transition region. To over-
come this shortcoming of RANS, transition models based
on transport equations for extra dependent variables have
been proposed in the last fifteen years. Two of the most
popular models currently available are the γ-Reθ and γ
Local Correlation Transition Models (LCTM) proposed
in Menter et al. [2004], Langtry and Menter [2009] and
Menter et al. [2015]. These models have been tested
in several studies reported in the open literature, for ex-
ample, Seyfert and Krumbein [2012], Khayatzadeh and
Nadarajah [2014], Eça et al. [2016], Baltazar et al. [2018],
Kim et al. [2019], Lopes et al. [2020] and Lopes et al.
[2022].

In the last three years, several workshops were held
as part of the NATO AVT-313 activity Incompressible
Laminar-to-Turbulent Flow Transition Study. The flow
configurations targeted by these workshops included both
two-dimensional and three-dimensional test cases. In
this paper, we report the outcome of the exercises per-
formed for the two-dimensional test cases that focused
mainly on the numerical accuracy of the CFD computa-
tions that combine the k-ω Shear-Stress Transport (SST)
two-equation eddy-viscosity model, Menter et al. [2003],
with the γ-Reθ and γ LCTM transition models, respec-
tively. Nonetheless, the existence of experimental data
for the selected cases also allow a limited assessment of
the modeling error. However, the flow conditions (do-
main sizes and boundary conditions) of experiments and
simulations are not always coincident. This means that
the estimated modeling errors are not determined by the
selected turbulence and transition models alone.

The selected test cases are:

1. Flow over a flat plate with two different levels of tur-
bulence intensity at the inlet, for which experimental
skin friction coefficients and mean velocity profiles
are available from the Ercoftac Classic Database in
Roach and Brierley [1990];

2. Flow around the Eppler 387 foil at a Reynolds num-
ber of 3× 105 and angles of attack of 1◦ and 7◦ that
have experimentally measured pressure distributions
reported in McGhee et al. [1988];

3. Flow around the NACA 0015 foil at a Reynolds num-
ber of 1.8 × 105 and angles of attack of 5◦ and 10◦,
which have experimentally measured skin friction
coefficients reported in Miozzi et al. [2020].

The flat plate flow conditions correspond to natural and
bypass transition, whereas the two airfoils include laminar
separation bubbles that lead to separation-induced transi-
tion. The quantities of interest include integral and local
flow quantities, as well as mean flow and turbulence quan-
tities.

For each test case, domain sizes and boundary con-
ditions have been specified to guarantee they are identical
for all flow solvers. Sets of geometrically similar grids
have been generated (Eça et al. [2002]) covering a wide
range of grid refinement ratios. For the flat plate and Ep-
pler 387 airfoil, three different grid topologies have been
tested, whereas only one grid topology was proposed for
the NACA 0015 airfoil. Simulations were performed with
six RANS flow solvers: ANSYS-CFX (DRDC), FUN3D
(NASA-LARC), ISIS-CFD (ECN-CNRS), OVERFLOW
(NASA-LARC), ReFRESCO (IST/MARIN) and STAR-
CCM+ (Sirehna) that include the combinations of the k-ω
SST with either γ-Reθ or γ LCTM transition models. For
each flow condition, the quantities of interest have been
determined for at least five different refinement ratios and
so numerical uncertainties can be estimated for all quan-
tities of interest using the method proposed in Eça and
Hoekstra [2014]. The main goal of these solution verifi-
cation exercises is to check the consistency of the results
obtained with the different RANS solvers, i.e., to check if
the intervals defined by the different numerical solutions
with the respective uncertainties overlap with each other.

The validation exercises (assessment of the model-
ing error) cannot be performed strictly in compliance with
ASME V&V20 Standard, ASME [2009]. Experimental
uncertainties are not available for all quantities of inter-
est and not all of the boundary conditions required by
the computations are available. Nonetheless, the compar-
ison of the results obtained by combining the k-ω SST
model with either γ-Reθ or γ transition models against
the experimental data provides useful information about
the modeling performance of the transition models. Fur-
thermore, for the flows around the Eppler 387 and NACA
0015 airfoils, Large-Eddy Simulation (LES) results are
also available. LES simulations for the four selected con-
ditions are reported in Catalano and Rosa (2020) and LES
results for the NACA 0015 at α = 5◦ were obtained with
Xnavis (CNR-INM). Naturally, the LES simulations did
not use the grids proposed for the two-dimensional do-
mains.

A detailed description of all the results collected in
this exercise is available at the AVT-313 [2022] website.
This paper presents the main trends and conclusions of
this study and includes the following sections: mathemat-
ical model including a brief description of turbulence and
transition models; description of the flow solvers used in
this exercise; description of the selected test cases includ-
ing domain size, boundary conditions, proposed grids and
selected quantities of interest; presentation and discussion
of the results obtained in the course of solution verifica-
tion exercises and during comparison with experimental
data, and finally, the conclusions.
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Mathematical Model

The AVT-313 activity is focused on flows of incom-
pressible fluids that are governed by mass conservation
and momentum balance, which can be expressed in a
Cartesian coordinate system as

∂Ṽi
∂xi

= 0,

∂
(
Ṽi

)
∂t

+
∂
(
ṼiṼj

)
∂xj

= −1
ρ
∂P̃
∂xi

+ 1
ρ
∂τij
∂xj

,
(1)

where Ṽi are the Cartesian velocity components, ρ is the
fluid density, P̃ is the relative pressure1 and τij are the
components of the stress tensor, which for a Newtonian
fluid are given by:

τij
ρ

= ν

(
∂Ṽi

∂xj
+

∂Ṽj

∂xi

)
, (2)

where ν is the kinematic viscosity of the fluid.

RANS equations

Applying time-averaging to mass conservation, mo-
mentum balance and to the flow dependent variables we
obtain the Reynolds-averaged continuity and momentum
equations,

∂Vi
∂xi

= 0,

∂ (ViVj)
∂xj

= −1
ρ
∂P
∂xi

+ 1
ρ
∂τT
∂xj

,

τT
ρ = ν

(
∂Vi
∂xj

+
∂Vj

∂xi

)
− vivj

(3)

Vi and P are the mean values of the Cartesian velocity
components and pressure, respectively. vi are the fluc-
tuating part (turbulence) of the Cartesian velocity compo-
nents and the overbar designates averaging. The Reynolds
stress tensor −ρvivj is generated by the two steps of the
averaging procedure and requires a turbulence model to
close the problem.

In eddy-viscosity models, the so-called Boussinesq
approximation determines the Reynolds stress tensor as a
function of the mean strain rate and the eddy-viscosity νt

− vivj = νt

(
∂Vi

∂xj
+

∂Vj

∂xi

)
− 2

3
δijk, (4)

where k is the turbulence kinetic energy and δij is the
Kronecker symbol. Usually, the contribution of k to the

1Reference pressure is the hydrostatic pressure.

normal stresses is absorbed in the mean pressure gradient
term and so the RANS equations (3) become similar to
the original equations (1) with three main changes:

• the dependent variables are time-averaged quantities;

• the time derivatives of mean velocity components are
zero;

• dynamic viscosity of the fluid is replaced by the ef-
fective viscosity νeff = ν + νt.

Turbulence model

In this study, the eddy-viscosity νt is determined
with the Shear-Stress Transport (SST), two-equation, k-ω
turbulence model, Menter et al. [2003]. The transport
equations that determine the turbulence kinetic energy k
and the specific turbulence dissipation rate ω may be writ-
ten as

Vj
∂k

∂xj
= Pk −Dk +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
, (5)

Vj
∂ω
∂xj

= α
νtPk − βω2 + ∂

∂xj

[
(ν + σωνt)

∂ω
∂xj

]
+2 (1− F1)

σω2
ω

∂k
∂xk

∂ω
∂xk

.

(6)
where α, β, σk, σω and σω2 are constants and F1 is a
blending function. The production term of the k transport
equation, Pk, is determined from

Pk = min(νtS
2, 10Dk) . (7)

S is the mean strain rate magnitude and Dk is the dissipa-
tion term of the k transport equation given by

Dk = β∗ωk , (8)

where β∗ is a constant.
The eddy-viscosity is obtained from

νt =
a1k

max (a1ω, F2S)
, (9)

where a1 is a constant and F2 is a function.
As for the transition models described below, con-

stants and functions are not presented here. Their values
and definitions are available in the original references.
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Transition models

The γ − Reθ model, Langtry and Menter [2009],
solves two additional transport equations for the inter-
mittency γ and the transition onset momentum thickness
Reynolds number R̃eθt

Vj
∂γ

∂xj
= Pγ − Eγ +

∂

∂xj

[(
ν +

νt
σf

)
∂γ

∂xj

]
(10)

and

Vj
∂R̃eθt
∂xj

= Pθt +
∂

∂xj

[
σθt (ν + νt)

∂R̃eθt
∂xj

]
, (11)

where σf and σθt are constants.
The production term of the γ transport equation Pγ

is given by

Pγ = Flengthca1S [γFonset]
0.5

(1− ce1γ) , (12)

where Flength is a correlation that controls the length of
the transition region, ca1 and ce1 are constants and Fonset

is a function that depends on R̃eθt.
The low value of γ in the laminar region is main-

tained by the dissipation term, Eγ , that is written as

Eγ = ca2ΩγFturb (ce2γ − 1) , (13)

where Fturb is a function responsible for deactivating this
term in the turbulent region, Ω is the vorticity magnitude
and ca2 and ce2 are constants.

To incorporate the effect of separation-induced tran-
sition, the “effective” intermittency γeff is obtained from

γeff = max (γ, γsep) , (14)

where γsep is obtained from an additional correlation.
The combination of the γ − Reθ transition model

with the k-ω SST turbulence model is performed by mod-
ifying Pk and Dk as:

Pk = γeffPk,SST, (15)

Dk = min (max (γeff , 0.1) , 1.0)Dk,SST, (16)

where Pk,SST and Dk,SST are the original produc-
tion and dissipation terms of the k-ω SST turbulence
model. The F1 blending function definition is modified
to F1 = max(F3, F1,SST), where F3 is a blending func-
tion.

The one-equation γ model proposed in Menter et al.
[2015] is mainly a simplification of the γ − Reθ model,
that relies only on a single transport equation for the inter-
mittency, which is similar to equation (10), and also guar-
antees Galilean invariance. However, some of the func-
tions in the production and dissipation terms are changed.
In particular, production Pγ is written as

Pγ = FlengthρSγFonset (1− γ) , (17)

in which Flength is now a constant, whereas for the
γ −Reθ model it was a correlation dependent on the sec-
ond variable of the model.

The combination of the γ transition model with the
k-ω SST turbulence model is done in a similar way to that
presented above for the γ − Reθ. However, the details of
the modifications of Pk and Dk are not equivalent and are
given by:

Pk = γPk,SST + P lim
k , (18)

Dk = max (γ, 0.1)Dk,SST . (19)

The term P lim
k is related to separation-induced transition

and is given by

P lim
k = 5 (1− γ)F lim

on SΩCPk
,

CPk
= max (γ − 0.2, 0)max (3ν − νt, 0) ,

(20)

where F lim
on is a function. The blending function F1 is also

modified to F1 = max(F3, F1,SST).

LES equations

Although this exercise is focused on the RANS
equations using the k-ω SST turbulence model and the
γ-Reθ and γ transition models, results from Large-Eddy
Simulation (LES) approaches are available for two of the
selected test cases. The LES equations are also derived
from equations (1) applying a filtering process to mass
conservation, momentum and flow dependent variables
that leads to a set of equations similar to the RANS equa-
tions (3). However, there are three main differences:

1. The dependent variables are filtered quantities that
depend on space and time;

2. The time derivative of the filtered flow properties is
not zero;

3. The unknown residual stress tensor generated by the
filtering process can be interpreted as the sum of
three tensors and only one of them is similar to the
Reynolds stress tensor.

The LES equations require a so-called subgrid scale
model to close the system, which in the models used
in this exercise also use an eddy-viscosity approach.
Although the LES equations become similar to the
RANS equations including the time-derivative terms,
their solution requires an unsteady three-dimensional ap-
proach, whereas the RANS equations are solved for two-
dimensional, statistically steady flows.
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Flow Solvers

Unless stated, all flow solvers were applied for the
solution of the time-averaged RANS equations with the
k-ω SST two-equation turbulence model, Menter et al.
[2003], in conjunction with the γ-Reθ, Langtry and
Menter [2009], or γ, Menter et al. [2015] , transition mod-
els using a steady-state approach.

ANSYS-CFX

ANSYS-CFX is a general purpose CFD software
suite that has compressible and incompressible solvers
and a wide variety of turbulence models. ANSYS-CFX
uses an element-based finite volume method to discretize
the equations. All solution variables are collocated at
mesh vertices (nodes) and Rhie-Chow interpolation is
used for pressure-velocity coupling. Second-order accu-
rate trilinear shape functions were used to evaluate the
diffusion terms and pressure gradients. ANSYS-CFX’s
high-resolution discretization scheme was used for the ad-
vection terms in all equations. This is an upwind-biased
discretization scheme that is nominally second-order ac-
curate. However, it uses a blending function, which can
locally reduce the order of accuracy to as low as 1 in
regions of sharp gradients to achieve a bounded solu-
tion. ANSYS-CFX uses a coupled solver and an algebraic
multi-grid procedure (Raw [1996]) to accelerate the solu-
tion.

FUN3D

The suite of codes known as FUN3D is an unstruc-
tured node-centered upwind-biased implicit RANS flow
solver, Anderson and Bonhaus [1994]. FUN3D uses a
finite-volume method. The inviscid fluxes are calculated
with a Roe-Riemann solver, Roe [1981]. For second-
order accuracy, the interface values are obtained by ex-
trapolation of the centroidal values of the control volumes
(based on gradients computed at the mesh vertices with an
unweighted least-squares technique). The viscous fluxes
are discretized such that velocity gradients on dual faces
are calculated with the Green-Gauss theorem. Pseudotime
integration is performed with a backward Euler scheme.
The linear system of equations at each time step is numer-
ically solved with a point implicit procedure or an implicit
line relaxation scheme, Nielsen et al. [2004]. Biedron and
et al. [2020] is the most recent version of the FUN3D
manual.

ISIS-CFD

The solver ISIS-CFD, available as a part of the
FINE™/Marine computing suite distributed by Ca-
dence Design Systems, is an incompressible multiphase
unsteady Reynolds-averaged Navier-Stokes (URANS)
solver mainly devoted to marine hydrodynamics. It
is based on a fully-unstructured (face-based) finite vol-
ume discretization with specific functionalities needed for
multiphase flows and industrial applications (see Leroyer
and Visonneau [2005], Queutey and Visonneau [2007],
Wackers et al. [2013]). ISIS-CFD uses a fully-collocated
arrangement with the dependent variables stored at the
cell centers. Second-order discretization schemes have
been applied to all transport equations including turbu-
lence and transition quantities. The constant in the pro-
duction term of the k transport equation detailed in Eq.
7 was changed from 10 to 15 for the flat plate simula-
tions, whereas the airfoils calculations were performed
with equation (Eq. 7) replaced by the Kato and Launder
[1993] approach.

OVERFLOW

The NASA OVERFLOW 2.3b, Nichols and Bun-
ing [2019], is an implicit structured overset grid Navier-
Stokes solver that is capable of computing time-accurate
and steady-state solutions via a variety of options for spa-
tial and temporal discretization. All the solutions reported
in this work were obtained by running the OVERFLOW
solver in a steady-state manner by using the third-order
Roe upwind scheme, Roe [1981], and the unfactored suc-
cessive symmetric overrelaxation (SSOR) implicit solu-
tion algorithm, Nichols et al. [2006]. third-order dis-
cretization was utilized for the convective terms in all the
transport equations, while the gradients were evaluated
using second-order accurate discretization.

ReFRESCO

ReFRESCO is a CFD solver based on a finite vol-
ume discretization of the continuity and momentum equa-
tions written in strong conservation form. The solver uses
a fully-collocated arrangement and a face-based approach
that enables the use of cells with an arbitrary number
of faces. Picard linearization and mass conservation is
ensured using a SIMPLE-like algorithm, Klaij and Vuik
[2013], and a pressure-weighted interpolation technique
to avoid spurious oscillations, Miller and Schmidt [1988].
Thorough code verification is performed for all releases
of ReFRESCO, Eça et al. [2016]. Simulations were per-
formed with a segregated approach using second-order
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schemes for the discretization of all terms of the transport
equations, with the exception of the convective terms that
include flux limiters. Furthermore, first-order schemes are
applied to the k and ω transport equations to enhance iter-
ative convergence. For one of the test cases, second-order
schemes with limiters were also used for the convective
terms of the k and ω transport equations. For all simula-
tions reported in this paper, the constant of the production
limiter of the k transport equation (Eq. 7) was changed to
15.

STAR-CCM+

STAR CCM+ v2021.3 is a commercial CFD pack-
age based on a finite volume discretization and Picard lin-
earization. Selected space discretization schemes were all
second-order accurate and no production limiter (equation
7) was used in the k-ω SST turbulence model. Further-
more, the implementation of the γ-Reθ model, as detailed
in Langtry and Menter [2009], within the the solver was
done by researchers at Sirehna.

χnavis

LES simulations were performed for the NACA
0015 test case at α = 5◦ using χnavis, which is a general
purpose unsteady RANS solver, developed at the Institute
of Marine Engineering (INM-CNR) of Italy (Di Mascio
et al. [2007], Di Mascio et al. [2009] and Broglia and
Durante [2018]). The code is based on a finite volume
discretization of the governing equations that uses second
order accurate schemes in space and in time. Complex ge-
ometries and bodies in relative motion are handled by an
in-house developed dynamical overlapping grid approach.
For the LES simulations reported here, the WALE model
of Franck and Ducros [1999] has been used. This subgrid
scale model has been proven to be reliable for cases where
both turbulent and laminar flow regimes are present, and
it is also able to reproduce the correct behaviour of the ve-
locity fluctuations toward the wall without any additional
damping function.

LASSIE

The LES results reported in Catalano and de Rosa
[2020] were obtained with the LASSIE code that was
originally inherited from CIRA in the framework of the
affiliation program to CTR (Center for Turbulence Re-
search), Stanford University /NASA Ames, Wang et al.
[2001] and Catalano et al. [2003]. The code employs
an energy-conservative numerical scheme. Second-order

central differences in streamwise and wall-normal direc-
tions, and Fourier collocations in the spanwise direc-
tion are used. The code is written in body-fitted coor-
dinates with a staggered arrangement of the flow vari-
ables. The fractional step approach in combination with
the Crank-Nicholson method for the viscous terms and the
third-order Runge-Kutta scheme is used for the time ad-
vancement. The continuity constraint is imposed at each
Runge-Kutta substep by solving a Poisson equation for
the pressure. The subgrid scale stress tensor is modeled
by the dynamic Smagorinsky model in combination with
a least-square contraction and spanwise averaging.

Test Cases

Flow over a flat plate

Transitional flows over a flat plate are Case 20 of
the ERCOFTAC (European research community on flow,
turbulence and combustion) Classic Database for which
there are experimental measurements of skin friction co-
efficient Cf and mean horizontal velocity Vx profiles
available in Roach and Brierley [1990]. Unfortunately,
no measurement uncertainty is reported. Nonetheless, it is
indicated that different techniques were used to determine
Cf within a variability of 2%, which we have assumed
as the bound on the experimental uncertainty in both Cf

and Vx. The experimental apparatus uses a 0.02mm thick
plate with a sharp bevelled leading edge over the first
0.2m. From the several flow conditions available in the
ERCOFTAC Classic Database, two cases were selected:
T3AM (or T3A-) that corresponds to natural transition
and T3A that exhibits bypass transition.

The selected computational domain is a rectangle
of length 1.5L (−0.25L ≤ x ≤ 1.25L) and height of
0.25L (0 ≤ y ≤ 0.25L), where L is the length of the
plate. The leading edge of the plate is at the origin of
the coordinate system and the x axis is aligned with the
plate. The Reynolds number, based on the velocity of the
incoming flow V∞, L and ν is Re = 107.

For the two flow setting (T3AM and T3A), pro-
posed boundary conditions are identical at four of the
five boundaries. Constant pressure is imposed at the top
boundary (y = 0.25L) and normal derivatives of all re-
maining dependent variables are set equal to zero. At
the outlet of the domain (x = 1.25L), zero streamwise
derivatives are applied to all dependent variables. Sym-
metry conditions are applied upstream and downstream
of the plate on the bottom boundary (y = 0). At the plate
surface, impermeability and no-slip conditions lead to
zero velocity components, Vx = 0 and Vy = 0. The shear-
stress at the wall is calculated directly from its definition
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(no wall functions) and the pressure derivative in the nor-
mal direction is set equal to ∂P/∂y = 0. The turbulence
kinetic energy is set equal to k = 0 and the specific tur-
bulence dissipation rate ω is obtained from the near-wall
analytic solution2, Wilcox [1998]. Normal derivatives of
the dependent variables of the transition models are set
equal to zero.

Table 1 summarizes the boundary conditions pro-
posed for the inlet boundary. Experimental information is
only available for the horizontal velocity component Vx

and for the turbulence intensity I . The values of the inlet
eddy-viscosity νt were tuned with the combination k-ω
SST plus γ-Reθ to match the experimental Cf distribu-
tion.This choice is motivated by the location of the in-
let boundary 0.25L upstream of the leading edgge, which
does not allow to match I at the leading edge and its de-
cay rate with the values measured in the experiment. k
and ω are a consequence of the selected values for I and
νt and R̃eθt can be calculated from the values of the other
dependent variables.

Table 1: Proposed inlet boundary conditions for the sim-
ulation of the flow over a flat plate.

Variable T3AM T3A
Vx V∞ V∞
Vy 0 0
P ∂P/∂x = 0 ∂P/∂x = 0
k 1.504× 10−4V 2

∞ 4.319× 10−3V 2
∞

ω 60.1621V∞/L 154.25V∞/L
γ 1 1
I 0.0100135 0.0536609
νt 25ν 280ν

Grid sets

Three different sets of geometrically similar grids
have been generated for the calculation of the flow over
a flat plate: a set of 5 Cartesian grids (H topology); a set
of 5 multiblock grids with O-topology at the leading and
trailing edges of the plate; a set of 9 multiblock grids with
HO topology at the leading and trailing edges of the plate.
Naturally, the simplest grids are those with the H topol-
ogy. However, the use of high aspect ratio cells in the
wake of the plate can cause iterative convergence prob-
lems to the flow solvers. Therefore, the O and HO sets
preserve the same grid line spacing in the near-wall re-
gion but avoid the high aspect ratio cells upstream and
downstream of the plate.

2Some flow solvers impose the ω value at the near-wall cell center,
whereas others determine ω at the same location and impose a value 10
times larger at the boundary face Menter et al. [2003].

For all these grid sets, the grid refinement ratio
ri = hi/h1 can be computed from the number of faces
on the plate surface Nplate, where the typical cell size
hi ∝ 1/Nplate and so ri = hi/h1 = (Nplate)1/(Nplate)i.
Table 2 presents Nplate and ri for the grids of the three
sets. h1 is obtained from the finest grid of the HO set.
The number of grid cells for the finest grids of each set
are approximately 0.29×106 for the H set, 0.17×106 for
set O and 2× 106 for set HO. Nondimensional heights of
the near-wall cells in wall coordinates are below y+ = 1
for all grids and the stretching functions proposed by Vi-
nokur [1983] defined the increase of the cells height in
the near-wall region. Maximum values of y+ are close to
0.8 for the largest value of ri and approximately equal to
0.2 for the finest HO grid. Figure 1 illustrates the O and
HO topology grids at the leading edge (the H set includes
Cartesian grids). All flat plate grids are symmetric with
respect to x = 0.5L and so the same topology is used at
the trailing edge.

O topology

x/L­0.0005 0 0.0005

HO topology

x/L­0.0005 0 0.0005

Figure 1: Illustration of the O and HO topology grids at
the leading edge of the flat plate.

Quantities of interest

The selected quantities of interest are the skin fric-
tion, Cf , distribution on the surface of the plate and Vx,
k, νt and γ profiles at three locations: one in the laminar
flow region (x = 0.10381L for T3AM and x = 0.01006L
for T3A), one in the transition region (x = 0.18281L
for T3AM and x = 0.02035L for T3A) and one in the
turbulent flow region (x = 0.20216L for T3AM and
x = 0.05273L for T3A). Experimental data are available
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Table 2: Number of faces on the plate surface Nplate and
grid refinement ratio ri = hi/h1 for the three grid sets
proposed for the calculation of the flow over a flat plate.

Grid H topology O topology HO topology
Nplate ri Nplate ri Nplate ri

1 1024 2.5 1024 2.5 2560 1.
2 896 2.86 896 2.86 2048 1.25
3 768 3.33 768 3.33 1792 1.43
4 640 4. 640 4. 1600 1.6
5 512 5. 512 5. 1280 2.
6 1024 2.5
7 896 2.85
8 768 3.2
9 640 4.

for Cf and for the Vx profiles, Roach and Brierley [1990].

Flow around the Eppler 387 airfoil

The flow around the Eppler 387 airfoil at low
Reynolds numbers has been experimentally addressed
in McGhee et al. [1988], Cole and Mueller [1990] and
Selig [1995]. In the present exercise, we have selected a
Reynolds number based on the velocity of the incoming
flow V∞, airfoil chord c and ν of Re = 3 × 105 and the
angles of attack of α = 1◦ and α = 7◦. Pressure distribu-
tions are reported in McGhee et al. [1988] for these flow
settings and a Mach number of 0.09. The height of the
test section and the wind-tunnel length are equal to 15c
and the span of the test wing is 6c. No blockage correc-
tions have been applied to the pressure coefficients. From
the information reported in McGhee et al. [1988], we have
assumed that the experimental uncertainty of the pressure
coefficient Cp measurements is 0.25%.

The domain for the calculation of the flow around
the Eppler 387 airfoil is a rectangle of length 36c and
width 24c. The leading edge of the airfoil is at the origin
of the coordinate system (x = 0, y = 0) and the x axis is
aligned with the incoming flow. The inlet is located 12c
upstream of the leading edge of the airfoil (x = −12c)
and the outlet is placed 24c downstream of the leading
edge of the airfoil (x = 24c). The outer boundary is lo-
cated ±12c away from the horizontal line that contains the
leading edge of the airfoil (y = 0). Figure 2 illustrates the
domain for the calculation of the flow around the Eppler
387 airfoil.

Selected boundary conditions are: pressure imposed
at the outlet boundary and derivatives with respect to x
equal to zero for all other dependent variables; free slip

x/c

y
/c

­12 ­8 ­4 0 4 8 12 16 20 24
­12

­10

­8

­6

­4

­2

0

2

4

6

8

10

12

Figure 2: Illustration of the domain for the calculation of
the flow around the Eppler 387 airfoil.

conditions at the top and bottom boundaries, which means
that Vy = 0 and derivatives with respect to y of all re-
maining variables are equal to zero; at the airfoil surface
mean velocity components and turbulence kinetic energy
are equal to zero, normal derivatives of pressure and de-
pendent variables of the transition models are set equal to
zero and ω is obtained from the near-wall analytic solu-
tion. At the inlet boundary, all dependent variables are
specified with the exception of the pressure that is ex-
trapolated from the interior of the domain. The proposed
values are Vx = V∞, Vy = 0, k = 1.5 × 10−4V 2

∞,
ω = 1.5 × 104V∞/L and γ = 1. The values of k and
ω are obtained from a turbulence intensity I = 0.01 and
νt = 3× 10−3ν.

Grid sets

Three sets of multiblock geometrically similar grids
were generated for the domain depicted in Figure 2. The
three sets have different topologies in the vicinity of the
airfoil embedded in an H topology that fits the rectangular
domain. The C set has 5 grids with a C topology around
the airfoil and so the high-aspect ratio of the near-wall
cells is also used in the wake of the airfoil; 5 O topol-
ogy grids are included in the O set and a combination
of C and O topologies is adopted for 9 grids of the CO
set. The near-wall cell heights of the coarsest grids of
the three sets are similar and lead to a maximum value of
y+ close to 0.5. On the other hand, the longitudinal grid
line spacing at the trailing edge is significantly different in
the three sets. As for the flat plate grids, stretching func-
tions proposed by Vinokur [1983] are used to define the
changes in the grid line spacing at the block boundaries.
Figure 3 illustrates the grids in the airfoil vicinity and at
the trailing edge of the airfoil for α = 1◦ and α = 7◦ with
Re = 3× 105.
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α = 1◦
C topology O topology CO topology

α = 7◦
C topology O topology CO topology

Figure 3: Illustration of the C, O and CO topology grids
for the calculation of the flow around the Eppler 387 air-
foil at α = 1◦ and α = 7◦ with Re = 3× 105.

The grid refinement ratio is defined by
ri = hi/h1 = (Nfoil)1/(Nfoil)i with h1 correspond-
ing to the typical cell size of the finest grid of set CO.
Table 3 presents Nfoil and ri for the three grid sets. The
finest grids of each set include approximately 0.93× 106

cells for the C set, 0.26 × 106 cells for the O set and
3.5× 106 for the CO set.

The LES simulations reported in Catalano and
de Rosa [2020] were performed with a C-topology grid
contatining 1328 × 196 cells in the x − y plane and 96
cells in the z spanwise direction, which is approximately
25× 106 cells with 0.26× 106 cells in the x− y plane.

Table 3: Number of faces on the airfoil surface Nfoil and
grid refinement ratio ri = hi/h1 for the three grid sets
proposed for the calculation of the flow around the Eppler
387 airfoil.

Grid C topology O topology CO topology
Nfoil ri Nfoil ri Nfoil ri

1 960 3.2 960 3.2 3072 1.
2 840 3.66 840 3.66 2560 1.2
3 720 4.27 720 4.27 2048 1.5
4 600 5.12 600 5.12 1792 1.71
5 480 6.4 480 6.4 1536 2.
6 1280 2.4
7 1024 3.
8 896 3.42
9 768 4.

Quantities of interest

The selected quantities of interest include integral
and local flow quantities. Integral quantities are the co-
efficients of lift, CL, and drag CD as well as the friction
and pressure components of CD. Pressure coefficient, Cp,
and skin friction coefficient, Cf , on the airfoil surface are
the local flow quantities. Experimental data are available
for Cp, McGhee et al. [1988].

Flow around the NACA 0015 airfoil

The experiments of the flow around the NACA 0015
were conducted in the CEIMM cavitation tunnel (CNR-
INM, Rome, IT), a closed-loop water facility with a noz-
zle contraction ratio of 5.96:1 and a square test section,
having side B = 600mm, length L = 2.6m and optical
access. Within the test section, freestream turbulence is
less than 2%, while the flow uniformity is less than 3%
for the vertical component and 1% for the axial one. The
aluminum hydrofoil has the symmetric shape of an NACA
0015 profile, a chord length c = 120mm, and a span width
equal to the test-section side (B = 600mm), which corre-
spond to an aspect ratio and blockage factor of B/c = 5
and c/B = 0.2, respectively. The model is mounted ver-
tically in the middle of the tunnel transverse side and ro-
tated around its geometric center to set the profile at the
investigated angles of attack α = 5◦ and α = 10◦ Miozzi
et al. [2019]. The Reynolds number, based on V∞ and c
is equal to Re = 1.8× 105. Experimental measurements
of the skin friction Cf coefficient are performed using a
Temperature Sensitive Paint (TSP). Details of the measur-
ing technique are reported in Miozzi et al. [2020].

The domain for the calculation of the flow around
the NACA 0015 airfoil at angles of attack of α = 5◦

and α = 10◦ is a rectangle that matches the dimensions
of the experimental facility: length 21.7c and width 5c.
The center of the airfoil (half-chord) is at the origin of
the coordinate system (x = 0, y = 0) and the x axis is
aligned with the incoming flow. The inlet is located 7.2c
upstream of the center of the airfoil (x = −7.2c) and the
outlet is placed 14.5c downstream of the center of the air-
foil (x = 14.5c). The outer boundary is located ±2.5c
away from the horizontal line that contains the center of
the airfoil (y = 0). The domain is illustrated in figure 4.

Boundary conditions are the same as those de-
scribed above for the Eppler 387 airfoil. However, sug-
gested values of turbulence intensity and inlet eddy-
viscosity are I = 0.005 and νt = 1.8 × 10−3ν that lead
to k = 3.75× 10−5V 2

∞ and ω = 3.75× 103V∞/L.
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Figure 4: Illustration of the domain for the calculation of
the flow around the NACA 0015 airfoil.

Grid sets

For the NACA 0015 airfoil at α = 5◦ and α = 10◦

only the 9 grids of the CO set were generated using the
same grid densities as for the Eppler 387 airfoil. There-
fore, the numbers included in Table 3 also apply to the
NACA 0015 grids. Near-wall cell height ensures a maxi-
mum y+ close to 0.5 for the coarsest grid of the set. Fig-
ure 5 illustrates the grids generated for the calculation of
the flow around the NACA 0015 airfoil at α = 5◦ and
α = 10◦ for Re = 1.8× 105.

α = 5◦ α = 10◦

Figure 5: Illustration of the CO topology grids for the
calculation of the flow around the NACA 0015 airfoil at
α = 5◦ and α = 10◦ and Re = 1.8× 105.

LES simulations reported in Catalano and de Rosa
[2020] were performed in C grids with the number of cells
equal to that presented above for the Eppler 387 airfoils.
The LES simulations performed with χnavis were carried
out using an O-type multiblok grid with a total of 71×106

cells. The outer (cylindrical) boundary of the computa-
tional domain is placed 100 chords away from the profile
and the spanwise dimension is 0.2c. Overlapping grid ca-
pabilities have been exploited to reduce the computational
effort. The height of the first cell is always below 0.8
wall units in the laminar bubble and in the turbulent re-
gions, whereas, streamwise and spanwise mesh sizes are
less than 15 and 10 wall units, respectively.

Quantities of interest

The selected quantities of interest are the same as

for the Eppler 387 airfoil: CL and CD coefficients along
with the Cp and Cf coefficients on the airfoil surface. Ex-
perimental data are available for Cf , from Miozzi et al.
[2020] with the “two-dimensional” results being deter-
mined based on the average of the experimental data in
the spanwise direction and by fixing the experimental un-
certainty equal to the standard deviation of the spanwise
distributions of Cf .

Results

There are two main objectives for the present exer-
cise:

1. Check the consistency of different RANS solvers
with common mathematical models, grids, and
boundary conditions;

2. Compare the results obtained with the k-ω SST
model combined with the γ-Reθ and γ transition
models against the experimental data and also with
the results from the LES simulations.

The first goal is addressed by evaluating the over-
lap between the intervals corresponding to the uncertainty
bands associated with the computational predictions for
the various quantities of interest. Such an exercise does
not require the knowledge of experimental results and can
be performed for all of the selected quantities of interest.

The comparison of RANS solutions with experi-
mental data and the LES results is performed with the tra-
ditional graphical comparisons. Nonetheless, error bars
are presented for both the numerical and experimental re-
sults, whenever available.

Table 4 presents the labels used in this section to
identify the computational results obtained by using each
flow solver. The table includes only the two-dimensional
RANS computations that are compared during the solu-
tion verification exercises. We note that the designation
IM corresponds to the ReFRESCO simulations with first-
order upwind discretization of the convective terms of the
k and ω transport equations, whereas IM2 correspond to
the simulations with second-order upwind discretization
for all transport equations.

All RANS computations were performed for an in-
compressible fluid (M = 0) with the exception of the cal-
culations performed with FUN3D and OVERFLOW that
are compressible flow solvers using M = 0.1 and low
Mach precodintioning. Furthermore, as described above,
several alternatives are used for the implementation of the
production term of the k transport equation. Therefore,
the RANS solvers are not using strictly the same mathe-
matical model.
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Table 4: Labels used to identify the simulations per-
formed with the different RANS flow solvers used in the
three test cases.

Institution Flow Solver Label
DRDC ANSYS-CFX DRDC

ECN-CNRS ISIS-CFD ECN
IST/MARIN ReFRESCO IM or IM2

NASA-LARC FUN3D LARC-F
NASA-LARC OVERFLOW LARC-O

SIREHNA STAR-CCM+ SIRH

Iterative convergence

One of the challenges in applying the transition
models during low Reynolds number RANS computa-
tions is to reduce the iterative error to negligible levels.
The several RANS solvers used in this exercise used dif-
ferent strategies to handle the iterative errors.

The DRDC simulations (ANSYS-CFX) have an it-
erative convergence criteria that requires the L∞ norm of
the residuals for the continuity and momentum equations
below 10−7 for the flat plate cases and below 10−8 for the
airfoil cases.

In the ECN simulations (ISIS-CFD), there is no
strict criterion for iterative convergence. Iterative conver-
gence is monitored using the force coefficients and the
distributions of pressure and skin friction coefficients at
the plate and airfoil surfaces.

All IM and IM2 simulations (ReFRESCO) have the
L∞ norm of the normalized residuals of all transport
equations solved reduced to values smaller than 10−8.
Normalized residuals are equivalent to nondimensional
variable changes during a Jacobi iteration.

LARC-F (FUN3D) and LARC-O (OVERFLOW)
simulations required a L2 residual drop of at least 8 or-
ders of magnitude for all transport equations.

The SIRH simulations (STAR-CCM+) require a
drop of at least 4 orders of magnitude for the L2 norm
of the residual, but 8 orders of magnitude of residual drop
was achieved for most simulations. Convergence of forces
and moments is also checked.

Flow over a flat plate

The computations performed for the T3AM and
T3A conditions of the flow over a flat plate are presented
in Table 5. Figure 6 illustrates the results obtained with
the different flow solvers for the Cf distributions and for
the Vx and k profiles at Rex = 1.8281 × 106 for the
T3AM settings. For the γ model the selected location is in

Table 5: RANS simulations performed for the T3AM and
T3A settings of the flow over a flat plate.

T3AM
Institution γ-Reθ γ

DRDC HO 1-5 HO 1-5
ECN O 1-5 O 1-5
IM All grids All grids

LARC-F HO 4-9
SIRH HO 1,3,5,7,9 HO 1,3,5,7,9

T3A
Institution γ-Reθ γ

DRDC HO 1-5 HO 1-5
ECN O 1-5 O 1-5
IM HO 1-9 HO 1-9

LARC-F HO 4-9
SIRH HO 1,3,5,7,9 HO 1,3,5,7,9

the transition region in all the calculation, whereas for the
γ-Reθ model results and for the experiments it is at the
end of the laminar region. The results correspond to the
finest grids simulated with each solver and the estimated
error bars are based on the data of five grids. The graph-
ical agreement between the several results seems excel-
lent, with the exception of the profiles obtained with the
γ model that also exhibit the largest numerical uncertain-
ties.

The consistency of the several RANS computations
is checked by determining the overlap between the error
bars obtained for all selected quantities of interest. The
percentage of cases with nonoverlapping error bars and
the largest discrepancies between two solutions are pre-
sented in Table 6. Most of the cases tested do not exhibit
overlapping error bars for all simulations performed with
the same mathematical model. The exception is the Vx

profile in the transition region (x2) of the T3AM simu-
lations with the γ model where the estimated error bars
are so large that there is overlap between all simulations.
Nevertheless, there are two main trends in the data: the
agreement between the different flow solvers tends to be
better for the γ model than for the γ-Reθ model; discrep-
ancies for the mean flow quantity (Vx) tend to be smaller
than those obtained for the turbulence and transition quan-
tities.

Figure 7 presents the convergence with grid refine-
ment of one location from each of the Cf , Vx and k results
plotted in Figure 6. The plots of Figure 7 also include
the least-squares fits used to estimate the numerical un-
certainty. It is clear that grid convergence properties are
strongly dependent on the flow solver. As expected, it is
not easy to estimate the observed order of grid conver-
gence due to scatter in the data and/or nonmonotonic con-
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Figure 6: Comparison of the solutions obtained with dif-
ferent RANS solvers for the skin friction coefficient Cf

and mean horizontal velocity component Vx and turbu-
lence kinetic energy k profiles in the transition region.
Flow over a flat plate for the T3AM conditions.

vergence. For the γ-Reθ model, the DRDC results are not
consistent with most of the other submissions, whereas

Table 6: Percentage of locations for all quantities of in-
terest where the error bars of the numerical solutions do
not overlap and the largest discrepancy between any two
numerical solutions for each case. Flow over a flat plate
for the T3AM and T3A settings.

Percentage of cases with nonoverlapping error bars
T3AM T3A

Variable γ-Reθ γ γ-Reθ γ
Cf × 103 100. 92.3 92.3 92.3

x1 100. 97.4 100. 82.4
Vx/V∞ x2 100. 0. 81.1 75.7

x3 95.6 67.4 100. 61.0
x1 92.3 94.9 88.2 79.4

k/V 2
∞ x2 90.7 20.9 81.1 86.5

x3 93.5 56.4 70.7 82.9
x1 97.4 69.2 76.5 64.7

νt/ν x2 97.7 27.9 75.7 86.5
x3 97.8 65.2 56.1 70.7
x1 76.9 46.2 82.4 61.8

γ x2 95.3 48.8 86.5 97.3
x3 95.7 43.5 48.8 78.0

Largest discrepancy between two numerical solutions
T3AM T3A

Variable γ-Reθ γ γ-Reθ γ
Cf × 103 0.332 0.069 0.147 0.069

x1 0.008 0.003 0.016 0.013
Vx/V∞ x2 0.036 0. 0.015 0.018

x3 0.060 0.012 0.020 0.017
k/V 2

∞ x1 0.076 0.003 0.035 0.031
× x2 0.434 2.03 0.387 0.190
103 x3 0.867 0.168 0.220 0.200

x1 0.188 0.023 0.730 0.410
νt/ν x2 2.03 1.70 0.548 0.408

x3 1.99 3.59 3.48 3.25
x1 0.012 0.066 0.033 0.071

γ x2 0.272 0.031 0.059 0.026
x3 0.262 0.056 0.023 0.054

for the γ model it is the SIRH results that are different
from the other solutions.

Figure 8 compares the available experimental data
(Roach and Brierley [1990]) with the RANS results using
the SST k-ω turbulence model combined with the γ-Reθ
and γ transition models. The numerical results are ob-
tained with ReFRESCO (IM) in the finest grid of the HO
topology (HO1). The overall agreement between experi-
ments and computations is better for the bypass transition
case (T3A) than for natural transition (T3AM). Further-
more, the differences between the two transition models
are larger for the T3AM results than for the T3A data.
In the T3AM case, the very narrow transition region ob-
tained with the γ model leads to a significant increase of
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the estimated numerical uncertainties inside the transition
region.
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Figure 7: Illustration of the grid convergence of the skin
friction coefficient Cf , mean horizontal velocity compo-
nent Vx, and turbulence kinetic energy k obtained with
different RANS solvers. Flow over a flat plate for the
T3AM conditions.
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Figure 8: Comparison of the RANS solutions using the
SST k-ω turbulence model combined with the γ-Reθ and
γ transition models with the experimental data (Roach
and Brierley [1990]). Flow over a flat plate for the T3AM
and T3A conditions.

Flow around the Eppler 387 airfoil

Table 7 presents the results available for the flow
around the Eppler 387 airfoil at α = 1◦ and α = 7◦ with
Re = 3 × 105. Figure 9 presents the pressure coefficient
Cp distributions on the airfoil surface and the skin friction
coefficient Cf on the upper surface of the airfoil obtained
with the several RANS solvers. The plot contains the so-
lutions on the finest grid calculated by each solver and the
error bars are based on the data obtained with 5 grids.

With the exception of the Cf distribution in the lead-
ing edge region, the graphical agreement between all the
error bars seems excellent. However, as for the flat plate
test cases, the check on the consistency between all of the
RANS solutions in terms of an overlap between the er-
ror bars shows a different scenario. Table 8 presents the
percentage of chordwise stations that do not exhibit over-
lapping error bars. Additionally, the table highlights the
largest discrepancies between any two RANS solutions
for coefficients CDf , CDp, CD and CL, and for the Cp

and Cf values at 56 locations on the upper and lower sur-
faces of the airfoil (28 on each side).

The results show that it is, in fact, rare to find over-
lapping error bars for the predictions based on the RANS
solvers under consideration, even for the force coeffi-
cients. Only the γ model for α = 7◦ exhibits 3 consistent
force coefficients (CDp, CD, and CL). Nonetheless, there

13



Table 7: RANS simulations performed for the flow around
the Eppler 387 airfoil at α = 1◦ and α = 7◦ with Re =
3× 105.

α = 1◦

Institution γ-Reθ γ
DRDC CO 5-9 CO 5-9
ECN CO 1-5 CO 1-5
IM All grids All grids

IM2 CO 1-5 CO 1-5
LARC-F CO 5-9
LARC-O CO 5-9

SIRH CO 1,3,5,7,9 HO 1,3,5,7,9
α = 7◦

Institution γ-Reθ γ
DRDC CO 5-9 CO 5-9

IM All grids All grids
IM2 CO 1-5 CO 1-5

LARC-F CO 5-9
LARC-O CO 5-9

SIRH CO 1,3,5,7,9 HO 1,3,5,7,9

Table 8: Percentage of locations for all quantities of in-
terest where the error bars of the numerical solutions do
not overlap and largest discrepancy between two numeri-
cal solutions for each case. Cϕ corresponds to CDf ×103,
CDp × 103, CD × 103 and CL. Flow around the Eppler
387 airfoil at α = 1◦ and α = 7◦ with Re = 3× 105.

Percentage of cases with non overlapping error bars
α = 1◦ α = 7◦

Variable γ-Reθ γ γ-Reθ γ
Cϕ 100. 75. 100. 25.

Cp Upper 100. 100. 100. 89.3
Lower 100. 100. 100. 96.4

Cf Upper 96.4 92.9 100. 78.6
×103 Lower 78.6 75.0 64.3 21.4

Largest discrepancy between two numerical solutions
α = 1◦ α = 7◦

Variable γ-Reθ γ γ-Reθ γ
Cϕ 1.13 0.029 4.56 0.018

Cp Upper 0.106 0.020 0.236 0.020
Lower 0.025 0.008 0.094 0.018

Cf Upper 4.60 4.30 5.21 2.17
×103 Lower 0.616 0.940 7.11 0.210

are two trends that can be observed in the data of Table 8:
consistency of the several RANS solutions is better for the
γ model than for the γ-Reθ model; there is better agree-
ment between the different RANS solutions for Cf than
for Cp.
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Figure 9: Comparison of the solutions obtained with dif-
ferent RANS solvers for the pressure coefficient Cp on the
airfoil surface and for the skin friction Cf coefficient on
the upper surface of the airfoil. Flow around the Eppler
387 airfoil at α = 1◦ and Re = 3× 105.

Convergence of the quantities of interest with grid
refinement for the different RANS solvers is illustrated in
Figure 10 for the drag coefficient CD and for one location
in the laminar separation bubble on the upper surface of
the airfoil at α = 1◦. The results show significant dif-
ferences between the grid convergence properties of the
different RANS solvers. There is a clear reduction of the
grid dependency of ReFRESCO with the use of second-
order upwind discretization for the convective terms in the
k and ω transport equations (IM2, CO) when compared to
the first-order approach (IM, CO). Some of the large un-
certainties estimated for the laminar separation region are
a consequence of scatter in the data, as for example the
Cp and Cf of the LARC-F results with the γ-Reθ model.

When there is scatter in the data, nonmonotonic con-
vergence can be the best fit to the data and that can lead
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Figure 10: Illustration of the grid convergence of the drag
coefficient CD, pressure coefficient Cp and skin friction
coefficient Cf in the laminar separation bubble of the up-
per surface obtained with different RANS solvers. Flow
around the Eppler 387 airfoil at α = 1◦ and Re = 3×105.

to large uncertainty bars. The locations of Figure 10 were
selected to illustrate this difficulty. The origin of the scat-
ter can be max/min functions in the turbulence and transi-
tion models, limiters in the discretzation schemes and/or
insufficient iterative convergence.
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Figure 11: Comparison of the RANS solutions using the
SST k-ω turbulence model combined with the γ-Reθ and
γ transition models with the experimental data (McGhee
et al. [1988]). Flow around the Eppler 387 airfoil at α =
1◦ and α = 7◦ with Re = 3× 105.

The IM2 Cp distributions on the airfoil surface ob-
tained on the finest grid with the γ-Reθ and γ transition
models are compared with the experimental data from
McGhee et al. [1988] in Figure 11. The plots also con-
tain the Cp and Cf distributions of the LES simulations
reported in Catalano and de Rosa [2020] that are desig-
nated in the figure as LES (CIRA). The numerical uncer-
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tainty in the RANS computations is also plotted in the fig-
ures, but its magnitude is rather small being comparable
to the line thickness. For α = 1◦, the largest discrepan-
cies relative to the experimental data are obtained for the
γ-Reθ model that leads to the largest laminar separation
bubble. The experiments and the LES results do not ex-
hibit a laminar separation bubble for α = 7◦, whereas the
RANS results exhibit a laminar separation bubble for the
two transition models. Transition location is significantly
upstream in the case of LES simulations, but it occurs al-
most near midchord, after laminar separation, in the case
of RANS-based transition model results. We recall that
the inlet values of k and ω used in the RANS simulations
lead to a very low turbulence intensity at the leading edge,
I ≃ 6× 10−3.

Flow around the NACA 0015 airfoil

There is only one set of CO grids proposed for the
simulation of the flow around the NACA 0015 airfoil at
α = 5◦ and α = 10◦ with Re = 1.8 × 105. Table 9
presents the RANS solutions performed for this test case.

Table 9: RANS computations performed for the flow
around the NACA 0015 airfoil at α = 5◦ and α = 10◦

with Re = 1.8× 105.

α = 5◦

Institution γ-Reθ γ
DRDC CO 5-9 CO 5-9
ECN CO 5-9 CO 5-9
IM CO 1-9 CO 1-9

LARC-F CO 5-9
LARC-O CO 5-9

α = 10◦

Institution γ-Reθ γ
DRDC CO 5-9 CO 5-9

IM CO 1-9 CO 1-9

The pressure coefficient Cp on the airfoil surface
and the skin friction coefficient Cf on the upper surface
obtained with the several RANS solvers are presented in
Figure 12 for α = 5◦ and Re = 1.8 × 105. Discrepan-
cies involving the laminar separation region between the
different RANS solutions with the γ-Reθ model are much
larger than those observed for the Eppler 387 airfoil. On
the other hand, the 3 solutions calculated with the γ model
are in excellent graphical agreement.

The check for the consistency in terms of an overlap
between the errors bars obtained for all the quantities of
interest with the different RANS solvers shows again that
the majority of the quantities of interest do not exhibit
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Figure 12: Comparison of the solutions obtained with dif-
ferent RANS solvers for the pressure coefficient Cp on the
airfoil surface and for the skin friction Cf coefficient on
the upper surface of the airfoil. Flow around the NACA
0015 airfoil at α = 5◦ and Re = 1.8× 105.

overlapping error bars. As illustrated by the plots of Fig-
ure 12 and Table 10, the largest discrepancies between any
two solutions are significantly larger for the γ-Reθ model
than for the γ model. Although there is still a large per-
centage of nonoverlapping error bars for the γ solutions,
the largest discrepancies between any two numerical so-
lutions are very small, especially for α = 5◦.

The convergence of the drag coefficient CD , and
Cp and Cf values at a location in the laminar separation
bubble with grid refinement is illustrated in Figure 13 for
the flow at α = 5◦. It is clear that the discrepancies ob-
tained for the γ-Reθ model are not justified by the nu-
merical uncertainty. Nonetheless, the data do show some
cases with noisy convergence and others with nonmono-
tonic convergence, making the estimation of numerical
uncertainty challenging.
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Table 10: Percentage of locations for all quantities of in-
terest where the error bars of the numerical solutions do
not overlap and largest discrepancy between two numeri-
cal solutions for each case. Cϕ corresponds to CDf ×103,
CDp × 103, CD × 103 and CL. Flow around the NACA
0015 airfoil at α = 5◦ and α = 10◦ with Re = 1.8×105.

Percentage of cases with non overlapping error bars
α = 5◦ α = 10◦

Variable γ-Reθ γ γ-Reθ γ
Cϕ 100. 25. 100. 50.

Cp Upper 100. 58.7 96.9 69.3
Lower 100. 100. 98.4 95.3

Cf Upper 99.8 38.4 80.7 81.5
×103 Lower 90.9 51.9 42.1 61.0

Largest discrepancy between two numerical solutions
α = 5◦ α = 10◦

Variable γ-Reθ γ γ-Reθ γ
Cϕ 7.08 0.001 3.17 0.127

Cp Upper 0.447 0.001 0.265 0.005
Lower 0.048 0.004 0.013 0.002

Cf Upper 11.5 0.099 9.39 0.197
×103 Lower 2.07 0.015 0.208 0.013

The IM RANS solutions obtained on the finest grid
are compared in Figure 14 with the experimental data
reported in Miozzi et al. [2019]. There are data ob-
tained with LES (LES, CIRA) reported in Catalano and
de Rosa [2020] for the two angles of attack, in addi-
tion to another LES performed with Xnavis (LES, CNR-
INM) for α = 5◦. The LES results exhibit larger Cf val-
ues than the RANS solution in the fully-turbulent region
and also indicate better agreement with the experimental
data. However, there are significant differences across the
entire set of computational predictions within the lami-
nar separation bubble, including the two LES results at
α = 5◦. It should be stated that identifying the sign
of wall shear-stress measured in the experiments is not
straightforward. Therefore, the comparison of the sepa-
ration and re-attachment points between the experiments
and the computations is not reliable.

Conclusions

This paper presents the main results obtained during
the first phase of the AVT-313 Workshops that was ded-
icated to the simulation of nominally 2D low Reynolds
number flows with the RANS equations using the k-ω
SST turbulence model and the γ − Reθ and γ transition
models. Three two-dimensional geometries (flat plate,
Eppler 387 airfoil and NACA 0015 airfoil) are considered
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Figure 13: Illustration of the grid convergence of the
drag coefficient CD, pressure coefficient Cp and skin fric-
tion coefficient Cf in the laminar separation bubble of
the upper surface obtained with different RANS solvers.
Flow around the NACA 0015 airfoil at α = 5◦ and
Re = 1.8× 105.
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Figure 14: Comparison of the RANS solutions using the
SST k-ω turbulence model combined with the γ-Reθ and
γ transition models with the experimental data Miozzi
et al. [2019]. Flow around the NACA 0015 airfoil at
α = 5◦ and α = 10◦ with Re = 1.8× 105.

to simulate steady flows of incompressible fluids.
The flat plate flow settings include one case of nat-

ural transition and one of bypass transition due to high
freestream turbulence intensity. Two angles of attack were
selected for each of the airfoils, yielding a total of four
airfoil cases. Three of those flow settings lead to laminar
separation bubbles on the upper surface of the airfoil (Ep-
pler 387 at α = 1◦ and Re = 3× 105 and NACA 0015 at
α = 5◦ and α = 10◦ and Re = 1.8 × 105), whereas the
occurrence of a laminar separation bubble for the Eppler
387 at α = 7◦ and Re = 3 × 107 depends on the turbu-

lence intensity of the incoming flow, which in the RANS
computations is set to a low level.

Experimental data are available in the open litera-
ture for all of the selected test cases. However, all of
the information required to simulate the flows at the ex-
act conditions of the experiments is not available. There-
fore, it is not possible to make a rigorous assessment
of the modeling error in the selected mathematical mod-
els. Nonetheless, the available experimental data are com-
pared with the results from the RANS computations and
the LES, when available, for the airfoils test cases.

The main focus of the present exercise is the assess-
ment of the consistency across the solutions obtained with
different RANS solvers by using the same mathematical
model, domain size and boundary conditions. To this end,
geometrically similar grids have been generated for all of
the test cases, including more than one grid topology for
four out of the six test cases. Selected quantities of inter-
est included integral quantities as well as local flow quan-
tities on the surface and in the interior of the domain. For
each test case, solutions are obtained for at least five grids
from a given set, making it possible to estimate numer-
ical uncertainties for all computed quantities of interest.
Therefore, the influence of the different numerical tech-
niques used in each RANS solver, grid density, and/or grid
topology on the numerical solutions is taken into account
in the estimated error bars.

It is important to recall that there are small differ-
ences in the details of the implementation of the turbu-
lence and transition models in the different flow solvers.
For example, it was identified that several alternatives are
used for the implementation of the production term of the
k transport equation. Therefore, it is not guaranteed that
all RANS solvers are using strictly the same mathematical
model.

The solution verification exercises lead to the fol-
lowing conclusions:

• Most of the consistency checks performed for all
of the test cases showed nonoverlapping error bars
for the solutions obtained with the nominally same
mathematical model but different RANS solvers. In
general, the discrepancies between the different nu-
merical solutions are larger for the γ-Reθ model than
for the γ model. These results can be a consequence
of the details of the implementation of the turbulence
and transition models that are not strictly identical in
all the flow solvers tested. Therefore, code to code
comparisons is not a trivial exercise.

• The grid convergence properties obtained for the sev-
eral quantities of interest are strongly dependent on
the RANS solver. Furthermore, for a fixed RANS
solver, the grid convergence properties depend on
the selected flow quantity and/or the grid topology.

18



Therefore, single grid comparisons between differ-
ent flow solvers can lead to misleading conclusions.

• In the transition region, the numerical uncertainties
obtained for the γ model tend to be significantly
larger than those obtained for the γ − Reθ model.
This is in large part a consequence of the steeper in-
crease in Cf obtained for the γ model.

The comparisons of the RANS solutions with the
data from experiments and the LES suggest the following
remarks:

• For the flat plate cases, the differences between the
γ − Reθ and γ model solutions are larger for natu-
ral transition than for the bypass transition. There is
also a much better agreement between experiments
and the RANS computations for the bypass transi-
tion than for the natural transition conditions.

• For the Eppler 387 at α = 1◦, the best agreement
between the RANS Cp distributions and the experi-
ments is obtained with the γ model. The same trend
is observed in the comparison between the RANS
and LES results that also include Cf . At α = 7◦,
the experiments and the LES results do not show a
laminar separation bubble, whereas the RANS solu-
tions exhibit a bubble at the midchord location. This
result is likely to be a consequence of the extremely
low turbulence intensity at the leading edge of the
airfoil in the RANS simulations.

• The largest discrepancies between the results from
the RANS simulations are observed for the flow
around the NACA 0015 airfoil. The differences with
respect to the experimental data are smallest in the
fully turbulent region for the LES results, but the
laminar separation bubbles are significantly different
in both LES and RANS-based predictions, including
the two LES results at α = 5◦.

The discrepancies exhibited by the different RANS
computations and their respective error bars can have
three causes: the estimated error bars are not conserva-
tive; the details of the nominal identical turbulence and
transition models are not identical in all flow solvers; the
implementations of the turbulence and transition models
have “bugs”. It is difficult to check the estimated error
bars for the number of quantities of interest addressed in
this study. Nonetheless, main problems should occur for
coarse grids data leading to apparent second-order grid
convergence. Although that was not thoroughly checked,
it seems to be a rare situation. As mentioned above, there
are differences in the details of the implementations of the
turbulence and transition models and in the flow settings
(M = 0 versus M = 0.1) that are contributing to the

differences between flow solvers. Last but not the least,
checking the existence of “bugs” can only be addressed
with code verification. However, for the selected transi-
tion and turbulence models that is not a trivial exercise.

Currently, two-dimensional, steady RANS compu-
tations should be numerically accurate and enable the
quantification of the modeling error. The lack of a test
case with all the information required to simulate a low
Reynolds number flow in identical conditions to the ex-
periment hampers the ability to quantify accurately the
modeling error of the simulations. However, it is not
only the lack of complete information from experiments
that makes it difficult. The same “nominal” turbulence
and transition model may lead to different results due
to different options in the details of the implementation.
Nonetheless, it is clear that transition models are required
for RANS based computations of low Reynolds number
flows.
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