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Abstract 19 

Forecasting ambient PM2.5 concentrations with spatiotemporal coverage is key to alerting 20 

decision-makers of pollution episodes and preventing detrimental public exposure, especially in 21 

regions with limited ground air monitoring stations. The existing methods either rely on chemical 22 

transport models (CTMs) to forecast spatial distribution of PM2.5 with nontrivial uncertainty or 23 

statistical algorithms to forecast PM2.5 concentration time-series at air monitoring locations 24 

without continuous spatial coverage. In this study, we developed a PM2.5 forecast framework by 25 

combining the robust Random Forest algorithm with a publicly accessible global CTM forecast 26 

product - NASA’s Goddard Earth Observing System “Composition Forecasting” (GEOS-CF), 27 

providing spatiotemporally continuous PM2.5 concentration forecasts for the next five days at a 28 

1-km spatial resolution. Our forecast experiment was conducted for a region in Central China 29 

including the populous and polluted Fenwei Plain. The forecast for the next two days had overall 30 

validation R2 of 0.76 and 0.64, respectively; the R2 was around 0.5 for the following three 31 

forecast days. Spatial cross-validation showed similar validation metrics. Our forecast model, 32 

with validation normalized mean bias close to zero, substantially reduced the large biases in 33 

GEOS-CF. The proposed framework requires minimal computational resources compared to 34 

running CTMs at urban scales, enabling near-real-time PM2.5 forecast in resource-restricted 35 

environments.  36 

 37 

Keywords: Air pollution forecast; Chemical transport model; Near-real-time; Near-term; 38 
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 40 
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Synopsis: A spatiotemporal high-resolution model for five-day PM2.5 concentration forecast was 41 

developed by incorporating chemical transport simulations into a machine learning algorithm.  42 

TOC Graphic: 43 

 44 
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1. Introduction 46 

Fine particulate matter with an aerodynamic diameter of 2.5 μm or smaller (PM2.5) can be 47 

inhaled and deposit in lung alveoli. Epidemiological research has shown that PM2.5 is detrimental 48 

and casually associated with morbidity and mortality related to different body systems, 49 

especially cardiovascular and respiratory systems.1, 2 Exposure to ambient PM2.5 was estimated to 50 

contribute to 3 million deaths and 83 million disability-adjusted life years (DALYs) globally in 51 

2017.3 Countries in Asia, e.g., China and India, are among the regions with the highest ambient 52 

PM2.5 concentrations in the world.4 While comprehensive control policies have been 53 

implemented and air quality has since been improved in China from the early 2010s, ambient 54 

PM2.5 concentration levels in some polluted regions are still above China’s air quality standards 55 

and the World Health Organization (WHO) air quality guidelines.5  56 

 57 

Near-term forecast of ambient PM2.5 concentrations is key to alerting decision-makers of 58 

potential pollution episodes and preventing detrimental public exposure. Chemical transport 59 

models (CTMs) have been widely used to numerically forecast spatiotemporal PM2.5 60 

concentrations in the near term - from next hours to days.6, 7 CTMs forecast PM2.5 concentrations 61 

based on estimated emissions and simulated atmospherically physical and chemical processes. 62 

Well-known CTM forecast products include those derived from global CTMs, e.g., the 63 

Copernicus Atmosphere Monitoring Service (CAMS)8 and the National Aeronautics and Space 64 

Administration (NASA) Goddard Earth Observing System “Composition Forecasting” (GEOS-65 

CF),9 and from regional CTMs, e.g., the Community Multiscale Air Quality Modeling System 66 

(CMAQ).10, 11 However, the CTM forecast products are subject to large biases due to 67 

uncertainties in emission inventories, parameterization of physical and chemical processes, and 68 
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initial and/or boundary conditions.12 Efforts have been made to improve CTM-based PM2.5 69 

forecast data.12-19 For instance, the ensemble approach utilizes multiple inputs of emission 70 

inventories and meteorological fields or multiple models to reduce random errors in PM2.5 71 

simulations.12, 19 Assimilation techniques, e.g., the variational (VAR) method (3D- and 4D-VAR) 72 

and the Kalman filter, have also been used to incorporate ground truth (i.e., PM2.5 observations) 73 

to reduce systematic biases in PM2.5 simulations.13, 15, 17 However, the improved CTM forecast 74 

products are still obviously deviated from the ground truth and are usually not able to provide 75 

high-resolution forecast data at the scale of a kilometer.9, 20, 21 More importantly, the CTM-based 76 

methods are computationally intensive and expensive, thus less practical for routine PM2.5 77 

forecast in resource-restricted environments. 78 

 79 

Machine learning algorithms, as novel statistical methods, have been increasingly used to 80 

forecast near-term PM2.5 concentrations. The majority of these algorithms are designed to 81 

forecast temporal variations (i.e., time-series) of PM2.5 at individual air monitoring sites. A 82 

typical example is the recurrent neural network (RNN) and its variant, the long short-term 83 

memory network (LSTM).22-24 Unlike the regular neural network, the RNN allows connections 84 

between nodes to form a directed graph along a time sequence, therefore to process a time-series 85 

of inputs. Other parametric or machine learning algorithms have also been applied in PM2.5 time-86 

series forecast.25-32 The advantages of machine learning algorithms over the CTM-based methods 87 

include higher forecast accuracy and substantially lower computational resources needed. 88 

However, PM2.5 time-series forecast at air monitoring locations alone is less informative as the 89 

monitors, mostly regulatory agency monitors located in urban centers, cannot well represent 90 

pollution variations in suburban and rural areas.33, 34 Few attempts have been made to forecast 91 
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spatiotemporal variations of PM2.5 based on statistical algorithms.35, 36 Specifically, Ma et al 35 92 

proposed a geo-layer of PM2.5 concentrations (a spatially interpolated concentration surface) and 93 

integrated it into LSTM to forecast PM2.5 with spatiotemporally complete coverage. Lu et al 36 94 

incorporated PM2.5 time-series forecast at monitoring sites from a LSTM model into a 3D-VAR 95 

model to spatially extrapolate PM2.5 concentrations. However, the existing studies have several 96 

limitations. First, the studies tended to forecast spatial PM2.5 variations based on inaccurate 97 

spatial information, e.g., geographical interpolation or CTM simulations. Exposure modeling 98 

studies have shown that statistical prediction of PM2.5 based on ground observations and 99 

meteorological/land-use predictors can generate more accurate PM2.5 spatial distribution than 100 

spatial interpolation or chemical simulation.20 Second, the multi-stage modeling process would 101 

lead to error propagation which in turn increases overall modeling uncertainty.37 Third, the 102 

forecast model training and validation processes were not rigorously designed in these previous 103 

studies, in which future PM2.5 observations tended to be used to train the forecast model, thus 104 

improperly inflating the validation performance. A rigorous validation set should not include 105 

ground observations on and after the day for which the forecast is made. 106 

 107 

In this study, we developed a near-term PM2.5 forecast framework - with limited computational 108 

resources needed - by combining a robust machine learning algorithm with a publicly accessible 109 

global CTM forecast product. We aimed to utilize the machine learning framework to improve 110 

the CTM forecast product by incorporating ground truth. Given the limitations of the existing 111 

methods for PM2.5 forecast, we opted to use the Random Forest (RF) algorithm, a widely used 112 

machine learning method for spatiotemporal PM2.5 prediction,38-41 as our forecast model. Unlike 113 

time-series forecast algorithms such as LSTM, we showed that RF can forecast PM2.5 114 
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concentrations in regions without ground monitors in a unified modeling framework. The 115 

proposed framework provided spatiotemporally continuous PM2.5 forecast data for the next five 116 

days (daily averages) at a spatial resolution of 1 km. We also designed model training and 117 

validation processes that can mimic real-world PM2.5 forecast to minimize validation biases. We 118 

chose a region in Central China with a large population and one of the most polluted city clusters 119 

in terms of PM2.5, Fenwei Plain, as our study domain. Unlike other polluted regions in China, 120 

e.g., the Beijing-Tianjin-Hebei region, our study domain was less influenced by emergency air 121 

pollution response and control actions, hence the proposed forecast framework could be reliably 122 

validated.  123 

 124 

2. Data and methods 125 

2.1. Study domain and ground PM2.5 observations 126 

We collected daily PM2.5 concentration measurements from regulatory air quality stations of the 127 

China National Environmental Monitoring Center (CNEMC, http://www.cnemc.cn). We pre-128 

defined a 1-km modeling grid and calculated daily-level, 1-km PM2.5 concentrations from the 129 

ground measurements by spatial aggregation. Figure 1(a) shows our study domain with the 130 

locations of the PM2.5 monitoring sites (N of locations = 226). The study domain covered 131 

multiple central and western provinces of China, including (alphabetically) Gansu, Hebei, 132 

Henan, Hubei, Inner Mongolia, Ningxia, Shaanxi, Shanxi, and Sichuan. The Fenwei Plain was 133 

entirely covered. The population within the study domain was estimated to be 150 million in 134 

2018 (https://landscan.ornl.gov/). There were 97038 daily PM2.5 observations at 226 1-km grid 135 

cells from January 1st, 2019 to March 14th, 2020. The study domain had a mean PM2.5 136 

concentration of 50 μg/m3 (standard deviation = 44 μg/m3) in 2019. 137 
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 138 

2.2. CTM-based PM2.5 forecast data 139 

We acquired PM2.5 forecast data from a publicly accessible global CTM database, GEOS-CF, as 140 

the baseline forecast data. GEOS-CF is a novel atmospheric composition and meteorology 141 

model, providing three-dimensional distributions of hourly-level, five-day forecast PM2.5 142 

concentrations at a spatial resolution of 25 km (https://gmao.gsfc.nasa.gov/).9 While the current 143 

version of GEOS-CF is known to have nontrivial systematic bias in PM2.5 forecast data due to 144 

model representation errors, inaccurate input data (meteorology and emission), and biases in 145 

chemical/physical processes, the spatial distribution of PM2.5 is reasonably captured.9 In this 146 

study, we used the surface-level (two-dimensional) GEOS-CF data and calculated daily mean 147 

PM2.5 concentrations for the five forecast days based on the China Standard Time (CST) and 148 

interpolated the concentrations into the pre-defined 1-km grid by ordinary kriging. Due to the 149 

difference between CST and Coordinated Universal Time (UTC) based on which GEOS-CF 150 

reports the forecast, the first to fourth forecast days had complete 24-hour forecast data while the 151 

fifth day had 21-hour forecast data from 12 AM to 8 PM CST.  152 

 153 

2.3. Forecast meteorological data 154 

The surface-level meteorological parameters for the five forecast days were acquired from 155 

GEOS-CF as well, including total cloud area fraction (unitless), surface pressure (Pa), 10-m 156 

specific humidity (kg/kg), 10-m air temperature (K), total precipitation (kg/m2/s), tropopause 157 

pressure based on blended estimate (Pa), surface skin temperature (K), 10-m eastward/northward 158 

wind (m/s), and planetary boundary layer height (m). We calculated daily averages of the 159 

meteorological parameters and interpolated them into the pre-defined 1-km grid by ordinary 160 
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kriging. These meteorological parameters were used as spatiotemporally varying predictors in 161 

our forecast model.  162 

 163 

Prior to the launch of the five-day forecast, GEOS-CF runs a historical segment for the previous 164 

24 hours to have the best initial conditions for the forecast. These historical estimates of the 165 

recent global atmospheric composition and meteorology are constrained by meteorological 166 

observations.9 In this analysis, we used the GEOS-CF historical data to build a “now-cast” model 167 

for model parameter tuning (see Section 2.5).  168 

 169 

2.4. Land-use data 170 

We used land-use parameters as two-dimensional, spatially varying predictors of our forecast 171 

model. The parameters included the LandScan ambient population in 2018 at a 900-m resolution 172 

(https://landscan.ornl.gov/), the Copernicus Climate Change Service (C3S) global land cover 173 

(LC) products in 2018 at a resolution of 0.002778° (approximately 300 m) 174 

(https://cds.climate.copernicus.eu/), and distances to the nearest primary and secondary roads 175 

extracted and computed from the OpenStreetMap (OSM) road network data 176 

(https://www.openstreetmap.org/). The original C3S LC types were reclassified and reprocessed 177 

as percentages (%) of vegetation cover, urban areas, bare areas, and water bodies. We under-178 

sampled the parameters into the pre-defined 1-km grid to match with other variables.  179 

 180 

2.5. Forecast model training and prediction 181 

Figure 1(b) shows the workflow of our forecast modeling and validation processes. The forecast 182 

framework was based on the RF algorithm, a widely used algorithm providing satisfactory PM2.5 183 
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predictions with little configuration.38-41 The RF algorithm constructs multiple decision trees to 184 

recover the non-linear relationships between the PM2.5 concentration and its predictors and 185 

returns the mean prediction of PM2.5 from the individual trees as the final prediction result. We 186 

focused on two major hyperparameters of RF: (1) the number of decision trees (!!"##) and (2) 187 

the number of predictors randomly tried at each split ("!"$). We built a current-day (“now-cast”) 188 

PM2.5 prediction model for hyperparameter tuning (we note that this was not a forecast model; 189 

this “now-cast” model was only used for hyperparameter tuning). In the current-day model, 190 

ground PM2.5 observations were used as the dependent variable and the same-day GEOS-CF 191 

meteorological variables and temporally invariant land-use parameters were used as predictors. 192 

We determined the values of the hyperparameters capable of minimizing the out-of-bag (OOB) 193 

error of the current-day model. Specifically, !!"## and "!"$ were determined to be 500 and 4, 194 

respectively. Following with previous studies,39, 40 we relied on RF variable importance for 195 

predictor selection. The RF variable importance measures explain the relative importance and 196 

contribution of predictors. In this study, we opted to use the permutation variable importance 197 

defined to be the decrease in model performance when a single predictor’s values are randomly 198 

shuffled. We excluded predictors with importance values close to zero and substantially smaller 199 

than other predictors’ values, including percentages of bare areas and water bodies. These two 200 

predictors were spatially homogeneous at the monitoring locations within our study domain, thus 201 

minimally contributing to model performance. Table S1 lists the final predictors used to build the 202 

RF-based forecast model. The RF algorithm was based on the R (Ver. 4.0.2) package “ranger” 203 

(Ver. 0.12.1).42  204 

 205 
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The forecast model training process should mimic the real-world forecast scenario without future 206 

data included as the training sample. Therefore, we built the forecast model for each day 207 

individually on a rolling basis (as opposed to merging all training data together in a single 208 

model). There are two major forecast model features: (1) the forecast day, i.e., for which day the 209 

forecast PM2.5 concentrations are generated (from the first to fifth following days), and (2) the 210 

rolling period, i.e., how many previous days’ training data are included (we tested 10-, 30-, 60-, 211 

and 90-day rolling periods). For example, on the current day (Day 0), we aimed to forecast the 212 

next day’s (Day 1) PM2.5 concentrations when the rolling period was set to be 10 days. In this 213 

case, for model training, we matched the PM2.5 observations on Day 0 with the GEOS-CF PM2.5 214 

and meteorological forecast data generated on the previous day (Day -1) for Day 0 and repeated 215 

this matching process for the 10-day rolling period from Day -9 to Day 0 (using GEOS-CF PM2.5 216 

and meteorological forecast data generated on Day -10 to Day -1); for model prediction, we then 217 

used the GEOS-CF PM2.5 and meteorological forecast data generated on Day 0 for Day 1 to 218 

calculate PM2.5 concentrations on Day 1 as the forecast results. The model building process is 219 

summarized in Table 1. We determined the rolling period to be 60 days for our forecast model as 220 

it allowed the model to have substantially higher forecast performance than those with shorter 221 

rolling periods, while the improvement in forecast performance was minimal for a longer rolling 222 

period (Tables S2 and S3). 223 

 224 

We spatially interpolated the PM2.5 observations on the current day by ordinary kriging to create 225 

a PM2.5 convolutional layer and treated it as an additional spatiotemporal predictor. The PM2.5 226 

convolutional layer is a commonly used predictor of PM2.5 exposure in previous modeling 227 

studies. 39, 43 It reflects the interpolated PM2.5 concentrations generated with nearby observations, 228 
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allowing the prediction model to account for spatial autocorrelation of PM2.5. It is worth 229 

clarifying that the “convolutional layer” here is different from a similar term in deep 230 

convolutional neural networks (CNNs). Instead of a neural-network structure of CNN, our PM2.5 231 

convolutional layer is a two-dimensional PM2.5 concentration surface generated before the 232 

modeling stage and was used as a model predictor. By using the PM2.5 convolutional layer, we 233 

hypothesized that spatial variations in PM2.5 on the current day were correlated with the 234 

variations on the forecast day, thus contributing to improved forecast performance.  235 

 236 

Given that PM2.5 prediction models based on statistical methods are not designed to predict 237 

extreme pollution events originated outside the study domain, e.g., dust storms from northwest 238 

China in our case, we removed a priori the training and prediction data potentially associated 239 

with these extreme events. We adopted the Ultraviolet Aerosol Index (UVAI) from the 240 

TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite 241 

(http://www.tropomi.eu/) to identify extreme dust events within our study domain which 242 

typically occurred in spring. The TROPOMI UVAI is calculated based on wavelength dependent 243 

changes in Rayleigh scattering in the UV spectral range where ozone absorption is limited, 244 

which is able to track episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass 245 

burning.44 After checking the UVAI distributions on days with potential dust events, we 246 

determined an empirical UVAI threshold level of 0.5 (unitless) and removed the training and 247 

prediction data with UVAI values above the threshold (less than 1.2% of the data were 248 

removed). A sensitivity analysis for the UVAI threshold (different values around 0.5) showed 249 

that the identified training and prediction data associated with extreme dust events were robust 250 

(data not shown). Using UVAI to fully identify dust events associated with increased ground 251 
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PM2.5 concentrations is challenging due to two reasons: (1) as TROPOMI only provides a single 252 

snapshot of UVAI each day, it is not able to reflect the evolution of dust plumes within a day; (2) 253 

UVAI captures aerosol plumes over the entire atmospheric column, which may sometimes be 254 

less correlated with ground PM2.5. We identified a substantial dust storm that occurred within our 255 

study domain during the week of May 12th, 2019, which was not fully captured by TROPOMI 256 

UVAI but significantly affected the performance of our forecast model. Therefore, we removed 257 

all training and prediction data on that week (from May 12th to 18th, 2019) from our forecast 258 

process.  259 

 260 

We deployed our forecast framework on a personal computing platform with 8 virtual central 261 

processing unit (CPU) cores (Intel® Xeon® CPU @ 2.00 GHz). Conducting one-day forecast 262 

with a 60-day rolling period in our study domain took approximately 5 seconds, which was 263 

negligible compared to generating CTM-based PM2.5 forecast.  264 

 265 

2.6. Forecast model validation 266 

We validated our forecast model for each day by comparing the forecast predictions with ground 267 

PM2.5 observations. The validation was out-of-sample because the PM2.5 observations on the 268 

forecast days were not included in the training process.  269 

 270 

With the out-of-sample validation dataset, we designed three validation schemes: (1) an overall 271 

validation with all validation sample over the entire modeling period to reflect the overall 272 

forecast performance, (2) a site-specific validation to summarize forecast performance for 273 
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individual monitoring sites (at the 1-km grid cells), and (3) a day-specific validation to 274 

summarize forecast model performance for individual days over the modeling period.  275 

 276 

We used the out-of-sample coefficient of determination (R2), root-mean-square error (RMSE), 277 

mean absolute percentage error (MAPE), and normalized mean bias (NMB) as validation 278 

metrics. Eq. S1 to S4 show the formulae of these metrics. R2 and RMSE are commonly used 279 

metrics in PM2.5 exposure prediction; reporting them facilitates the comparison of our model 280 

performance with other work. MAPE, with standardized values, can improve the comparability 281 

of forecast performance among sites and days with different PM2.5 concentration levels. NMB 282 

can reflect the direction of the forecast bias.  283 

 284 

Additionally, we performed 10-fold spatial cross-validation (CV) to evaluate the forecast 285 

performance in regions without ground air monitors. The spatial CV randomly split the ground 286 

monitors into 10 approximately equal-sized groups; one group was treated as the test set in 287 

which the PM2.5 measurements were withheld from the forecast modeling process as well as the 288 

calculation of PM2.5 convolutional layers, while the other nine groups were treated as the training 289 

set. This procedure was repeated 10 times (i.e., for each group). We used the same validation 290 

metrics for spatial CV.  291 

 292 

2.7. Auxiliary analyses  293 

In addition to forecasting PM2.5 concentrations as numerical values, we examined our model’s 294 

ability to forecast PM2.5 pollution categories. Based on China’s air quality standards,45 we 295 

classified the PM2.5 pollution categories as clean (24-hour average < 75 μg/m3), moderate 296 
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pollution (75-150 μg/m3), and heavy pollution (> 150 μg/m3). The categorical forecast was 297 

performed by RF with the same set of predictors. We reported the accuracy of the categorical 298 

forecast with two metrics, positive predictive value (PPV), i.e., the probability that following a 299 

positive forecast result (clean, moderate pollution, or heavy pollution), that day will truly have 300 

that specific pollution level, and negative predictive value (NPV), i.e., the probability that 301 

following a negative forecast result, that day will truly not have that specific pollution level. PPV 302 

and NPV are more intuitive than sensitivity and specificity for the public to understand the 303 

categorical forecast accuracy. Eq. S5 and S6 show the formulae of the two metrics.  304 

 305 

Furthermore, we assessed how the spatial resolution of predictors affected our forecast model 306 

performance by aggregating the 1-km predictor values to 25-km means (i.e., at the original 307 

GEOS-CF resolution) centering around the ground monitoring locations (for model training) and 308 

the centers of a 25-km grid we created (for model prediction). We compared the overall 309 

validation performance and the forecast predictions of the model with 25-km predictors to those 310 

with 1-km predictors. The 1-km and 25-km models shared the same ground PM2.5 measurements 311 

as the dependent variable and validation set. 312 

 313 

We also examined another tree-based machine learning algorithm, eXtreme Gradient Boosting 314 

(XGBoost), as a reference algorithm. XGBoost has been used in high-resolution PM2.5 exposure 315 

prediction with satisfactory prediction accuracy.46 We used the same set of predictors for 316 

XGBoost. We tuned three major hyperparameters of XGBoost based on cross-validation to 317 

obtain an optimal model, including the number of trees, maximum depth of a tree, and learning 318 

rate (#). The learning rate is related to a technique to slow down the learning in the boosting 319 
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process to prevent overfitting, by applying a weighting factor for the residual error corrections by 320 

new trees when added to the model. The number of trees, leaning rate, and maximum depth of a 321 

tree were determined to be 500, 0.1, and 2, respectively. The algorithm comparison was 322 

conducted for November 2019 with the highest forecast performance for both the RF and 323 

XGBoost models. The XGBoost algorithm was based on the R package “xgboost” (Ver. 1.4.1.1).  324 

 325 

3. Results 326 

3.1. Overall validation and spatial CV performance 327 

Table 2 shows the overall model performance for five-day PM2.5 forecast over a one-year 328 

validation period from March 11th, 2019 to March 10th, 2020. We chose this validation period as 329 

it was the only period with a whole calendar year’s data allowing a fair comparison among the 330 

five forecast days (i.e., after ruling out the data over the first 60-day rolling period; otherwise, the 331 

validation period would be less than a year, which was not representative of annual variations of 332 

PM2.5). Table 2 also compares the performance of our RF-based forecast with the original 333 

GEOS-CF forecast. In general, our RF-based forecast model outperformed the GEOS-CF model 334 

for all five forecast days, in which the first two days had substantially better performance with a 335 

validation R2 of 0.76 (over 0.56 of GEOS-CF) on the first day and 0.64 (over 0.56) on the second 336 

day. Also, even though the original GEOS-CF forecast data had large biases with large validation 337 

RMSE, MAPE, and NMB, our RF-based forecast model well corrected the biases with 338 

considerably smaller values of the validation metrics. Moreover, as expected, our forecast model 339 

performance decreased with smaller R2 and larger RMSE, MAPE, and NMB when forecasting 340 

the PM2.5 concentrations over a longer term.  341 

 342 
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Table 3 shows the forecast performance of the 10-fold spatial CV for five-day PM2.5 forecast 343 

over a one-year validation period from March 11th, 2019 to March 10th, 2020. The spatial CV 344 

was based on the same validation dataset as the overall validation. Even though the ground 345 

monitoring locations where the validation was performed were withheld, the spatial CV could 346 

reach a comparable performance to the overall validation (Table 2) with slightly lower R2, 347 

slightly higher RMSE and MAPE, and similar NMB (close to zero). Meanwhile, the spatial CV 348 

performance was better than the performance of the original GEOS-CF model for all five 349 

forecast days, especially for the first two days.  350 

 351 

Figure 2 summarizes the variable importance values of our forecast models for the five forecast 352 

days. The current-day PM2.5 convolutional layer and GEOS-CF PM2.5 forecast data were the top-353 

two important variables for the first and second forecast days. On the following days, while the 354 

GEOS-CF PM2.5 was still among the top, the importance of the convolutional layer decreased. 355 

The decrease in importance is expected as the current-day PM2.5 concentrations tended to have 356 

weaker correlations with the concentrations on the following days. We also found that the 357 

forecast meteorological variables had higher importance values than the land-use variables, 358 

showing the larger contributions of these spatiotemporal variables.  359 

 360 

Figure 3 exemplifies the PM2.5 spatial distributions generated by our forecast model. Figure 3(a) 361 

shows the PM2.5 concentrations from January 25th to 29th forecasted on January 24th, 2020. 362 

January 25th, 2020 was the start of the holiday week of the Lunar New Year in China. This date 363 

was also right after the lockdown of Wuhan (outside the study domain) due to the outbreak of 364 

novel coronavirus “COVID-19”. The first day of the Lunar New Year holiday week, January 365 
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25th, appeared to have higher PM2.5 concentrations possibly associated with increased human 366 

activities and fireworks. The concentration levels then decreased over the following days. As 367 

expected, the high-level concentrations tended to be in and around the populous Fenwei Plain. 368 

Compared to the ground observations, our forecast data were shown to well capture the 369 

spatiotemporal variations of PM2.5 over the period. Figure 3(b) shows the PM2.5 concentrations 370 

from May 12th to 16th forecasted on May 11th, 2019. This is a negative example as the forecast 371 

data were not able to capture the strong dust storm event that occurred in the western part of our 372 

study domain (Gansu, Ningxia, and Shaanxi) during the period, when the ground observations 373 

appeared to be high. This example illustrates our forecast model’s limitation to capture sudden 374 

extreme events that originated outside the domain.  375 

 376 

3.2. Site-specific and day-specific validation performance 377 

The site- and day-specific validation performance for the five forecast days, with the comparison 378 

to the GEOS-CF forecast performance, is shown in Figure 4. Tables S4 and S5 summarize the 379 

site- and day-specific validation metrics, respectively. Our forecast model was shown to 380 

substantially improve the forecast accuracy and precision of the original GEOS-CF forecast data.  381 

 382 

For the site-specific validation (Figure 4(a)), our forecast model had higher R2 for the first two 383 

forecast days (with a median > 0.7 for the first day and > 0.6 for the second day) over the GEOS-384 

CF forecast model (with medians around 0.5); the validation R2 values of the two models were 385 

comparable for the following days (with medians around or below 0.5). The interquartile ranges 386 

(IQR) of R2 of our model were narrower for all five forecast days, indicating the robustness of 387 

the model. Our forecast model, with considerably lower RMSE (with medians < 30 μg/m3), 388 
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MAPE (with medians < 50%), and NMB (with medians around zero), corrected the large biases 389 

in the GEOS-CF data.  390 

 391 

For the day-specific validation (Figure 4(b)), our forecast model had higher R2 than the GEOS-392 

CF forecast model for all five forecast days. The day-specific validation had wider IQRs of R2 393 

than the site-specific validation, indicating a greater challenge of our model to forecast spatial 394 

variability of PM2.5 than its temporal variability, aligning with previous RF-based “now-cast” 395 

models.39, 40 As in the site-specific validation, our model, with substantially lower RMSE (with 396 

medians < 20 μg/m3), MAPE (with medians < 50%), and NMB (with medians close to zero), 397 

corrected the large biases in the GEOS-CF data.  398 

 399 

Figure 5(a) shows the day-specific validation MAPE values with daily-mean PM2.5 400 

concentrations (using the first forecast day as an example). The daily MAPE variation displayed 401 

a pattern: MAPE tended to increase right after a sudden decrease in PM2.5 concentrations. 402 

Figures 5(b) and (c) show the GEOS-CF wind speeds and directions (wind roses) within the 403 

study domain on days with validation R2 above its 95th percentile (i.e., good forecast 404 

performance) and below its 5th percentile (i.e., poor forecast performance), respectively. The 405 

wind roses indicate that when the forecast models had an unsatisfactory performance, the 406 

dominant wind direction tended to be northeast with higher wind speeds. In comparison, there 407 

was not an obvious dominant wind direction when the models had a good performance. The 408 

association between sudden decreases in PM2.5 and gusts of high-speed, northeast winds 409 

indicates that the northeast winds might bring relatively clean air to the study domain, therefore 410 

rapidly and temporarily eliminating PM2.5 pollution. This result reflects a reduced forecast ability 411 
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of our framework for sudden decreases in PM2.5 resulting from wind elimination originated 412 

outside the domain.  413 

 414 

3.3. Categorical forecast performance 415 

Table 4 shows the forecast performance for categorical pollution levels (clean, moderate 416 

pollution, and heavy pollution) as well as the comparison between the original GEOS-CF and 417 

our RF-based forecast models. The original GEOS-CF model could not forecast well both the 418 

moderate and heavy pollution categories due to their large biases (with extremely low PPVs). In 419 

comparison, our RF-based data substantially improved the forecast accuracy for both categories 420 

with higher PPVs. The corresponding NPVs for the clean category increased as well. The clean 421 

category had the largest number of training sample (N = ~66000; the number varied for different 422 

forecast days) with high PPVs (~90%) and NPVs (~70 - 80%) for all five forecast days. With 423 

considerably fewer training sample, the moderate- (N = ~9800) and heavy-pollution (N = ~2300) 424 

categories had lower PPVs with decreased performance for longer forecast days. The NPVs for 425 

these two pollution categories were above 90% for all five forecast days.  426 

 427 

3.4. Spatial resolution of predictors 428 

Table S6 shows the overall model performance for five-day PM2.5 forecast with 25-km predictors 429 

over a one-year validation period from March 11th, 2019 to March 10th, 2020. Figure S1 shows 430 

an example of spatial forecast concentrations derived with 1-km and 25-km predictors (the next-431 

day PM2.5 concentrations forecasted on January 24th, 2020). The overall validation performance 432 

was not substantially affected by the coarser 25-km resolution, with slightly lower R2 and higher 433 

RMSE, MAPE, and NMB than the 1-km metrics. This comparison indicates that the original 434 



 21 

resolution of the spatiotemporal GEOS-CF variables might limit our model performance even 435 

after we interpolated them to 1-km. However, the forecast concentration surfaces exhibited 436 

different spatial patterns, where the 1-km concentration surface reflected substantially finer 437 

details of PM2.5 distribution (associated with elevation, traffic, etc.) because the model took 438 

much greater advantage of high-resolution land-use information.  439 

 440 

3.5. Comparison with XGBoost 441 

Table S7 compares the forecast performance of the RF and XGBoost models in November 2019. 442 

Both models had similar validation R2 and MAPE. Although RF slightly outperformed XGBoost, 443 

the differences between the two algorithms were not meaningful. Therefore, we expect these two 444 

tree-based algorithms can be interchangeable for our proposed forecast framework. We opted to 445 

use the RF algorithm due to its easy configuration with fewer major hyperparameters and its 446 

ability to provide robust predictions without much tuning effort.  447 

 448 

4. Discussion 449 

In this study, we proposed a RF-based framework for the near-term (next five days), daily-mean 450 

PM2.5 concentration forecast at a 1-km spatial resolution. We also designed model training and 451 

validation processes that can mimic the real-world forecast scenario to minimize validation 452 

biases. All input data of our forecast framework are publicly accessible, including ground PM2.5 453 

observations, GEOS-CF PM2.5 and meteorological forecast data, and land-use parameters. The 454 

forecast framework requires minimal computational resources and can be deployed in personal 455 

computing platforms. While the framework was evaluated in China with a satisfactory number of 456 

regulatory air monitoring stations in this study, we expect that it can also be deployed in 457 
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resource-restricted environments in conjunction with a growing number of ground measurements 458 

from low-cost air quality monitors (when rigorously calibrated).34 We note that our framework 459 

provides near-real-time rather than real-time forecast as the forecast product is generated at the 460 

end of each day when ground observations are collected and reported. However, as our 461 

framework provides rapid five-day forecast (at a scale of seconds for our study domain), the 462 

potential influence on heavy pollution awareness and response due to this level of delay is 463 

minimal.  464 

 465 

The GEOS-CF PM2.5 forecast data had large systematic biases as shown in this study (Table 2) 466 

and a previous evaluation study for a number of reasons, including model representation errors, 467 

uncertainties in the meteorology, and biases arising from errors in the treatment of emissions, 468 

deposition, or atmospheric chemistry.9 The overall, site-specific, and day-specific validations 469 

showed that our statistical framework substantially improved the GEOS-CF data and generated 470 

acceptable PM2.5 forecast concentrations, especially for the first two forecast days (Table 2 and 471 

Figure 4). While the third to fifth forecast days had comparable validation R2 with the original 472 

GEOS-CF model, the large biases in the GEOS-CF data were well corrected. The spatial CV 473 

showed similar validation metrics to the overall validation (Table 3), indicating that our forecast 474 

framework was able to provide reliable forecast results in regions without ground monitors. This 475 

is a unique advantage of our RF-based framework over the widely adopted time-series forecast 476 

methods such as RNN and LSTM, which perform air pollution forecast only at ground 477 

monitoring locations based on their historical measurements. Intuitively, our modeling 478 

framework can be seen as a statistical “calibration” for the GEOS-CF forecast product by 479 

building a statistical model with “gold-standard” PM2.5 observations as the dependent variable 480 
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and the uncertain GEOS-CF forecast data as an independent variable with additional 481 

meteorological and land-use parameters as covariates, the concept of which is similar to low-cost 482 

air monitor calibration.47  483 

 484 

The variable importance rankings suggested that the GEOS-CF PM2.5 forecast data were always 485 

among the top important predictors (Figure 2), indicating that this product, although biased, was 486 

the key input of our forecast model as it provided meaningful information regarding PM2.5 spatial 487 

distribution. We opted to use the forecast data from the GEOS-CF model with a relatively coarse 488 

spatial resolution because it was openly accessible with global coverage. We showed that the 489 

forecast concentrations greatly benefited from the interpolated GEOS-CF predictors at a higher 490 

spatial resolution, where detailed spatial patterns of PM2.5 could be reflected more clearly (Figure 491 

S1). Meanwhile, we also expect that a regional CTM model at a higher spatial resolution, with 492 

proper boundary conditions, may further improve our forecast performance. According to the 493 

importance rankings, the current-day PM2.5 convolutional layer contributed to an improved 494 

forecast performance, especially for the first two forecast days. This finding proves that the 495 

PM2.5 convolutional layer is not only informative for the same-day prediction as shown in the 496 

previous studies,39, 43 but for the near-term forecast as well (due to the correlations between the 497 

current-day and future PM2.5 concentrations).  498 

 499 

Categorical pollution levels are more intuitive than continuous concentrations for public 500 

awareness and emergency response to air pollution. Although the original GEOS-CF product had 501 

large biases in forecasting categorical PM2.5 levels (clean, moderate pollution, and heavy 502 

pollution), our forecast model was able to substantially improving the forecast, especially for the 503 
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first two to three forecast days (Table 4). The clean-day forecast had the highest accuracy for all 504 

five forecast days (with PPVs close or greater than 90%) possibly because the majority of the 505 

training data were in this category. Similarly, the moderate- and heavy-pollution forecast had 506 

higher NPVs than PPVs because of the fewer training data in these categories. While the heavy-507 

pollution forecast had a PPV of ~70% on the first forecast day, the forecast accuracy decreased 508 

quickly on the fourth and fifth days. This pattern indicates a greater challenge of our framework 509 

to forecast high-level pollution over a longer term, which is worth further improvements.  510 

 511 

The rolling period, i.e., the number of previous days on which the PM2.5 measurements are 512 

included as the training sample, was a key forecast model feature. We found that although a 513 

longer rolling period was associated with an increased forecast performance (Table S2), the 514 

increase was marginal when the rolling period was greater than 60 days (Table S3). Hence, we 515 

suggest that the two-month rolling period was optimal for our study domain and period, offering 516 

satisfactory forecast performance while minimizing the number of training data included. When 517 

applying the framework to other regions and periods, the optimal value of the rolling period 518 

should be re-evaluated according to forecast accuracy.  519 

 520 

CTMs, though with higher uncertainties resulting from inaccurate emission inventories, 521 

atmospherically physical and chemical processes, and initial and boundary conditions, have been 522 

the dominant tool to forecast near-term PM2.5 concentrations with spatiotemporal complete 523 

coverage.6, 7 Few statistical efforts have been made to build more accurate spatiotemporal 524 

forecast models based on the ground truth (i.e., PM2.5 observations). Recently, Ma et al 35 and Lu 525 

et al 36 proposed statistical/empirical methods to forecast spatiotemporally complete PM2.5 526 
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concentrations. The advantages of our proposed forecast framework over these studies are two-527 

fold. First, our machine learning framework can generate more reliable spatial distributions of 528 

PM2.5 than the distributions generated by spatial interpolation (e.g., the geo-layer in Ma et al 35) 529 

and the spatial information provided by CTM (e.g., the simulation method used in Lu et al 36). 530 

This advantage has been proven in previous PM2.5 prediction studies using statistical 531 

algorithms.20 Second, we proposed a more rigorous model training process by building daily 532 

forecast models on a rolling basis. This strategy guaranteed that no future PM2.5 observations 533 

(i.e., observations beyond the current day when the forecast is conducted) were included as the 534 

training sample. In contrast, if the observations across the entire period are randomly separated 535 

into a training set and a test set, the training set is very likely to include some same-day 536 

observations from the test set. In that case, the validation performance may be improperly 537 

inflated as the same-day observations are likely to be informative of the forecast on this day 538 

(even if the same-day training and validation samples are not at the same monitoring locations, 539 

the training locations can still be informative if they are geographically proximate to the 540 

validation locations). 541 

 542 

The major limitation of our forecast framework is the limited ability to forecast PM2.5 associated 543 

with out-of-domain factors, e.g., extreme dust storms from the desert regions north/northwest to 544 

the domain and the sudden pollution elimination process associated with strong northeast winds. 545 

Without proper indicators of these out-of-domain factors, statistical models alone can hardly 546 

capture the associated pollution variations.48 While CTM is supposed to have the ability to 547 

forecast these physical processes, the global GEOS-CF model was shown to unsatisfactorily 548 

simulate these processes in this study. We expect the forecast data from regional CTMs at a finer 549 
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spatial resolution with better emission information and more accurate physical simulation 550 

processes, e.g., CMAQ, may help our framework better capture and forecast these sudden events. 551 

It is also worth exploring the use of outputs from trajectory models, e.g., the Hybrid Single-552 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model,49, 50 in improving the forecast of 553 

sudden events with our framework. Additionally, the spatial interpolation of GEOS-CF PM2.5 554 

and meteorological forecast parameters based on ordinary kriging (to oversample them to the 1-555 

km resolution) may not accurately reflect small-scale, terrain-related variations in the 556 

parameters, especially in mountainous areas. However, the potential interpolation uncertainty 557 

should have a limited influence on the PM2.5 forecast as the uncertainty is likely to be 558 

substantially smaller than the CTM-related uncertainty in these parameters. Additional effort is 559 

needed to further reduce the potential interpolation uncertainty. 560 

 561 

In summary, this study is among the first to generate high-resolution (1-km), near-term (next five 562 

days), and near-real-time PM2.5 forecast data based on a robust machine learning framework. 563 

While we showcased the forecast ability of our framework in a populated region of Central 564 

China with high-level PM2.5 pollution, we expect that the framework can be generalized to other 565 

regions and for other air pollutants, e.g., ozone and nitrogen dioxide, based on the same input 566 

data sources.51 Our proposed framework with near-real-time forecast products holds promise for 567 

improved public awareness, policy development, and emergency response regarding detrimental 568 

air pollution exposure.  569 

 570 

Supporting Information 571 
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Six equations, seven tables, and a figure, providing additional information regarding PM2.5 572 

forecast model evaluation methods and results. 573 
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Table 1: The forecast model building process by matching ground PM2.5 observations with the PM2.5 convolutional layer and GEOS-736 

CF forecast data (PM2.5 pollution and meteorology forecast) as training and prediction data. N is the rolling period (N = 60 days). Day 737 

0 is the present day, Day 1 is the next day, etc. The CTM running date is the day on which the CTM is run. The CTM forecast date is 738 

the day the forecast is made for. 739 

Forecast Day 
Date of PM2.5 

Convolutional Layer 

Training Prediction 

CTM Running Date 
PM2.5 Observation & 

CTM Forecast Date 
CTM Running Date CTM Forecast Date 

Day 1 

Day 0 

Day -N to -1 

Day -(N-1) to 0 Day 0 

Day 1 

Day 2 Day -(N+1) to -2 Day 2 

Day 3 Day -(N+2) to -3 Day 3 

Day 4 Day -(N+3) to -4 Day 4 

Day 5 Day -(N+4) to -5 Day 5 

740 



 33 

Table 2: The overall validation performance of our forecast framework (RF + GEOS-CF) and the 741 

original CTM forecast model (GEOS-CF) for the validation period of March 11th, 2019 to March 742 

10th, 2020. The rolling period was 60 days. 743 

Forecast 

Day 

N of Test 

Sample 

R2 RMSE (μg/m3) MAPE (%) NMB 

RF + GEOS-CF 

Day 1 78378 0.76 18.70 34.3 0.003 

Day 2 78398 0.64 23.07 43.2 0.008 

Day 3 78158 0.56 25.48  46.8 0.005 

Day 4 78372 0.51 26.70 48.9 -0.001 

Day 5 78372 0.47 27.81 52.4 -0.003 

GEOS-CF 

Day 1 78378 0.56 140.76 278.1 2.23 

Day 2 78398 0.56 141.46 277.3 2.224 

Day 3 78158 0.53 145.55 279.4 2.246 

Day 4 78372 0.50 144.09 280.0 2.216 

Day 5 78372 0.45 141.87 278.8 2.139 

  744 
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Table 3: The 10-fold spatial CV performance of our forecast framework (RF + GEOS-CF) for 745 

the validation period of March 11th, 2019 to March 10th, 2020. The rolling period was 60 days.  746 

Forecast 

Day 

N of Test 

Sample 

R2 RMSE (μg/m3) MAPE (%) NMB 

Day 1 78378 0.74 19.47 36.7 0.001 

Day 2 78398 0.63 23.53 45.0 0.009 

Day 3 78158 0.55 25.82 48.4 0.006 

Day 4 78372 0.50 27.02 50.5 0.001 

Day 5 78372 0.46 28.08 54.0 0 

 747 
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Table 4: The categorical forecast performance metrics of our forecast framework (RF + GEOS-748 

CF) and the original CTM forecast model (GEOS-CF), including positive predictive value (PPV) 749 

and negative predictive value (NPV), for clean (N of training sample = ~66000, varied on 750 

different forecast days), moderate-pollution (N of training sample = ~9800), and heavy-pollution 751 

categories (N of training sample = ~2300). 752 

Forecast Day 

Clean Moderate Pollution Heavy Pollution 

PPV NPV PPV NPV PPV NPV 

RF + GEOS-CF 

Day 1 94.1% 81.6% 64.9% 94.0% 71.5% 98.2% 

Day 2 92.2% 77.2% 56.9% 92.3% 54.5% 97.7% 

Day 3 91.5% 72.7% 53.8% 92.0% 44.3% 97.4% 

Day 4 90.5% 71.1% 52.3% 91.3% 43.1% 97.5% 

Day 5 89.6% 66.8% 48.4% 90.6% 33.0% 97.3% 

GEOS-CF 

Day 1 98.8% 20.6% 3.4% 82.3% 7.4% 99.7% 

Day 2 98.9% 20.7% 3.1% 81.9% 7.7% 99.7% 

Day 3 98.8% 20.6% 3.2% 81.6% 7.9% 99.8% 

Day 4 98.4% 20.5% 3.3% 81.6% 7.8% 99.7% 

Day 5 98.1% 20.8% 4.5% 82.4% 8.1% 99.7% 

753 
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 754 
Figure 1: (a) Our study domain (the dashed box) with the locations of PM2.5 monitoring sites (at 755 

the 1-km grid cells; N = 226); the shadow region shows the municipality boundary of the Fenwei 756 

Plain. (b) The workflow of our PM2.5 forecast modeling and validation processes. 757 

  758 
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 759 

Figure 2: RF variable importance values for the five forecast days. The box plots summarize the 760 

importance values of the daily models from March 11th, 2019 to March 10th, 2020. The boxes 761 

represent the 25th and 75th percentile ranges; the whiskers represent the 10th and 90th percentile 762 

ranges; the bars within the boxes represent the 50th percentiles.  763 

  764 
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 765 

 766 
Figure 3: Spatial PM2.5 forecast concentrations in two example periods: (a) January 25th to 29th 767 

forecasted on January 24th, 2020, and (b) May 12th to 16th forecasted on May 11th, 2019. The 768 
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colored dots show the observed PM2.5 concentrations at the monitoring locations, which share the 769 

same color scheme with the forecast concentrations.  770 

  771 
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 772 

Figure 4: The (a) site-specific and (b) day-specific validation performance from March 11th, 773 

2019 to March 10th, 2020. The boxes represent the 25th and 75th percentile ranges; the whiskers 774 

represent the 10th and 90th percentile ranges; the bars within the boxes represent the 50th 775 

percentiles. The RMSE and MAPE plots are on the log scale.  776 

  777 
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 778 

Figure 5: (a) Daily validation MAPE values (black dots) with domain-average PM2.5 779 

concentrations (grey bars) using the first forecast day as an example; (b) GEOS-CF wind rose on 780 

days with validation R2 > its 95th percentile (good forecast performance); (c) GEOS-CF wind 781 

rose on days with validation R2 < its 5th percentile (poor forecast performance).  782 


