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Abstract—As research advances diverse forms and missions
of aircraft, the National Airspace System (NAS) will become
increasingly crowded, limiting current communications resources
to accommodate aviation operations. Ongoing research proposes
a paradigm of airspace communications, such that resources
are autonomously and dynamically allocated via intelligent
agents; this allocation requires accurate representations of the
NAS, including the predicted positions of aircraft. State-of-the-
art research emphasizes the importance of a hybrid-recurrent
framework for trajectory prediction and compares the impact
of commonly considered weather data on prediction accuracy.
However, current research has been limited in its scope of
efforts, frequently utilizing a unique flight route, architecture,
set of weather data, and date range. This article considers the
challenges of generalizing hybrid-recurrent predictive models
for flight trajectories. Results illustrate an increase in error
variance when identical models are trained over a generalized
set of flights; this may be mitigated with careful tuning of
hyperparameters, both in the network structure and optimization
algorithms. Even so, an irreducible vertical error was identified,
resulting from the complex takeoff and landing procedures which
can not be correlated to functions of weather or additional
assumptions of aircraft behavior. Finally, the use of a test route
indicates that generalized models still do not possess sufficient
knowledge for general aircraft predictions, with mean error
increases ranging from 70-500%. These results illustrate the need
for continued efforts on improving model versatility, as well as
potential limitations for spectrum allocation near airports and
other centers.

I. INTRODUCTION

Over the next decade, the number of aircraft and the
diversity of missions handled by the National Airspace System
(NAS) are expected to grow rapidly. In large part, this will
be driven by emerging aircraft and airspace missions, such
as those related to Unmanned Aircraft Systems (UAS) and
Urban Air Mobility (UAM). It is anticipated that the oper-
ation of these systems will integrate with existing aviation
infrastructure. From a communications perspective, this poses
a significant challenge: current spectrum available to aviation
communications is limited and relies on static channel alloca-
tions, predominantly for analogue voice communication.

As a result, NASA is investigating techniques for the
autonomous allocation of aviation spectrum, such that NAS
communications will assure quality-of-service and spectral

efficiency with an increasing number of aircraft. Current ap-
proaches consider the use of artificial intelligence, specifically
deep-learning solutions, which are intrinsically data-driven [1]].
Toward this end, a key data product for spectrum allocation
is an accurate trajectory prediction. An accurate estimation
of aircraft position enables the development of key data
products for allocating resource usage. From the predicted
trajectory, direct inferences can be made toward localizing
the aircraft to a particular sector (and associated frequency),
as well as estimating the path loss between the aircraft and
ground stations. By careful analysis of predicted trajectory,
communication events might be inferred, as changes in flight
route and altitude all require coordination between the pilot
and air traffic control.

This paper revisits the challenge of 4D trajectory prediction
(latitude, longitude, altitude, and time) for commercial aircraft,
with experiments critically examining the selected data and
architectural designs in potential deep-learning approaches.
The initial work of this paper was presented in [2]], which has
since been expanded upon. The contributions of this complete
set of research includes:

o A comparison of the efficacy of weather products used in-
literature, and combinations thereof, for trajectory predic-
tion via a hybrid-recurrent neural network. These results
indicated the presence of bias when training over a single
flight route, while affirming Echo Top as the best-suited
holistic weather product for trajectory predictiorﬂ

e A comparison of current deep-learning mechanisms
which are intuitively suited to the challenges of trajectory
prediction. Specifically, the use of gated recurrent units
(GRUs), independently recurrent neural networks (In-
dRNNSs), and self-attention (SA) were considered. These
results indicated the potential for improved accuracy
using SA layers, while IndRNN may not be suited for
the complexity of decision making in this task .

o The generalization of flight data previously used: a 5-
route training dataset (approximately 1,086 flights) is
proposed, with a 6th test route (approximately 578 flights)
over a 2-week period (January 10th - 14th, 2019).
Training with this dataset improved mean accuracy of
predictive models at the cost of an increase in error



variance, particularly in horizontal error.

o The fine-tuning of model hyperparameters for prior ar-
chitectures which showed promise. This aimed to im-
prove generalization and consistent training of models;
in particular, larger recurrent hidden sizes and convolu-
tional/attention hidden depths were necessary for retain-
ing flight and weather features, respectively.

¢ An unsuccessful attempt to modify flight data for im-
proved accuracy. This is included to illustrate the chal-
lenges facing accurate altitude predictions as they re-
late to the takeoff/landing procedures, where aircraft
behaviors are adjusted to accommodate heavy conges-
tion, rather than resulting from limitations in climb-rate
modelling or changes due to weather.

o The evaluation of tuned architectures over a test flight
route, which increases mean error by 70-500%, illus-
trating the need for generalizable architectures and a
thorough investigation of transfer learning for trajectory
prediction.

A. Article Outline

The remainder of this paper is: Section [lI] presents a survey
of relevant background information, including prior research
on trajectory prediction and a brief discussion of current deep-
learning mechanisms which may be suited to this research
problem. Section describes the general formulation and
deep learning framework employed in this paper, as well as
preliminary studies of weather products and deep learning
mechanisms based on a limited number of flights collected
over a single route. Section [[V|introduces a complete training
dataset of generalized flight routes, and the challenges encoun-
tered when training and evaluating models. Section [V] attempts
to mitigate the increased error via model tuning and adjust-
ments to existing flight information; the section concludes by
evaluating these adjusted approaches over a test route excluded
from training data. Finally, research conclusions and further
steps are discussed in Section

II. STATE OF THE ART

This section surveys relevant research to the trajectory
prediction challenge. Four papers are briefly discussed, which
significantly contributed to the form of trajectory prediction
considered by this paper. Following this, deep learning mech-
anisms of interest for this task are presented.

A. On Trajectory Prediction

In [3]], the authors sought to develop a model that could
correlate historic flight data with surrounding weather data. A
Hidden Markov Model was developed, where flight coordi-
nates were associated with those of the NOAA Rapid Refresh
(RAP) dataset. Using the defined trajectory as observed emis-
sions and regions of RAP coordinates as hidden states, the
HMM was trained. 594 4D trajectories were collected for one
flight (DAL2173) with identical arrival and departure locations

I Contributions were initially presented in [2]).

(ATL to MIA). Ayhan and Samet were the first to formulate a
complete trajectory prediction model and proposed the notion
of surrounding weather data (feature cubes), a concept which
has widely defined later model developments. The efficacy of
this approach has yet to be matched, however it is unclear if
the reported accuracy is a result of the learning approach or
the heavy constraints placed on flight data collection.

A more complex, deep generative network is presented in
[4]. At its core, this framework generates Gaussian Mixture
Models using a sequence-to-sequence paradigm for Long
Short-Term Memory (LSTM). The predictions of these models
are then filtered using a variety of techniques (Adaptive
Kalman Filter, Beam Search, Rauch-Tung-Striebel Smoother).
3D Flight plans and 4D flight trajectories were recorded for
1,679 flights with identical arrival and departure airports (IAH
to BOS). Weather data were collected from the NOAA North
American Mesoscale (NAM) database, specifically Westerly
and Southerly (U/V) Winds, Air Temperature, and Convective
Weather. While the results were not as compelling as those
in [3]], Liu and Hansen present several significant concepts,
including a sequence-to-sequence paradigm and efficient meth-
ods of organizing and accessing weather data. Several reasons
for these poorer results may be inferred: foremost, the NAM
database is limited in resolution, as each data point is inter-
spaced at 12 km and refreshed every 6 hours; the selected
flight is infrequent, and collecting the number of flights in
this paper may have required a significant range of seasons and
consequent weather patterns; finally, the model itself may have
been unnecessarily complicated by relying on the repeated
generation and sampling of Gaussian Mixture Models.

Taking inspiration from the previous paper, the Pang, Hao,
Hu, and Liu presented a convolutional-LSTM hybrid network
to predict aircraft trajectories [5]]. This model presents a basis
for hybrid-recurrent networks: weather features are extracted
and represented through a series of convolutional and dense
layers, while supplemented with the aircraft location prior to
the provided cube. The combination of abstracted weather
data and prior aircraft position are fed into an LSTM layer
to predict the aircraft’s position. LSTM layers were selected
for recurrence to mitigate the vanishing gradient challenge
of training traditional Recurrent Neural Networks (RNNs).
Feature cubes were generated from Echo Top measurements,
and flight data was collected for a total of 2,528 flights of
identical arrival and departure points (JFK to LAX) over
the dates November 1st, 2018 through February 5th, 2019.
Initial research focused on 3D trajectory predictions (ignoring
altitude), and reported efficacy in terms of improved error
(described by Euclidean Norms) over that of the flight plan.
Pang et al. reported the accuracy of 47% of all flight plans
were improved by their predictive model, on average by
12.3%. While this efficacy appears satistying, this relative
metric is not directly comparable to other research; the two
papers prior reported efficacy in terms of a horizontal and
vertical error (units of nautical miles and ft), with no reference
to the error of related flight plans. As a result, this paper should
be more critically contextualized in other research.

Finally, Ma and Tian discuss the prediction of aircraft based
solely on prior Automatic Dependent Surveillance-Broadcast



(ADS-B) data [6]. The research considers single and multi-
point forecasting of 4D trajectory using sequences of prior 4D
data, as well as ground speed and heading information. Three
models are presented for this task, one convolutional (CNN),
one recurrent (LSTM), and one CNN-LSTM hybrid. The
results reinforce the usefulness and importance of prior design
choices in hybrid-recurrent networks, while also offering some
qualitative understandings and intuition. Data were collected
for approximately 397,000 flights from Qingdao to Beijing,
providing the largest dataset of all considered in existing
research. However, again, the metrics reported in this paper are
not directly comparable to those described in prior research;
those presented here are standard error metrics within deep
learning (Mean Absolute Percentage Error, Mean-Squared
Error, etc.), but not relevant to describing the usefulness of
a trajectory prediction model.

Over the course of the existing body-of-research, several
individual advances have been made; a core formulation and
approach illustrated the viability of machine learning for this
task in [3[]; An initial deep learning framework was developed
in [4]; A more robust deep learning approach was formulated
in [7] and [5], while the architecture was validated with [6],
which provided a starting point for this research. However,
a clear synthesis of each contribution cannot be directly
made. Each contribution considered different datasets, both
in their selection of weather products and in collecting along
singular, distinct flight routes. Additionally, contributions often
demonstrated the efficacy of their approach with different
metrics. To advance the state of aircraft trajectory prediction,
two major contributions are noted in this research: 1) the
generalization of the predictive task, experimenting with a
variety of datasets, flights, and models to contextualize other
research, and 2) a search for an accurate, generalizable deep
learning model that suits this task.

B. Model Architectures

Beyond those mentioned in prior research, three components
have the potential to improve current hybrid-recurrent designs.
This section presents these components and a modular hybrid-
recurrent framework.

Similar in concept to LSTM, Gated Recurrent Units (GRUs)
mitigate the issue of vanishing gradients with the addition of
gating mechanisms to regulate input and retained information.
However, their implementation accomplishes this task with
fewer parameters and hidden states than LSTM, theoretically
allowing for faster training and improved performance. The
two cells perform similarly on a variety of tasks, often without
a clearly optimal choice [§]].

As another technique for recurrence, Independently Re-
current Neural Networks (IndRNNs) resolve the vanishing
gradient problem without the addition of gating mechanisms,
resulting in a network with fewer parameters and potentially
greater memory [9]. In traditional recurrent neural networks
(and gated designs such as LSTM and GRU), the hidden states
associated with a recurrent layer are connected to each cell in
the layer; in contrast, IndRNN proposes a restriction on the
connections, such that each cell in a layer is connected to only

(a) Traditional RNN

(b) IndRNN

Fig. 1. Comparative Visualization RNN layers
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Fig. 2. Functional Diagram of Self-Attention Layer

one hidden state. This approach prevents hidden states from
being harshly penalized and neglected, solving the vanishing
gradient problem so long as a sufficiently small optimizer
learning rate is selected.

While attention mechanisms have existed for years in the
field of natural language processing, their application to other
fields (such as computer vision) has only been considered
recently [10]. For our discussion, soft self-attention (SA) is
considered as in Figure [2] and equations [I] through [5] [I1].
A complete data sequence is received and transformed into
key, query, and value datasets. In the discussed attention, a
sense of locality is embedded in the data via softmax layer,
whose input is a matrix multiplication of transformed key and
query datasets. Findings indicate that self-attention is a capable
supplement following convolutional layers when extracting
patterns from 2D data [10].
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Fig. 3. Framework for Hybrid-Recurrent Network

III. SYSTEM MODEL

For this research, trajectory prediction is treated as a
sequence-to-sequence translation problem: a complete se-
quence of flight plan information and weather data following
that flight plan (feature cubes) are provided as inputs to
the models, which predict the complete flight trajectory. The
architecture of prediction abstracts from the hybrid network of
convolutional and Long Short-Term Memory (LSTM) layers
to a general hybrid-recurrent architecture, unrolled in Figure 3]
Feature cubes are abstracted through a sequence of extraction
layers (convolution or self-attention), as well as two dense lay-
ers. The resulting abstraction is fed alongside the anticipated
position from the flight plan into a recurrent network (LSTM,
GRU, or IndRNN). The output of the recurrent network is
treated as an estimate (Y) of the actual trajectory (Y'), which
can be used in estimating loss and updating model parameters.

The preprocessing of feature cubes, flight plan, and flight
trajectory information all follow the algorithms developed
in [5], with two additions: weather data which may vary
by altitude is also collected one level above and below the
current altitude (generating a 20x20x3 cube for each flight
plan point). Additionally, all data have been linearly inter-
polated at a one-minute interval; this restricts the data to a
useful format for recurrent neural networks, where entries are
regularly-dispersed and the total sequence length is within the
experimental memory constraints of LSTM/GRU [9].

This framework for trajectory prediction is intentionally
broad to allow for both its data inputs and model components
to be assessed for their fitness to the general challenge. The
following subsections analyze both aspects of the framework
over a limited dataset prior to the main contributions of this
work. Flight and weather data were limited to a single route,
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Fig. 4. Visualization of collecting a single feature cube (top) and set of feature
cubes (bottom, blue) along a filed flight plan (bottom, red)

KLAX-KJFK, over the two-week period of January 10th-24th,
2019; this resulted in a total of 379 available, valid flights. For
all experiments, the setup consisted of

o A workstation using Ryzen 1950X processor and dual
Nvidia RTX2080 graphics cards, with Ubuntu 20.04 LTS
serving as its operating system.

o Data preprocessing and deep learning models as python
projects in and [[13]].

o Flight and Echo Top data collection are accomplished
via access to NASA’s Sherlock Data Warehouse, which
maintains a repository of data for air traffic management
[14].

o Additional weather data are collected directly in from
NOAA High Resolution Rapid Refresh (HRRR) cloud
portals or in coordination with Massachusetts Institute
of Technology Lincoln Labs Corridor via their Corridor
Integrated Weather Services (CIWS) .



A. Data Items

The general framework emphasizes the use of feature cubes,
but not what features might be captured by the cubes. This
section discusses five potential weather features based on their
use in-literature, then presents a brief assessment of their
effectiveness for supervised deep learning problems.

Table [[] summarizes the weather data sources and popular
products that have been previously utilized in literature. Each
source provides gridded data at a regular update interval, offer-
ing sufficient weather information to support flight prediction.
In order to alleviate potential forecasting error, all weather data
is collected based on their current (actual) measurement. Data
sources include Corridor Integrated Weather Service (CIWS),
a set of radar-based weather features that are tailored to
air traffic management tasks; NOAA High Resolution Rapid
Refresh (HRRR) and Rapid Refresh (RAP), hourly measure-
ments of 14 high-impact weather features; and NOAA North
American Mesoscale (NAM), a general database of over 60
measurements taken to track changes in climate. Because of
their maximized spatial and temporal resolution for respective
weather products, CIWS and HRRR are used in analyzing
relevant weather products.

TABLE I
SUMMARY OF WEATHER DATASETS

Weather Used Relevant Update Resolution
Database in Variables Period

Corridor 150 Vertically Integrated Current 1.85 km
Integrated Liquid (VIL) 2.5 Min (1 nmi)
Weather Forecast

Service Echo Top 5 Min

(CIWS)

North [4] Humidity 6 Hours 12 km
American Temperature (6.48 nmi)
Mesoscale Wind Speed (U)

(NAM) Wind Speed (V)

Rapid [3] 1 Hour RAP

Refresh 13 km

(RAP) Humidity (7.01 nmi)

Temperature

High Wind Speed (U) HRRR
Resolution Wind Speed (V) 3 km

Rapid (1.61 nmi)

Refresh
(HRRR)

Assessing the effectiveness of weather products and combi-
nations thereof is conducted in two parts: a correlation analysis
of products of interest, and supervised training of an identical
neural network using varied weather data. Candidate weather
data includes Echo Top and Vertically Integrated Liquid (VIL)
products generated by CIWS, as well as atmospheric temper-
ature and westerly (U) and southerly (V) wind components
from NOAA HRRR. To reduce the number of combinations
considered, a limited cross-correlation of weather products is
first performed; the results of this cross-correlation determined
which combination of weather products supplement one an-
other sufficiently to justify the computational cost of providing
additional data to the models. From here, the individual
weather products and selected combinations thereof will be
used to train a hybrid-recurrent model of fully convolutional
layers and a single LSTM layer.

Figure [5] presents the results of the limited cross-correlation.
Limitations stemmed from two factors: a difference in cover-
age area and fidelity between the two weather sources (CIWS
and HRRR), as well as the computational complexity of a com-
plete cross-correlation (shifting over the complete 2D space of
the data). As a result, the figure represents only a cropped-and-
interpolated portion of the continental United States coverage,
with only a direct overlap of the two regions considered. These
results should therefore be treated as indicative, but not wholly
representative of the relationships between products.

After correlating the selected products, Echo Top and VIL
data were each found to be weakly correlated to other prod-
ucts; this is likely due to the sparsity of Echo Top and VIL
data at any given time. By contrast, Temperature and Wind
Components were all moderately correlated with one another;
as a result, combinations should predominantly consider only
one of the three HRRR products. Therefore, the model train-
ing will consider nine combinations of datasets: Echo Top,
VIL, Temperature, U Wind, and V Wind Component will
be considered individually; Combinations will also consider
Echo Top and VIL, Echo Top and Temperature, and VIL and
Temperature. Finally, Temperature and V Wind Component
will be tested in combination, to verify the assumption of
performance based on their higher correlation.

After training the products and product combinations above,
prediction results are summarized in Table with percent
improvement comparisons drawn against Echo Top, which is
treated as the default due its use in [5]. Several trends can
be observed: Without considering combinations of multiple
products, Echo Top provides the lowest horizontal error; this
is expected, due to the nature of the measurement being
tailored to air traffic management, alongside its sparsity. VIL
performed notably worse than most products, despite its spar-
sity and correlation to convective weather. This reflects how
VIL represents only the presence of liquid, not whether it is
indicative of humidity, precipitation, type of precipitation, etc.
- not all of which require a flight reroute. While no NOAA
data product could provide an improved horizontal accuracy,
the use of any of the three provided degrees of improvement
to vertical accuracy predictions - likely because of data being
altitude-varying. Notably, V Wind Components provided the
greatest improvement in vertical accuracy; it is believed this
reflects a skew in flight data, where a notable percent of
arrivals and departures occurred with a significant north/south
component (parallel to V Wind), while the en-route flight had
a majority east/west component (parallel to U Wind).

No combinations of products provided sufficient improve-
ments in accuracy to justify additional data processing and
model complexity. However, challenges with preprocessing,
specifically effective data normalization, may have inhibited
the usefulness of some products. In particular, prior experi-
ments without normalizing temperature data yielded horizon-
tal accuracies much closer to those of Echo Top, making
temperature a viable choice for predictive modelling. For
the remainder of this paper, Echo Top data will be uses in
the preprocessing and generation of feature cubes for model
inputs.
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Fig. 5. Histograms of Cross-Correlation Coefficients Ranging (0, .5)
TABLE II

SUMMARY OF WEATHER PRODUCT PERFORMANCES

Product(s) Horizontal Error | Vertical Error Improvement over Improvement over
Echo Top Echo Top
(/o in nmi) (p/o in ft) (WHoriz/OHoriz as percent) (v ert!/overt as percent)
Echo Top 50.017 1160.07 0 0
48.854 1420.26 0 0
VIL 55.171 1230.23 -10.304 -6.048
67.276 1514.95 -37.708 -6.667
T™MP 52.983 1130.72 -5.931 2.530
60.901 1399.41 -24.659 1.468
U Wind 50.560 1128.17 -1.085 2.749
(E/W) 54.588 1420.57 -11.738 -0.022
V Wind 50.167 1097.16 -0.29 5.422
(N/S) 51.376 1390.80 -5.164 2.074
ET + VIL 50.670 1118.72 -1.305 3.564
57.596 1365.45 -17.895 3.859
ET + TMP 50.194 1156.50 -0.354 0.307
51.937 1424.41 -6.312 -0.292
VIL + TMP 52.520 1248.81 -5.005 -7.650
65.513 1558.70 -34.101 -9.748
TMP + V Wind 49.578 1128.25 0.877 2.743
51.764 1430.29 -5.957 -0.707

B. Deep Learning Mechanisms

The framework also proposes broader terms for the compo-
nents of the deep learning architecture, allowing the consid-
eration of model components excluded from prior research
and discussed in Section [l This section considers a brief
assessment of these deep learning mechanisms by training

models varied components with comparable hyperparameters
over identical data. This section only considers a direct imple-
mentation of related deep-learning mechanisms with assumed
hyperparameters; a more in-depth exploration of hyperparam-
eters and overfitting is presented in the main contributions of
this work (Section [V-A).

Extending the general form of Figure [3] models were



TABLE III
DEFAULT MODEL PARAMETERS

Parameter Value
[6x6, 3x3, 1x1]

Parameter Description
Convolution Kernel Sizes

Convolution Stride Lenths [2,2,1]
Convolution Filter Sizes [1, 2, 4]
Attention Output Dimensions [128, 36, 36]

LSTM, GRU: [16, 3]
IndRNN: [16, 97]
Recurrent Input Size 6
Recurrent Depth GRU, LSTM: 1 or 2 Layers
IndRNN: 2 or 3 Layers
2x10~1

Dense Layer Sizes

Optimizer Learning Rate

defined by the selection of weather feature extraction mecha-
nism, recurrence mechanism, and number of recurrence layers.
These parameters were assumed and modified from the net-
work layout in [3]], and are summarized in Table[ITI] Extraction
mechanisms are defined in a depth of three layers, and include
a purely convolutional design, a purely self-attention design,
and a convolutional design with self-attention serving as a
final layer. Recurrence techniques included LSTM, GRU, and
IndRNN layers, always with a hidden state size of 100. Finally,
the depth of recurrence was limited to 1 or 2 layers. For
IndRNN cells, an additional layer was included to allow for
information sharing between neurons. All models were trained
on Echo Top feature cubes and flight data. All models were
initially trained with 379 flights from Los Angeles to New
York, collected over the two week period of January 10th to
24th, 2019.

From the above setup, few conclusive results were drawn.
Results are considered inconclusive due to prior tests yielding
large variances in error. Table is presented to indicate
preliminary results and a general format for comparing ef-
fectiveness of architecture design, where horizontal and ver-
tical error are standard metrics for general flight trajectory
prediction error, and percent improvements are prescribed in
comparison to the flight plan and predictions of a CNN-
LSTM design of 1 layer (a model inspired from [5] and
used as a baseline for this task). The table does not detail
all possible model combinations, with the intent that those
presented would sufficiently describe the trends in usefulness
of different recurrent and extraction components.

Despite the aforementioned limitations, one trend still tends
to appear, which is the usefulness of self-attention in this
task. The use of self-attention, while potentially incrementing
performance as a supplement to convolutional layers, notably
improved performance of models when behaving as an outright
replacement for convolutional layers. The improvements via
fully attentional extraction may be caused by the globality of
self-attention: since self-attention layers consider all features
in relation to each other (as opposed to a fixed number
of neighbors in one sequence element), attention mecha-
nisms may be able to define complex filters that consider
the interactions of data between each feature cube in the
provided sequence. Consequently, the use of self-attention as
a supplement to convolutional networks may be inhibited by
convolutional extraction techniques: since convolutional layers
can only extract features within each cube individually, the

patterns extracted may be counterproductive from a more
global perspective.

An additional point should be made, that IndRNN per-
formed notably poorly. When comparing results of IndRNN-
based models, error was notably worse than that of the flight
plan, and moreso in comparison to the baseline model. This
may be a reflection of implementation challenges; the selected
hyperparameters may have been limiting for the model. How-
ever, due to implementation challenges, this mechanism will
be abandoned in remaining sections; despite being the least
computationally-complex of the recurrent mechanisms tests,
they required significant training time as a GPU-accelerated
variant of the mechanism was not supported for the selected
version of PyTorch at the time of the experiments.

IV. GENERALIZING THE ROUTES OF TRAJECTORY
PREDICTION

A notable gap from research, particularly highlighted when
comparing weather products, is the potential bias of model
training toward a specific route. To-date, trajectory prediction
research has focused on individual routes, split into a training
and validation dataset. This has the potential for concern over
several reasons

o Certain weather information may correlate strongly with
predicting particular routes or regions of the airspace,
causing the model to fit toward patterns that only partially
predict flight behaviors.

o As a corollary, certain airspace regions and seasons may
not significantly affect flight routes, preventing models
from learning reroute behaviors at larger scales. This may
particularly be the case for flights avoiding coastal regions
of the United States or flights of shorter duration (less
than 2 hours).

e Model architectures may rely on learning features of a
route, rather than general features and changes in flight
behavior.

e Current architectures may therefore run into memory
constraints resulting in large errors as a result of dealing
with unknown routes.

To address this limitation, a generalized set of training and
validation data was created. Five routes were selected for
training and validation, as summarized in Figure [6] and Table
[Vl Routes were selected to vary the general heading, duration,
and coverage of flights within the continental United States.
Where possible, routes were also selected to match with those
used in prior research.

Directly extending the work in [2], 3 models were selected
with the same sets of hyperparameters (CNN-LSTM, CNN-
GRU, and SA-LSTM, each with a single recurrent layer) and
trained over 500 epochs. Training was conducted with a 4-
fold cross-validation to reduce the potential bias in data and
variance from random initialization. After model training was
completed, the evaluation of models was considered in two
aspects: the performance of the models on their generalized
validation sets, and the performance of the models specifically
on validation flights from New York to Los Angeles (approx-
imating comparisons to [2]).



TABLE IV
SUMMARY OF SELECT MODELS’ PERFORMANCES

Model Horizontal Error | Vertical Error Improvement over Improvement over
Flight Plan CNN-LSTM1lay
(u/o in nmi) (Wlo in ) | (WHoriz/ivere as percent) | (WHoriz/ivers as percent)
CNN-LSTMlay 63.5584 1160.27 39.5920 0
26.8905 1500.83 64.0127 0
CNN-LSTM2lay 60.9995 1167.39 42.0241 4.0260
29.2265 1551.46 63.7919 -0.6135
CNN-GRU1lay 59.8954 1120.04 43.0735 5.7632
28.0559 1399.75 65.2606 3.4676
CNN-GRU2lay 47.2278 1156.16 55.1131 25.6938
22.9868 1332.40 64.1404 0.3548
CNN-IndRNN2lay 119.1314 1219.99 -13.2263 -87.4361
63.1298 1682.68 62.1607 -5.1463
CNN-IndRNN3lay 122.6245 1219.86 -16.5463 -92.9320
61.8804 1682.68 62.1645 -5.1355
CNN+SA-LSTM1lay 59.3252 1178.57 43.6154 6.6603
29.5847 1546.38 63.4454 -1.5763
CNN+SA-LSTM2lay 60.1143 1152.56 42.8654 5.4187
28.4656 1537.15 64.2520 0.6651
SA-LSTM1lay 40.9453 804.73 61.0843 35.5785
23.7972 1054.89 75.0405 30.6436
SA-LSTM2lay 56.2102 990.82 46.5760 11.5613
25.1934 1294.62 69.2687 14.6051
S o ol N of flight routes improved the average accuracy while increasing
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Fig. 6. Collection of all training/validation (black) and test (red) flight routes

TABLE V
DESCRIPTION OF TRAINING/VALIDATION (BLACK) AND TEST (RED)
FLIGHT ROUTES

Route Heading | Nonstop Time Used Flights
in (100 / 14 days)
KJFK-KLAX WSW 5.5 Hrs 171, 151 2,963 / 494
KIAH-KBOS NE 3.75 Hrs [4] 283739
KATL-KORD NNW 1.75 Hrs 1,892 /310
KSEA-KDEN SE 2.5 Hrs 1,463 / 237
KATL-KMCO SSE 1.75 Hrs [3] 2,258 / 388
KORD-KLGA E 2.0 Hrs 3,247 1 577
Total (Train) 8,859 / 1,468
Grand Total 12,106 / 2,045

A. Results

The results in Table summarize the trajectorywise hori-
zontal and vertical error of three models discussed in Section
I1I-B| as well as the error of evaluating their generalized
equivalents over the total validation set and subset of validation
flights following the same original route.

In general, training identical models over a generalized set

sidering the performance of generalized models on the original
flight route. This is likely to indicate the current limitations
in pattern learning and prediction related to the networks, and
may be an indicator of necessary hyperparameter tuning.

All models trained over the generalized dataset predicted
notably worse altitudes than initial models - however, altitude
predictions follow the same prior divergence in error mean
and variance when considering the subset of initial flights. The
increase in error over the generalized set is most likely related
to the varied durations of flights and subsequent challenges
in predicting altitude: recall that the original flight (KJFK-
KLAX) is also the longest of all flights in the dataset, and
therefore likely to spend the largest percent of its duration at a
constant cruising altitude. Consequently, the models evaluated
over the generalized dataset are more heavily penalized for
inaccurate predictions of takeoff and landing altitude behav-
iors. These limitations might be absolved with hyperparameter
tuning (improving accuracy for less-frequent altitude changes
during the en-route portion of a flight), but require closer
investigation to understand.

Despite being the most apparently-promising model dis-
cussed in [2]], the final model (combining self-attention and
long short-term memory) encounters the most difficulty with
model generalization. While it is possible that attention mech-
anisms are not well-suited to the task of trajectory prediction,
it is believed that the assumed layer sizes and dimensionality
assigned to attention mechanisms in this task may be at-fault.
As a result, it is both possible and likely that the SA-LSTM
model lacked the necessary complexity to generalize over a
larger set of data, much moreso than prior models based on a
small body of prior research.

While suffering from a larger percentage increase in error
variance, CNN-GRU remained the most consistent predictive



TABLE VI

SUMMARY OF DATA GENERALIZATION MODEL PERFORMANCE

Case Horizontal Vertical Case Case Horiz. Error Vertical Error
Error in Error in Horizontal Vertical Improvement Improvement
121 121 Error Error
(p/o in nmi) (/o in ft) (/o in nmi) (/o in ft) (/o as percent) (p/o as percent)
CNN-LSTM 63.5584 1160.27 48.5837 1525.08 23.561 -31.442
Total Data 26.8905 1500.83 63.1849 2121.23 -134.971 -41.337
CNN-LSTM 63.5584 1160.27 29.5634 711.24 53.486 38.700
KJFK-KLAX 26.8905 1500.83 67.8611 1673.58 -152.361 -11.510
CNN-GRU 59.8954 1120.04 44.5988 1486.57 25.539 -32.725
Total Data 28.0559 1399.75 40.8868 2032.41 -45.733 -45.198
CNN-GRU 59.8954 1120.04 26.3954 686.36 55.931 38.720
KJFK-KLAX 28.0559 1399.75 46.1633 1597.22 -64.541 -14.107
SA-LSTM 40.9453 804.73 53.1642 1565.15 -29.842 -94.493
Total Data 23.7972 1054.89 67.7009 2183.16 -184.49 -106.956
SA-LSTM 40.9453 804.73 33.4991 732.47 18.186 8.980
KJFK-KLAX 23.7972 1054.89 72.7729 1708.79 -205.804 -61.987

model. This may be related to fewer internal states associated
with each cell - forcing the model to learn meaningful inter-
nal representations. This earliest indication will be revisited
throughout model evaluations.

V. MITIGATING GENERALIZATION VARIANCES

Noting the trends in increased error variances relating
to the larger set of flight routes, this section presents two
actions taken to improve model performance over a more
generalized dataset. First, model tuning is conducted to address
potential overfitting and expand the set of features retained by
the model. Noting the fundamental the irreducible limits of
vertical error over the course of tuning, adjustments to the
flight plan are attempted. Finally, these adjusted models and
data are used to evaluate the effectiveness of of deep learning
approaches on an unused test route from O’Hare International
Airport to LaGuardia International Airport.

A. Model Hyperparameter Tuning

Based on increases in error variance, the prior model
architectures (CNN-LSTM, CNN-GRU, SA-LSTM) are more
closely developed towards generalization, along with a fourth
(SA-GRU) included for completeness. These hybrid-recurrent
designs were progressively tuned for a number of parameters,
approximately visualized in Figure Hyperparameters are
broken out into four groups: those specifically related to
potential overfitting, those relating to the complexity of the
weather feature extraction, those relating to the complexity of
recurrent memory and feature learning, and those relating to
control of the optimizer. As each group of parameters was
appropriately tuned, model parameters were incorporated into
the subsequent experiments.

Several measures were taken to insure the repeatability of
each experiment (and therefore significance of related results).

o To minimize the observation of improvements related to
randomness in model training, each model is initialized
with constant weights and biases of 0.5.

« All random seeds are initialized to a global constant.

o Algorithms within PyTorch are forced to use determin-
istic implementations. This is particularly important for

convolutions, where nondeterministic implementations
are used by default to improve computing speeds.

Additionally, some parameter selections remained constant
for all tuning experiments. For all experiments leading up to
optimizer selection and tuning, RMSProp was used with a
learning rate of 1 % 10~%. To prevent potential training errors
related to zero-padding, a batch size of 1 was used for all
experiments as well.

1) Overfitting Parameters: Initially, three hyperparameters
related to overfitting were adjusted, including the dropout rate
p, weight regularization L2 penalty (referred to as weight
decay in PyTorch libraries), and use of batch normalization.
Each combination of parameters was tested in isolation with
a CNN-LSTM architecture following parameters in Table
training over 200 epochs. While the use of batch normalization
between each layer could be discretely tested, regularization
penalties and dropout rates required a specified set of rates
to test: specifically, dropout rates included 0%, 0.01%, 0.1%,
1%, 5%, 10%, and 20%; regularization penalties included O,
1%1078,1 %1075 1% 1072,1 % 107%,1 % 1073,1 % 1072,
and 1 % 101, It should be noted that dropout layers were
selectively incorporated into the model, specifically before
the final extraction layer, first recurrent layer, and after each
subsequent recurrent layer, as illustrated in Figure [7] Results
from this portion of testing indicated the importance of the
minimal incorporation of dropout and regularization (with
selections of 0.01% and 1 * 10*8), while batch normalization
wholly impaired model training.

2) Extraction Sizes: Weather extraction hyperparameters
strictly considered the size of feature retention in the hidden
(ko) and output (ki) extraction layers, which were tested
on both CNN-LSTM and SA-LSTM models with recurrent
input sizes of both 6 and 10. It is assumed these parameters
meaningfully transfer to GRU recurrent layers. While this size
parameter can be directly treated as the number of filters
in convolutional layers, attention layers treat this parameter
analogously. Instead, the size represents a multiple of the total
output features of the layer - an attempt to retain an equivalent
number of features in each model. For each model, 200 sample
models were constructed with layer sizes randomly selected
between 1 and 32; each sample was trained over 50 epochs
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Fig. 7. Approximate visualization of architecture hyperparameters

before all samples were compared for common trends. Based
on this test, convolutional models performed best with larger
hidden and output sizes, while attention models benefitted
from large hidden sizes but significantly-reduced output sizes;
all models performed better with the smaller recurrent input
size of 6. Convolution sizes of (28, 22) and attention sizes of
(31, 8) were selected.

3) Recurrent Depth and Size: Expansion of the recurrent
portion of the model came under consideration to increase
the number of features and potential of compression / re-
tention of flight behaviors and corresponding changes in
trajectory. Recurrent hyperparameters considered both a total
recurrent depth (n) and hidden size of each layer (h). For
this experiment, each set of hyperparameters must be tested
individually for CNN-LSTM, CNN-GRU, SA-LSTM, and SA-
GRU models, as each model is likely to have learned different
classes of weather features and each recurrent type require
different parameters to retain said features. For completeness,
a grid search was conducted: recurrent depths of up to 4
layers were considered, while hidden sizes varied up to 1000
cells in increments of 50. Because recurrent networks require
the largest amount of hardware resources (and therefore the
longest training time), the experiment was limited to 20
epochs. Based on the results of this experiment, both attention
models were found to require an additional recurrent depth
(2) for optimal performance, with a notably larger hidden
size (600). Neither convolution model significantly benefited
from the added recurrent depth (and consequent computational
cost), though still notably improved from increased hidden size
(LSTM: 1000, GRU: 650).

4) Optimizer Selection and Decay: Finally, selection of an
appropriate optimization approach was considered. Optimizer

Laver 3
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Extraction
Layer 1

Cube,,

Layer 3
Extraction
Layer 2
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Cube,

Layer 3
Extraction
Layer 2
Layer 1

Cubey,

choice played a particularly important role due to concerns of
generalization; research so far has relied heavily on adaptive
optimizers, which have been found to poorly generalize mod-
els for some tasks [[16]. While this concern had not appeared
in validation tests up to this point, there was still interest in
considering a wider array of optimization algorithms prior
to finalizing model tuning. This subsection is broken into
two experiments: the first of which considers selection of
an optimization algorithm, the second of which considers the
scheduling of a limited set of algorithms.

For the first experiment, a total of 8 optimizer options
were initially considered for CNN-LSTM models, assuming
transferrability. These optimizers included Stochastic Gradient
Descent (SGD), SGD with momentum, SGD with Nesterov
momentum updating, Adam, Adam with default parameters
(no weight regularization), Adadelta, Adagrad, and RMSProp.
With exception to each SGD variant, each optimizer utilized
its default learning rate in the PyTorch library. for each
SGD variant, the optimal learning rate and momentum (if
applicable) were determined by grid search in a similar process
as the prior subsection. These parameters are summarized
in Table For each optimizer, a CNN-LSTM model was
trained over 250 epochs with 5 random initializations.

The results of this initial attempt are illustrated in Figure
[I0] with the average of each model’s training sessions plotted.
While it is clear that SGD variants will not achieve the same
degree of accuracy with enough brevity to be sufficient for
this problem, several challenges came with final training of
models, particularly insuring the convergence of GRU models.
This lead to experiments with decaying the learning rates of
select optimizers.

For the second experiment, optimizer scheduling considered
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TABLE VII
DEFAULT PARAMETERS OF TESTED OPTIMIZERS
Optimizer Learning Weight Momentum
Rate Regularization
SGD 0.01 1%10°6 0.0
SGD+Momentum 0.01 1%10° 6 0.5
SGD+Nesterov 0.01 1%1076 0.5
Adam 0.001 1%10°6 N/A
Adam with
Initial 0.001 0.0 N/A
Parameters
Adadelta 1.0 1%10°F N/A
Adagrad 0.01 1%10°6 N/A
RMSProp 0.0001 1%10~F N/A

a simple learning rate decay. Three decay rates (0.1, 0.5,
0.9) and step sizes (10, 30, 50 epochs) are considered, while
each optimizer (SGD, Adam, RMSProp) is initialized with
a learning rate of 0.01. Each model is initialized randomly 3
times, and the average final training and validation losses were
compared.

5) Final Model Tuning and Results: Based on the set of
above experiments the complete hyperparameters for each
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model are listed in Table [VII} With these tuned models, each
was again trained over the 5-flight dataset over 300 epochs
and a 4-fold cross-validation. The average of each model’s
validation scores are listed in Table m Additionally, the
number of failed folds for each tuned model (how many of
the 4 cross-validation folds failed to converge and therefore
were excluded from the results) is provided.

Overall, the results illustrate an improvement in consistency
- across all models, horizontal errors improved and achieved
similar final results; albeit weakly, this holds for vertical error
as well. As a consequence, the previously-noted advantage
of CNN-GRU seems to be minimized. For horizontal error
the improvements are most pronounced, with largest gains
in horizontal variance - a particular concern point from data
generalization. While vertical error did improve on accuracy
and consistency, its achievements are still below what might
be desired for useful for its application in estimating path loss
and sector localization.

It should be noted that learning rate decay improved some,
but not all, challenges with convergence. While CNN-GRU
models consistently converged to a meaningful value (an
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improvement over prior observation), SA-LSTM and SA-GRU
did not. The single failed fold of SA-LSTM may be acceptable,
however SA-GRU obviously struggles to converge; as a result,
SA-GRU will not be further discussed or included in future
evaluation.

While the use of self-attention seemed initially promising,
once all models are tuned there appears to be no clear
benefit of self-attention over state-of-the-art convolution. In
reality, comparisons between tuned SA- and CNN- models
illustrate SA- models lagging in vertical accuracy. An obvious
outlier to accuracy is the error variance of SA-GRU, which
is intentionally neglected due to the limited number of useful
cross-validation folds. That being said, no model outperformed
the SA-LSTM initially discussed in Section however,
this may be a reflection of the potential of models when
considering only a single flight route.

Comparing these results to those presented in other state-
of-the-art research illustrates some possible improvements.
While comparisons may be drawn analogously using the
results in Section no direct comparisons are drawn
between the Pang et al.’s results in [[7]] or [Sf]. Additionally,
no comparisons are drawn to [6]]. For all papers, this is a

TABLE VIII
SELECTED HYPERPARAMETERS FOR EACH MODEL
Parameter Value Value Value Value
(CNN-LSTM) | (SA-LSTM) | (CNN-GRU) | (SA-GRU)
Extraction 28 31 28 31
Hidden
Depth
Extraction 22 8 22 8
Output
Depth
RNN 6 6 6 6
Input
RNN 1000 600 650 600
Hidden
RNN 1 2 1 2
Depth
Optimizer RMSProp Adam RMSProp RMSProp
Learning .01 .01 .01 .01
Rate
Decay 0.5 0.5 0.5 0.5
Rate
Decay 10 30 10 30
Step Size
Dropout 0.01% 0.01% 0.01% 0.01%
Weight 1%10°© 1%10°F 1106 1%10°©
Decay
Batch None None None None
Norm

reflection of differences in performance metrics, where [7] and
[S]] discuss results as a relative improvement over flight plan
Euclidean norms, and [6]] discusses results in terms of final
error of several deep learning metrics (Mean-Squared Error,
Mean Absolute Percentage Error, etc).

No model is able to achieve close to the horizontal accu-
racy presented in [3[]; however, the vertical error, particularly
standard deviation in altitude, is improved over significantly.
Accounting for data selection, both accuracy trends may be
expected: flight data was collected for a specific aircraft
(DAL2173) over a one flight route (ATL to MIA), one of
the shortest routes considered in the generalized dataset. This
short duration, combined with the likelihood of the airline
having preferred internal flight plans for each route (in terms
of cost savings, trip time, etc), may contribute to a consistent
intended route for all flights, providing the greatest degree
of predictability in model training and evaluation. Inversely,
the large vertical error deviation is expected for shorter flight
routes due to the lack of predictability in takeoff and landing
phases of flight.

Comparing to the results in [4]], all models appear to have
significantly improved both horizontal and vertical accuracy
- on average, by 17.54% and 54.52%, respectively. While
significant, these improvements should still be contextualized
with the selected route. Collected flight data considered the
second-longest and most infrequent route in the generalized
datset, flying from Houston to Boston and accounting for
6.76% of all flights in the 2 weeks of data. Collection of 1679
flights would likely require the complete year of flight data
discussed by the authors, incorporating the seasonal changes
in weather (and consequent changes in flight patterns and
reroutes) within a limited dataset. It is therefore expected that
improvements over horizontal error are accomplished by the



COMPARISON OF INITIAL AND TUNED MODELS OVER GENERALIZED TRAINING/VALIDATION DATA

TABLE IX

Model Initial Initial Initial Tuned Tuned Tuned Horizontal Vertical
Failed Horizontal Vertical Failed Horizontal Vertical Error Error
Folds Error Error Folds Error Error Improvement | Improvement
(u/o in nmi.) | (u/o in ft.) (p/o in nmi.) | (u/o in ft) (1/o in %) (p/o in %)
CNN-LSTM 0 48.5837 1525.08 0 40.3659 1208.13 16.915 20.783
63.1849 2121.23 33.7023 1637.33 46.661 22.812
SA-LSTM 0 53.1642 1565.15 1 40.2251 1258.36 24.338 19.601
67.7009 2183.16 33.5524 1676.77 50.440 23.195
CNN-GRU 0 44.5988 1486.57 0 40.8215 1163.07 8.470 21.762
40.8868 2032.41 34.8290 1554.76 14.816 23.502
SA-GRU 0 46.6859 1646.01 3 42.3441 1575.54 9.300 4.281
44.1792 2232.96 29.9462 1782.26 32.217 20.184
results of data generalization and model tuning; improvements
in vertical error, however, are noteworthy, as longer routes tend KIAH_KBOS Altitudes on 2018-11-01
to minimize this error as a result of a larger portion of the flight
. .. . 35000 4
occurring at the filed cruising altitude.
30000 4
B. Data Input Sufficiency (adjusting flight plans) 25000
One of the primary concerns noted in trajectory prediction < 20000 ]
. . . el
efforts so-far has been the increase in vertical error as a result 2
of data generalization. While model tuning improved altitude < 150001
predictions, there seems to be a certain irreducible increase in 10000 4
error when considering flights of shorter duration, tied to the |
larger emphasis on ascent and descent portions of the flight. 20001 /
An initial attempt to address this is discussed below, where 0

the altitudes of the flight plan are more closely represented by
assigning climb rates along observed trends in data.

Initial flight plans were developed solely based on a linear
interpolation using available cruising altitude, navigation aids,
and waypoints from Sherlock Data Warehouse. While this
provided a sufficient approximation of horizontal position
(to collect an appropriate set of feature cubes), the altitude
generation remained a concern - climb rates would often be too
rapid and unrealistic for aircraft behavior, as seen in Figure[T1]
By comparison, most flights would approach a cruising altitude
gradually over time (20-30 minutes) - to illustrate this point,
a collection of flight trajectory altitudes and their approximate
climb rates are provided in Figure

Based on these observations, a simple model was built to
assign appropriate climb and descent rates; Figure [I3] provides
an overview. In this approach, general behaviors are assigned
for ascent and descent phases each: in ascent, a climb rate
of 3000 ft / min is initially achieved, before decaying to a
computed climb rate C' and finally to O (reaching the cruising
altitude); in descent, a constant descent rate of 2000 ft / min
is reached and held, before decaying to a rate of O ft / min
over 10 minutes (with constant rate m of 200 ft/min/min).
The climb and descent phases are simplified to Equations [6]
through [9] then sampled to fit the 1 min interval of the flight
plan data.

X = —25t% 4+ 3000t + 7750 (6)
C' = 3000 — 50t, (7)

tr = C/500 @®)
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Fig. 11. Sample altitudes (top) and climb rate (bottom) of initial flight plans

t1 = X — zy — 15000/2000 9

This process was performed for all flight plans generated in
both datasets, and models using the tuned hyperparameters
in Table were trained using the adjusted flight plans
and original feature cubes. The adjustment process was not
guaranteed to work for all flights, due to some flights being
too brief to yield real solutions, and as a result the total set
of flights were reduced - with 60 fewer flights in the 2 weeks
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generalized dataset.

1) Results: Table [X] summarizes the training of identical
models using the different flight plans, based on the final tuned
models. In addition to the horizontal and vertical error, the
number of cross-validation folds which failed to converge is

included; this value generally increased, which may reflect
that the complexity of the modified ascent and descent phases
inhibited the retention of useful features from the flight plan.
Additionally, no notable improvements were made on either
error; in fact, vertical error appears to marginally increase with
the adjusted flight plans. Several reasons for this increase are
suspected, the most likely of which being the complexity of
the ascent and descent phases of flight. From observation,
it is not uncommon for aircraft to be held above or below
their filed cruising altitude during takeoff, as a method of
handling high congestion near airports. These altitude holds
cannot be predicted from weather conditions alone, and would
require additional NAS information to potentially predict -
making it difficult to accurately estimate aircraft altitudes
close to airports and other centers. Minor contributing factors
to the increase in error include a sub-optimal quadratic fit
to the cruising altitude, and the increased fidelity of flight
plan altitudes providing unnecessary information, adversely
impacting training.

C. Evaluating Improvements Over a Test Route

From the results of generalizing the training and validation
datasets, it became clear that some amount of increase in
error could be expected. However, with approximately 375
airports in the continental United States, collecting and training
over each route would be untenable. It is therefore significant
to understand the challenges associated with predicting over
routes excluded from training. This section considers such an
event by evaluating the prior trained models on a test route
from Chicago to New York (indicated in red in Figure [6] and
Table [V). The trained sets of tuned models for each type of
flight plan were re-used, as their model states had been saved.
Because each model in the four-fold cross validation had no
prior knowledge of the test route, each flight was predicted
multiple times, once by each model.

1) Results: Results indicate a drastic increase in error for
models evaluated over unknown routes. Because the data is
within the same 2-week period, and the flight route is within
the same region of the United States as other flights present
in the training data, it can be decidedly ruled that this affect
is not related to potentially unobserved weather behavior. This
leaves the assumption that the model performed poorly due to
a lack of exposure to the flight plan and trends in rerouting.
Throughout this research, models have improved over the
accuracy of flight plans; inspecting one of these predictions,
as in Figure [T4] illustrates how these improvements are often
made by marginal deviations from the original flight plan. It
is therefore key to understand that current approaches rely on
an embedded degree of knowledge based on the flight plans
provided in training, a key indicator of overfitting at a larger
scale.

While all models performed unacceptably on the unknown
route, not all performed equally. From prior comparisons of
validation scoring of tuned models on the original and adjusted
flight plans, it is known that marginal error increases are
expected with the adjusted altitude; however the opposite
occurred, indicating how large of a difference can occur in



TABLE X

COMPARISON OF TUNED MODELS USING ASSUMED AND ADJUSTED ALTITUDES
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Fig. 14. Sample flight prediction

test data error and between individual training sessions. At
the same time, CNN-GRU appears to be the least-adversely
affected model of those tested; the model is the only to
not consistently double in horizontal mean error, while also
improving on horizontal error deviation. While certainly sub-
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Bq=0 By=-ETmax
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ET_ET;
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Model Initial Initial Initial Adjusted Adjusted Adjusted | Improvement over | Improvement over
Failed | Horizontal | Vertical Failed Horizontal Vertical Initial Initial
Folds Error Error Folds Error Error Horiz. Error Vertical Error
CNN-LSTM 0 40.4594 1175.34 1 40.5796 1256.50 -0.297 -6.905
33.3621 1601.43 33.4905 1716.29 -0.385 -7.172
CNN-GRU 0 41.6861 1158.91 1 39.3819 1171.08 5.528 -1.050
36.7627 1585.86 37.0114 1621.20 -0.677 -2.228
SA-LSTM 1 41.9151 1201.79 0 42.2542 1297.17 -0.809 -7.936
38.5151 1543.64 32.8472 1671.91 14.716 -8.310
TABLE XI
COMPARISON OF TUNED MODELS USING INITIAL FLIGHT PLANS OVER A TEST ROUTE
Model Validation Validation Test Test Improvement over | Improvement over
Horizontal Vertical Horizontal Vertical Validation Horiz. Validation Vertical
Error (u/o in nmi.) | Error (u/o in ft.) | Error (u/o in nmi.) | Error (u/o in ft.) | Error (u/c in %) Error (/o in %)
CNN-LSTM 40.4594 1175.34 137.1898 3206.68 -239.08 -172.83
33.3621 1601.43 58.3072 3899.85 -74.771 -143.522
CNN-GRU 41.6861 1158.91 70.5607 3199.60 -69.267 -176.087
36.7627 1585.86 31.6596 3861.28 13.881 -143.482
SA-LSTM 41.9151 1201.79 270.6174 6171.50 -545.633 -413.524
38.5151 1543.64 99.3068 3869.39 -157.839 -150.668
TABLE XII
COMPARISON OF TUNED MODELS USING ADJUSTED FLIGHT PLANS OVER A TEST ROUTE
Model Validation Validation Test Test Improvement over | Improvement over
Horizontal Vertical Horizontal Vertical Validation Horiz. Validation Vertical
Error (/o in nmi.) | Error (u/o in ft.) | Error (u/o in nmi.) | Error (u/o in ft.) | Error (/o in %) Error (/o in %)
CNN-LSTM 40.5796 1256.50 115.574 3188.76 -184.809 -153.781
33.4905 1716.29 53.3834 3325.29 -59.399 -93.748
CNN-GRU 39.3819 1171.08 77.5868 2012.65 -97.011 -71.864
37.0114 1621.20 31.1632 2338.64 15.801 -44.254
SA-LSTM 42.2542 1297.17 269.080 3556.86 -536.813 -174.201
32.8472 1671.91 70.8284 3671.12 -115.630 -119.577
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Fig. 15. Sample decision process architecture

optimal, the reported horizontal error from CNN-GRU is may

fall within an acceptable range. It is anticipated that this
outlier in generalization may be a result of GRU’s limited
cell parameters.

Seeing as no model sufficiently meets the demand of
generalization, considerations of how to achieve this gener-



alization are instead provided. Future research may consider
the viability of transfer learning and generalization over larger
collections of flight routes. Revisiting the selection of opti-
mizers may still provide a resolution to this issue, though
achieving useful training results with SGD variants remains
a challenge. Furthermore, training with a loss function that
does not penalize outliers, such as L1 loss, may be beneficial;
other factors - such as lack of coverage and insufficient flight
and weather data during preprocessing - may be significant
cause for outlying errors, and may penalize the accuracy of
the total model as a consequence of their inclusion in training.
The complexity of factors affecting each flight phase may
require splitting flight predictions into ascent, en-route, and
descent phases, which can be supplemented with additional
airspace knowledge (such as airspace density or Notices
to Air Missions). Finally, design of fundamentally different
architectures may be appropriate, specifically to replace the
recurrent mechanisms with a form of decision-making; this
may be possible with cross-attention (see Figure [15)) or well-
planned convolution networks.

VI. CONCLUSION

This paper considered the impact of varied data and ar-
chitectures within the task of trajectory prediction. After a
preliminary establishment of data items and model design,
the body of work illustrates how generalization of flight data
remains a challenge for trajectory prediction due to increased
variance in error. Model tuning and adjustments to existing
data are conducted as mitigation techniques, prior to evaluating
the improved models on a test flight route. While no model
directly improves the accuracy of those presented in current
literature, tuned models were able to improve on horizontal
or vertical accuracy for select papers; those tuned models
also presented a trade-off of error mean and variance from
initial research. This potential gains, however, are lost when
considering the 70-500% increase in mean error of tuned
models over a test route. For these reasons, it is imperative that
future research consider the complexities and variety of flight
patterns in the proposal of deep learning trajectory prediction
models.
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