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Highlights 27 

• Comparing height and biomass estimates for 17 products in tallest mangrove forest. 28 

• Height estimates are inconsistent across sensors in low and tall stature forests. 29 

• Radar performed well, but calibration with LiDAR improved height estimates.  30 

• Local calibrated biomass agreed within 15%, but global maps can have >50% error. 31 

• Future biomass maps should combine local and global calibration strategies.    32 
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Abstract 33 

A recent suite of new global-scale satellite sensors and regional-scale airborne campaigns are 34 

providing a wealth of remote sensing data capable of dramatically advancing our current 35 

understanding of the spatial distribution of forest structure and carbon stocks. However, a 36 

baseline for forest stature and biomass estimates has yet to be established for the wide array of 37 

available remote sensing products. At present, it remains unclear how the estimates from these 38 

sensors compare to one another in terrestrial forests, with a clear dearth of studies in high 39 

carbon density mangrove ecosystems. In the tallest mangrove forest on Earth (Pongara 40 

National Park, Gabon), we leverage the data collected during the AfriSAR campaign to evaluate 41 

17 state-of-the-art sensor data products across the full range of height and biomass known to 42 

exist globally in mangrove forest ecosystems, providing a much-needed baseline for sensor 43 

performance. Our major findings are: [1] height estimates are not consistent across products, 44 

with opposing trends in relative and absolute errors, highlighting the need for an adaptive 45 

approach to constraining height estimates; [2] radar height estimates had the lowest calibration 46 

error and bias, with further improvements using LiDAR fusion; [3] biomass variability and 47 

uncertainty strongly depends on forest stature, with variation across products increasing with 48 

canopy height, while relative biomass variation was highest in low-stature stands; [4] a remote 49 

sensing product’s sensitivity to variations in canopy structure is more important than the 50 

absolute accuracy of height estimates; [5] locally-calibrated area-wide totals are more 51 

representative than generalized global biomass models for high-precision biomass estimates. 52 

The findings presented here provide critical baseline expectations for height and biomass 53 

predictions across the full range of mangrove forest stature, which can be directly applied to 54 

current (TanDEM-X, GEDI, ICESat-2) and future (NISAR, BIOMASS) global-scale forest 55 

monitoring missions.  56 
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1.0 Introduction 57 

Forests hold approximately 45% of the world’s active carbon [1]–[3], sequestering approximately 58 

32% of anthropogenic emissions every year [4]. Accurate estimates of the distribution and total 59 

carbon held in Earth’s forests are essential for modelling and monitoring climate change, yet many 60 

global maps of carbon storage disagree in critical regions of high carbon density [5]. Mangroves, 61 

in particular, have the highest total carbon density of any forest on Earth with a mean of 856 62 

Mg/ha, 49-98% of which is stored in the first 3 m of soils [6], [7], with C burial rates of 226 ± 39 g 63 

C/m
2
/yr in comparison to 4 ± 0.5 g C/m

2
/yr

 
in tropical terrestrial forests [8]. Total mangrove 64 

aboveground biomass (AGB) is estimated at 1.75Pg [9], with soil carbon measurements in the 65 

range of  1.93 to 6.4 Pg C [10], [11], yielding approximate total carbon estimates of 2.7 – 7.2 Pg 66 

C. Additionally, these forests provide valuable ecosystem services – fuel, construction materials, 67 

and protection from storms – to local coastal populations [12], [13] and essential habitat for rare 68 

and endangered animal species [14]. Despite their importance, anthropogenic-driven loss is 69 

occurring on a global scale [15], [16]. In the face of climate change, a detailed understanding of 70 

the spatial distribution of carbon storage across the landscape will make future conservation 71 

efforts more fruitful [17] and help countries attain Nationally Determined Contribution (NDC) 72 

emissions reduction targets over the next half century. 73 

 74 

National-scale carbon inventories contrast in level of detail and uncertainty of estimates. The 75 

confidence in reported carbon stocks dictate the three IPCC tiers, corresponding to estimates 76 

from [i] Tier 1: a mean ecosystem carbon density, [ii] Tier 2: deploying height-stratified field plots 77 

for improved mean carbon density, or [iii] Tier 3: spatially continuous carbon estimates calibrated 78 

with field plots and modeled with remote sensing [18]. Global conservation and forest ecology is 79 

entering a “golden age” of satellite measurements that stands to significantly improve our current 80 

understanding of fine-scale patterns in forest structure and carbon storage [19]. Remote sensing 81 
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is enabling near-universal Tier 3 carbon estimates, but the long list of mapping products have yet 82 

to be directly compared to one another and important sensor-specific differences in forest height 83 

and biomass have not been quantified. 84 

 85 

Key missions designed specifically for measuring forest structure include NASA’s Global 86 

Ecosystem Dynamics Investigation (GEDI), ESA’s BIOMASS [20], and NASA-ISRO’s Synthetic 87 

Aperture Radar (NISAR; [21]). GEDI - a large-footprint waveform LiDAR (Light Detection And 88 

Ranging) sensor - solves many of the greatest challenges for creating high-certainty global 89 

forest carbon maps [22]. To capture sub-kilometer variations in forest structure, sampling 90 

instruments like GEDI or ICESat-2 (dense photon counting LiDAR) must be matched to 91 

contiguous height estimates – from either optical or, preferably, radar [23]. DLR’s TerraSAR-X 92 

add-on for Digital Elevation Measurement (TanDEM-X or TDX) DEM product provides a ~12 m 93 

resolution digital surface model (DSM) at a global scale, making it ideal for creating high-94 

resolution spatially continuous forest height products  [24], [25]. In tropical forests, upcoming 95 

SAR sensors like BIOMASS (P-band) and NISAR (L-band) can penetrate cloud cover, enabling 96 

detailed estimates of forest structure that are unreachable with optical and LiDAR remote 97 

sensing alone [26]. However, radar backscatter loses sensitivity at high biomass densities - 98 

highlighting the need for more direct estimates of structure from SAR (i.e. InSAR) together with 99 

multi-faceted fusion approaches as the most viable option for globally consistent estimates of 100 

forest structure. In mangroves specifically, Simard et al [9] created a global high-resolution 101 

mangrove height and biomass maps using Shuttle Radar Topography Mission (SRTM) data 102 

calibrated with NASA Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser 103 

Altimeter System (GLAS) and forest inventory data. However, these maps represent the status 104 

of global mangrove forest in the year 2000 with 30-meters spatial resolution and limited 105 

accuracy at local scales. Given the wealth of current and upcoming near-global remote sensing 106 
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data capable of estimating forest height and biomass, there is a clear need to evaluate the 107 

consistency and differences across sensors in the context of height and biomass. 108 

 109 

In this study, we evaluate 17 forest biomass products from five types of sensors measuring 110 

canopy structure ([i] stereo optical photogrammetry, [ii] SAR interferometry, [iii] Polarimetric SAR 111 

interferometry, [iv] large-footprint waveform LiDAR and [v] photon counting LiDAR in the tallest 112 

known mangrove forest [9], leveraging data collected from the 2016 AfriSAR airborne campaign 113 

as well as in situ measurements in Gabon [27], [28]. These products were derived from airborne 114 

and spaceborne sensors representing the suite of current and future missions used for measuring 115 

forest height, estimating aboveground biomass and ecosystem carbon stocks. The specific 116 

objectives of this study are: 117 

1. Directly compare remotely sensed height products; 118 

2. Develop and evaluate sensor-specific biomass calibration models from plot data; 119 

3. Directly compare spatial distributions of locally calibrated and other biomass products; 120 

4. Directly compare area-wide totals from locally calibrated and other biomass products.    121 

The goal of our analysis is to provide a baseline comparison of height and biomass estimates for 122 

the most commonly available airborne and spaceborne remote sensing products, providing a 123 

much-needed baseline for current and forthcoming sensor performance.  124 

2.0 Methods – 2362 125 

The analysis in this study used field inventory biomass estimates to calibrate a suite of remotely 126 

sensed height to generate spatially comprehensive maps of biomass over the study site. The 127 

height and biomass maps, and biomass totals are then intercompared. 128 
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2.1 Site Description and Field Data 129 

The study site is the Pongara National Park located in Gabon (Figure 1). Pongara National Park 130 

is located on the southern bank of the Komo Estuary, directly south of Libreville, Gabon’s capital 131 

city. The Park covers an area of 87,000 ha and is covered primarily by mangroves (52,700 ha) 132 

and some terra firme rainforests [29]. This site holds both the tallest known mangrove forests on 133 

Earth and large areas of short low density stands – an excellent test case for capturing a range 134 

in forest stature from 2 m to in excess of 60 m in height [9].  135 

 136 

Circular field plots (n=17) were sampled with a radius between 6 and 12.5 m diameter, with small 137 

plots coinciding with short stature forest stands [30]. At each plot, aboveground biomass (AGB) 138 

was estimated from stem diameter measurements (0.5 m above the last prop-root). In addition, 139 

tree height was estimated using a laser hypsometer. In this study, we chose to use height-based 140 

field allometry from Chave et al. [31]’s wet tropical equation as it best related to our remotely-141 

sensed height estimates: 142 

 143 

!"#$%&'#()*	,-#./00	(2&) 	= 	exp	(α + 	β	ln	(ρ	>!H))   [1]  144 

 145 

Where α	and β are model coefficients derived from least squares regression, ρ is species-146 

specific wood density (0.9 for Rhizophora sp.), > is tree diameter, and H is tree height. 147 

For reference and to determine the impact of allometric equation selection, we also evaluated the 148 

difference in plot-level biomass estimates using allometry relying solely on tree diameter (See 149 

Figure S1, Table S1, and Figure S2; [32]). 150 
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 151 

Figure 1: Map of Pongara National Park with heights from SRTM-based global height product (from Simard et al [9]). Inventory plots 152 
were placed such that canopy heights were sampled proportionally according to the height distribution across the site. 153 
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2.2 Remote Sensing Datasets  154 

We evaluated height and/or biomass products of global and local spatial extent (Figure 2; Table 155 

1). We evaluated five types of sensors measuring canopy structure using [i] stereo optical 156 

photogrammetry, [ii] SAR interferometry, [iii] Polarimetric SAR interferometry, [iv] large-footprint 157 

waveform LiDAR and [v] photon counting LiDAR. Specific details on products and processing 158 

techniques for individual products can be referenced from the associated publications in Table 1. 159 

Spatially continuous height products were not modified prior to biomass calibration to ensure the 160 

generalization of our analysis and results. Measurements from spaceborne LiDAR instruments –161 

ICESat-2 and GEDI were used to calibrate TanDEM-X heights at the corresponding sensor 162 

resolution to produce two additional LiDAR-calibrated height and biomass map products. 163 

2.2.1 Brief Sensor Overview 164 

Several of the global sensor products evaluated here were produced in the 2000-2010 timeframe. 165 

The Advanced Land Observing Satellite (ALOS) Panchromatic Remote-sensing Instrument for 166 

Stereo Mapping (PRISM) is an optical instrument providing a 30 m stereo imagery-based digital 167 

surface model (DSM; [33]), also referred to as a Digital Elevation Model (DEM). The Shuttle Radar 168 

Topography Mission (SRTM) was a C-Band SAR interferometry mission that flew in February 169 

2000 producing a global ~30 m resolution Digital Surface Model (DSM). The SRTM DSM was 170 

used in concert with ICESat-1 (Ice, Cloud, and land Elevation Satellite; [34]) canopy height 171 

estimates to create local [35] and continental-scale [36] and, more recently, the first global-scale 172 

[9] canopy height and biomass models for mangrove forests. TanDEM-X is a high-resolution 173 

interferometric SAR mission launched by DLR (German Aerospace Center) to produce ~12 m 174 

(commercially available), ~30 m, and ~90 m (freely available) resolution global DSMs [24].  175 

 176 
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We evaluated two recently launched global LiDAR sensors for measuring vegetation structure. 177 

The ICESat-2 satellite uses a photon-counting LiDAR to measure elevations [37], producing 100 178 

m granule with vegetation indices. The low sampling density and polar orbit of ICESat-2 prevents 179 

evaluation of a continuous gridded height product. We therefore created continuous ICESat-2 180 

mean canopy height product by calibrating 90 m TanDEM-X heights with 100 m ICESat-2 mean 181 

canopy height granules using a simple least squares regression model. The Global Ecosystem 182 

Dynamics Investigation (GEDI) instrument is a full-waveform LiDAR designed specifically to 183 

measure forest structure at a near-global scale using four high-powered (power) and four-low 184 

powered (coverage) beams [22]. Aboard the International Space Station (ISS), GEDI produces 185 

vegetation metrics at the footprint-level (~25 m) with high vertical resolution. Similar to ICESat-2, 186 

we created a continuous GEDI RH100 height product by calibrating 30 m TanDEM-X heights with 187 

footprint-level GEDI RH100 heights using a least squares regression model. Geolocation errors 188 

are common in the version 001 release of GEDI data and erroneous height measurements often 189 

occur in edge areas. A recent simulation study found that the expected GEDI geolocation error of 190 

10 m may introduce more than 50% uncertainty into the resulting height estimates [38]. We 191 

therefore flagged and removed GEDI shots within 40 m of the forest edge to avoid potential mixed 192 

or non-mangrove footprints resulting from geolocation error. 193 

 194 

Local scale sensors in this study were flown as part of the AfriSAR, a joint NASA and ESA 195 

(European Space Agency) airborne campaign [27], [28]. The goal of the mission was to fly 196 

overlapping airborne sensors analogous to future missions (e.g. ESA BIOMASS [20], NASA-ISRO 197 

Synthetic Aperture Radar (NISAR; [21]) and GEDI) to measure forest structure. DLR deployed 198 

the airborne F-SAR - a dual band Pol-InSAR instrument analogous to NISAR (L-band) and 199 

BIOMASS (P-band) - and covered a small portion of the study area and field plots. JPL’s 200 

UAVSAR, an L-band SAR covered nearly the entirety of Pongara National Park [39]. The Land 201 
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Vegetation Ice Sensor (LVIS; [40]) has near-identical technology as GEDI, though with nearly 202 

continuous sampling, providing ~25 m footprints of full-waveform LiDAR measurements. 203 

 204 

2.2.2 ICESat-2- and GEDI-TanDEM-X Fusion 205 

ICESat-2- and GEDI heights were used to calibrate two continuous TanDEM-X canopy height 206 

maps covering the entirety of the study area. For both spaceborne LiDAR sensors, we 207 

calibrated TanDEM-X heights with a similar procedure: [i] directly matching LiDAR heights to 208 

TanDEM-X heights, [ii] developing a calibration model between LiDAR height and TanDEM-X 209 

height, and [iii] producing a LiDAR corrected continuous height product covering the entirety of 210 

Pongara National Park.  211 

 212 

All available overlapping ICESat-2 data were extracted for the study area comprising 46 total 213 

orbits of ATL08 data. All orbits were constrained to the study area and only those classified as 214 

mangrove were retained, leaving a total of 597 at 100 m intervals. We used the 215 

h_mean_canopy variable in our calibration procedure – the mean of canopy heights within a 216 

100 m granule. We used the 90 m TanDEM-X geoid-corrected height product [9] to upscale 217 

ICESat-2 measurements since the two were closely matched in spatial scale. Next we extracted 218 

the 90 m resolution TanDEM-X heights at the overlapping ICESat-2 granules. In an initial 219 

assessment between the two heights, we found beam three had consistently anomalous height 220 

estimates; We therefore excluded data from this beam entirely. We identified and removed two 221 

extreme outliers in the calibration, based on the values exceeding 10x the mean Cooks 222 

Distance in the linear model. In total, we built the calibration model on 391 ICESat-2 height 223 

measurements.  224 

 225 
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Similarly, all available overlapping GEDI data was extracted for the study area – 21 total orbits 226 

of L2B data. Again, all orbits were constrained to the study area, retaining only mangrove areas 227 

and quality flag 1 data, leaving a total of 3482 canopy height estimates. We used the rh100 228 

variable in our calibration procedure – the tallest detectable height aboveground.  229 

 230 

As expected, the two height variables for both ICESat-2 and GEDI data were closely and 231 

linearly related, so we used a least squares regression to develop the calibration model: 232 

 233 

!"#$%&2	)*	+#,!	"%-)./	0123ℎ&	(6) 		= 	9! +	9"ℎ#$% 234 

 235 

Where 9! and 	9" are model coefficients and ℎ#$% is 90 m resolution geoid corrected TanDEM-X 236 

height.  237 

 238 
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 239 

Figure 2: Workflow detailing major processing and analysis steps used to compare 17 area-240 

wide biomass products in Pongara National Park. 241 

 242 
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Table 1: Specifications of sensors and products used for local calibration and/or validation in the study.   243 
Extent Sensor/ 

Product 
Product 

Resolution 
Technology Acquisition 

Period 
Availability Variable† Relevant 

Publications 

Global Height 
Products 

[a] ALOS PRISM DEM 30 m Stereo Optical Jan 24, 2006- 
Apr. 22, 2011 Open Elevation [33] 

[b] SRTM 30 m C-Band SAR 
Interferometry Feb 11-22, 2000 Open 

Ice-SAT-GLAS-
Corrected Mangrove 

Canopy Height 
(Hmax) 

[9], [41] 

[c] TanDEM-X (12 m) 12 m X-Band SAR 
Interferometry 

Dec 12, 2010-
Jan 16, 2015 

Commercial Geoid corrected 
height asl [42] [d] TanDEM-X (30 m) 30 m Commercial 

[e] TanDEM-X (90 m) 90 m Open 

[f] ICESat-2-TanDEM-X 100 m Photon Counting 
LiDAR 

Sept 15, 2018 - 
Present Open 

TanDEM-X 
Elevation corrected 

with ATL08 98th 
percentile heights 

[41], [42] 

[g] GEDI-TanDEM-X 30 m 
Large-Footprint Full-

Waveform 
Spaceborne LiDAR 

Mar 25, 2019 - 
Present Open 

TanDEM-X 
Elevation corrected 
with RH100 heights 

[22] 

Local Height 
Products 

[h] LVIS 50 m 
Large-Footprint Full-
Waveform Airborne 

LiDAR 
Mar 3, 2016 Open RH100 [40] 

[i] F-SAR L band+ 30 m Airborne L-Band 
PolinSAR Feb 2016 Open Modeled Canopy 

Height [45], [46] 

[j] F-SAR P-band+ 30 m Airborne P-Band 
PolinSAR Feb 2016 Open Modeled Canopy 

Height [45], [46] 

[k] UAVSAR 30 m Airborne L-Band 
PolinSAR Feb 27, 2016  Open Modeled Canopy 

Height [47] 

AGB products 

LVIS 
(Regional Calibration) 50 m 

Large-Footprint Full-
Waveform Airborne 

LiDAR 
Mar 3, 2016 Open AGBD* [46], *[47] 

Global SRTM 30 m C-Band SAR 
Interferometry Feb 11-22, 2000 Open AGBD* *[9], [36] 

Avitabile et al 2016 
~1 km SAR, Optical, Large 

Footprint LiDAR 2011-2012 Open AGBD* *[48], *[49] 
GEOCARBON 

IPCC Tier 1 value:  
192 Mg/ha - - Mar 2016 - 

IPCC mean 
mangrove AGBD *[18] IPCC Tier 2 value: 

215 Mg/ha Plot-based 
†The predictor variable matched to plot data used for calibrating the allometric models of aboveground biomass. *Aboveground biomass density estimates derived in the cited study. 244 
+Height-biomass calibration is only evaluated  due to limited spatial extent245 
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2.3 Height and Biomass Analysis 246 

The aim of our analysis was to compare the current available airborne and spaceborne remote 247 

sensing products for estimating forest height and biomass (Figure 2). Both analyses of height 248 

and biomass compared each individual remote sensing product to a mean map (and standard 249 

deviation) created from all products. We evaluated the deviation of each product height and 250 

biomass from the mean with residual plots. Finally, we compared the total estimated biomass 251 

(and uncertainty) across the study site from each remote sensing product, along with six other 252 

external AGB maps and IPCC Tier 1 and Tier 2 AGB estimates. In doing so, we provide a basis 253 

for comparison and a baseline expectation for height and biomass estimates for all products 254 

analyzed in this study. 255 

2.3.1 Evaluating Remotely Sensed Mangrove Height 256 
Height estimates from nine height products were intercompared at the pixel level over their 257 

mutually overlapping area. To evaluate the variability across all height products (!!"#$%&'), we 258 

calculated the per-pixel (i) average (mean) and standard deviation (sd) of all height maps to create 259 

a single map representing the mean height (Hmean) and standard deviation (Hsd) of height: 260 

!()*+(#) = 	'()*(!!"#$%&'	(#))     [2] 261 

!,$(#) 	= 	+,(!!"#$%&'	(#) −	!()*+(#))                                   [3] 262 

We evaluated the overall trend in standard deviation from Eq. 3 with respect to 1 m bins of Hmean. 263 

For individual continuous AGB products (./0!"#$%&'; n = 9) by calculating the mean signed 264 

deviation (MSD) and standard deviation (Hsd) as a function of 1 m bins of Hmean, represented as h 265 

in equation 4 and 5: 266 

123(ℎ) = 	'()*(!!"#$%&'	(#, ℎ) −	!()*+(#, ℎ))    [4] 267 

!,$(ℎ) = +,(!!"#$%&'	(#, ℎ) −	!()*+(#, ℎ))                                  [5] 268 
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We also determined how well specific products capture field-measured heights (based on RMSE 269 

and bias) by directly comparing the remotely sensed heights to plot-level tree height percentiles. 270 

2.3.2 Sensor Aboveground Biomass Calibration and Uncertainty 271 

For each of the remote sensing height products, we built a calibration model relating in-situ plot 272 

biomass to remotely sensed height using non-linear least squares regression (nls; R Core Team 273 

2019) with the form: 274 

.678(9:7;*,	0#7')++	(19	ℎ)-.) 	= 	</ℎ(
0                              [5] 275 

 276 

Where </ is the scaling coefficient, ℎ(is a sensor-specific height metric, and = is the scaling 277 

exponent. Note, none of the remote sensing products we evaluated had a resolution smaller than 278 

the plot size (6-12.5 m diameter), so the value of ℎ( was simply extracted at the plot location. 279 

However, plots were established in ~0.5 ha areas of homogeneous height to mitigate the effects 280 

of the smaller plot size (See Trettin et al [53] for details), making the plot data representative for 281 

resolutions up to ~70 m.  In addition, we used this same model form to evaluate a purely plot-282 

based allometric model (see Supplementary Material Figure S1). 283 

 284 

The precision and accuracy of all locally calibrated predictive biomass models were assessed 285 

with a bootstrapped estimate of root mean square error (RMSE) and bias. Over 1000 iterations, 286 

a random set of 70% of the plot data was selected for model training using Equation 2. The 287 

predicted value was then compared against the independent (measured) plot biomass values 288 

using the following equations: 289 

 290 

>12?	(19	ℎ)-.) 	= 	@∑ (!")$3&')$!	-	()*,%")$!)"#
!$%

+                                  [6] 291 

>12?	(%) 	= 	 6789
()*,%")$:::::::::::::::                                                        [7] 292 
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0#)+	(19	ℎ)-.) 	= 	∑ !")$3&')$!	-	()*,%")$!#
!$%

+                                         [8] 293 

0#)+	(%) 	= 	 ;3*,
()*,%")$:::::::::::::::                                                       [9] 294 

 295 

Where '()+;:(,BBBBBBBBBBBBBB is the mean plot-level biomass density estimate across all iterations. In an 296 

additional analysis, we evaluated the role of model uncertainty in calibration coefficient estimates. 297 

A robust parameter-based non-linear pixel-level error estimate for each biomass product was 298 

estimated directly from the non-linear calibration models using the first-order Taylor series method 299 

as implemented in the errors package in R [52], [54]. In essence, this method linearizes the 300 

predicted biomass uncertainty for a given height, accounting for the variance and covariance 301 

between model coefficients (See documentation for errors package for further details). The 302 

approach simply uses the uncertainty in the calibration model parameters to properly estimate 303 

pixel-level prediction error. 304 

2.3.4 Spatial Patterns and Variability in Biomass 305 

As in our height analysis (Section 2.3.1), AGB estimates from all spatially continuous height 306 

products were directly compared at the pixel level (excluding pixels with missing values from any 307 

senor). To evaluate the variability across all height products (./0!"#$%&'), we calculated the per-308 

pixel average and standard deviation of all AGB maps to create a single map representing the 309 

mean AGB (AGBmean) and standard deviation (AGBsd) of height: 310 

./0()*+(#) = 	'()*(./0!"#$%&'	(#))     [10] 311 

./0,$(#) 	= 	+,(./0!"#$%&'	(#) −	./0()*+(#))                                [11] 312 

We evaluated the overall trend in standard deviation with respect to 10 Mg ha-1 bins of AGBmean. 313 

For individual continuous height products (./0!"#$%&'; n = 9), we calculated the mean signed 314 

deviation (MSD) and standard deviation (AGBsd) as a function of 10 Mg ha-1 bins of AGBmean, 315 

represented as b in equation 4 and 5: 316 
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123(6) = 	'()*(./0!"#$%&'	(#, 6) −	./0()*+(#, 6))    [12] 317 

./0,$(6) = +,(./0!"#$%&'	(#, 6) −	./0()*+(#, 6))                        [13] 318 

In addition, we compared the mean biomass predictions (./0()*+) of our area-wide locally 319 

calibrated estimates on a per-pixel basis to two contrasting high-resolution independent biomass 320 

products based on SRTM (30 m; [9]) and LVIS (50 m; [49]). We quantified systematic deviations, 321 

highlighting these differences using residual variation figures. 322 

2.3.4 Total Biomass and Uncertainty 323 

Total biomass and uncertainty was estimated across the entire study area for all continuous 324 

remote sensing biomass products – nine locally calibrated models and six baseline biomass 325 

estimates (Figure 2). For the nine locally-calibrated biomass products, we limited the spatial 326 

extent to that of the product with lowest spatial coverage (i.e. LVIS). Across this area, we derived 327 

the mean biomass prediction and associated uncertainty (determined with pixel-level model 328 

parameter-based first-order Taylor series method). The mean and uncertainty estimates were 329 

applied across the ~40,000 ha study area for area-wide biomass totals. Uncertainty was 330 

propagated using the errors package in R [52], [54]. 331 

 332 

We evaluated the totals from six baseline biomass estimates described in Table 1: [i] Global 333 

SRTM mangrove biomass [9], [ii] regionally calibrated three-variable LVIS biomass [49], [iii] 334 

Avitabile et al [50], [iv] Santoro et al [51] global biomass products (1 km), [v] IPCC Tier 1 values 335 

(192 Mg.ha-1), and [vi] IPCC Tier 2 (215 Mg ha-1). The global SRTM mangrove biomass product 336 

is based on globally calibrated ICESat-GLAS adjusted SRTM heights (Hmax variable, [9]). The 337 

regional LVIS biomass product was calibrated from all other non-mangrove field data included in 338 

the Gabon AfriSAR campaign (see [49]). The Avitabile et al [50] and Santoro et al [51] global 339 

biomass products are built from a suite of active and passive remote sensing variables covering 340 

the pantropical and global scale, but are not specifically calibrated for mangroves. To ensure our 341 
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area-wide totals were not biased by product coverage, we limited the extent of each continuous 342 

mapped product to the study area, calculated the mean mangrove biomass density estimate of 343 

all pixels, and applied the mean values to the entirety of Pongara National Park. For comparison, 344 

we included Tier 1 and Tier 2 IPCC-based biomass estimates in our total biomass and 345 

assessment. The Tier 1 IPCC estimate was based on the Mangrove Tropical Wet area-based 346 

mean (192 Mg ha-1). The field plots were established using probability-based sampling, so for 347 

comparison we also derived a Tier 2 IPCC estimate calculated as the mean plot-based biomass 348 

(215 Mg ha-1). Both Tier 1 and 2 mean values are not spatially explicit and were simply applied to 349 

the total mangrove area used in this study. To ensure a consistent estimate of product uncertainty, 350 

baseline product uncertainty was estimated as the standard deviation of the difference between 351 

in-situ plot biomass and the mapped biomass estimate. 352 

3.0 Results – 915 353 

3.1 ICESat-2- and GEDI-TanDEM-X Fusion 354 

The ICESat-2 and GEDI height estimates successfully calibrated TanDEM-X heights (R2 = 0.84-355 

0.93). Table S2 provides an overview of the statistics of the final calibration models and Figure 3 356 

shows the calibration models, along with anomalous excluded data. The ICESat-2 calibration 357 

had an order of magnitude fewer measurements available than GEDI, reducing the power of the 358 

calibration model. The ICESat-2 calibration model reduced TanDEM-X heights, while GEDI 359 

RH100 calibration increased TanDEM-X heights. The major factor affecting the quality of GEDI 360 

height estimates was the ground elevation estimate, which was used as criteria for data quality 361 

filtering.   362 
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 363 
Figure 3: Calibration models used to create spatially continuous height estimates by fusing 364 

ICESat-2 mean canopy height and GEDI RH100 to TanDEM-X continuous heights. Red points 365 

are removed outliers in the ICESat-2 calibration (anomalous beam 3 data not shown). Colored 366 

points in C show anomalous elevation values that were removed from the final calibration model 367 

(B and D). 368 

  369 
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3.2 Evaluating Remotely Sensed Mangrove Height 370 

Height estimates from nine products were compared to the field height measurements and the 371 

mean height map (Hmean). Different aspects of canopy height are captured, depending on sensor 372 

(Figure 4). TanDEM-X products generally underestimate, LVIS closely estimates, and the SRTM 373 

Hmax product overestimates compared to field height. The ALOS PRISM DEM was highly 374 

variable and generally underestimated field height.  375 

 376 

Most products generally followed a linear trend with the mean height map (Hmean) (Figure 5, 377 

Figure S4A). ALOS PRISM product had the lowest and SRTM Hmax had the tallest height 378 

estimates covering ~25 m difference in the tallest stature stands, with TanDEM-X-based 379 

estimates clustering towards Hmean. UAVSAR had the only clear non-linear trend, with a 380 

saturating relationship above 20-30 m in mean height. Variability across all sensors increased 381 

non-linearly with mangrove stature (Figure 5B and 3D) to a maximum of ~8 m. Variability of 382 

individual products with respect to height class displayed a peak of ~2.5-7 m at ~30 m Hmean 383 

after which remained constant or decreased slightly (Supplementary Material; Figure S3; Figure 384 

S4). Relative variation (%; Hsd normalized by Hmean) universally decreased with increasing Hmean 385 

(Supplementary Material, Figure S4). 386 

  387 
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 388 
Figure 4: [A] Comparison between maximum field measured height and remotely sensed 389 

heights (RMSE shown). Several remote sensing products estimate maximum field measured 390 

height, while some represent a specific percentile of field measured tree height. [B] RMSE and 391 

[C] bias in the comparison between field tree height percentiles (50th to 100th) and each remote 392 

sensing product. Colors correspond to point color shown in panel A and X’s indicate the 393 

percentile at which RMSE or bias are lowest.394 
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 395 

 396 
Figure 5:  (A) Example map of mean mangrove canopy height (Hmean) and (B) variation across 397 
the 9 sensors compared in this study. Relationship between sitewide mean mangrove canopy 398 
height (Hmean) and (C) product heights minus Hmean and standard deviation (within a product 399 
(color) and across products (grey)) from 9 remote sensing products. Variability increases with 400 
Hmean, while the equivalent relative variation decreases with Hmean (See Supplementary Material 401 
Figure S3).  402 
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3.3 Sensor Aboveground Biomass Calibration and Uncertainty 403 

Calibration models scaling coefficients ranged from 0.85 (SRTM Hmax and ALOS PRISM Stereo 404 

DEM) to 3.11 (UAVSAR L-band height), with lower scaling coefficients generally having higher 405 

calibration uncertainty (Figure 6; Table 2).  The locally calibrated AGB products fell into two broad 406 

categories: [i] global spaceborne and [ii] local airborne sensors. AGB of spaceborne sensors had 407 

higher RMSE (mean = 78%, sd = 14%) than airborne sensors (mean = 62%, sd = 27%).  Biomass 408 

models using airborne products were ~5% less biased than global spaceborne products. The best 409 

performing models for local and global height products were PolInSAR (L-band F-SAR; RMSE= 410 

121 Mg ha-1; P-band F-SAR; RMSE= 71 Mg ha-1; UAVSAR; RMSE = 92 Mg ha-1) and X-band 411 

interferometry (TanDEM-X;  RMSE = 142 Mg ha-1), respectively. The GEDI calibrated TanDEM-412 

X AGB product had lower uncertainty than the TanDEM-X AGB product of the equivalent spatial 413 

resolution (RMSE = 139 Mg ha-1; 146 Mg ha-1). ICESat-2 calibration of TanDEM-X heights did not 414 

improve model performance (RMSE = 180 Mg ha-1). The F-SAR products covered only 4-5 of the 415 

field plots and 20% of the study area, altering mean plot biomass (238-277 Mg ha-1; ~50 Mg ha-1 416 

higher than other height products), but, while heights were lower than Hmean (Figure S7), AGB 417 

predictions remained similar to AGBmean (Figure S8). Given the fact that LiDAR is considered one 418 

of the best means of creating areawide biomass maps, the large-footprint waveform LiDAR (LVIS 419 

RH100) had a higher than expected RMSE (174 Mg ha-1), putting it on-par with other global 420 

spaceborne sensors (e.g. C-band SAR interferometry (SRTM; 190 Mg ha-1) and stereo 421 

photogrammetry (ALOS PRISM DEM; 220 Mg ha-1)).  422 

 423 
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 424 

Figure 6: Non-linear height allometry for 11 remote sensing products. See Table 2 for 425 
corresponding model coefficients and fit and validation statistics. 426 

  427 
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3.4 Spatial Patterns and Variability in Biomass 428 

Nearly all AGB products approximated AGBmean, with ~60 Mg ha-1 maximum standard deviation 429 

across all models above 600 Mg ha-1 (~30 m Hmean; grey, Figure 7). All TanDEM-X products 430 

clustered towards the AGBmean, with ICESat-2 and GEDI estimate increasing AGB above 400 431 

Mg ha-1 AGBmean. The ALOS DEM AGB product was lower than average  above 200 Mg ha-1, 432 

while SRTM Hmax AGB was higher than average below 200 Mg ha-1. UAVSAR AGB was highly 433 

variable, but predicted consistently higher than AGBmean. 	./0,$ increased with AGBmean class for 434 

all AGB products (Figure 7; Supplementary Material; Figure S5; Figure S6). The 30 m global 435 

SRTM mangrove biomass product was consistently ~40% higher than AGBmean, while the regional 436 

LVIS AGB product was ~200-400 Mg ha-1 lower compared to AGBmean (Figure 8). Both of these 437 

trends are clear in the difference maps (SRTM AGB – AGBmean and  LVIS AGB - AGBmean; Figure 438 

8A and 8B).  439 

 440 
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 441 
Figure 7: (A) Example map of mean mangrove biomass (AGBmean) and (B) variation across the 442 
9 sensors compared in this study. Relationship between AGBmean and (C) product biomass 443 
(AGBproduct) minus AGBmean (residuals), with standard deviation (within product (color) and 444 
across all products (grey)) from 9 remote sensing products. AGB variability increases with 445 
AGBmean, while the equivalent relative variation decreases with AGBmean (Supplementary 446 
Material, Figure S5).  447 
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 448 
Figure 8: Pixel-level comparison of local mean (across 9 products) aboveground biomass 449 
estimates (AGBmean) and the [A] Global SRTM mangrove biomass and [B] regional LVIS 450 
biomass products. The residual plots indicate a systematic positive difference in the [C] SRTM-451 
based model, increasing with increasing biomass values, and a systematic negative difference 452 
in the [D] regional LVIS biomass model.   453 

  454 
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3.5 Total Biomass and Uncertainty 455 

We compared area-wide totals of nine different locally calibrated AGB products, along with four 456 

regional and globally calibrated AGB products, and two IPCC tier-based estimates (Table 2; 457 

Figure 9). All biomass models calibrated with the local plot data predicted similar total biomass 458 

for the entirety of Pongara National Park (Figure 9) using both global spaceborne (mean=6.8 Tg, 459 

sd=1.1 Tg) and local airborne sensors (mean=7.8 Tg, sd=0.8 Tg).  The global SRTM-based 460 

biomass model predicted ~29% higher total biomass than the locally calibrated SRTM model. The 461 

regionally calibrated tropical forest 3-variable LVIS model predicted ~41% lower biomass than the 462 

single-variable RH100 model. The local mean predictions were ~19-29% higher than the two 1 463 

km global biomass maps [50], [51]. The global models had total uncertainty of 1.1-1.4 Tg or ~18-464 

21%, compared to the 14% total uncertainty in the UAVSAR AGB product. In contrast, the IPCC 465 

Tier 1 area-based estimates for Mangrove Tropical Wet forests had 9.6 Tg or 137% total 466 

uncertainty and the total predicted biomass was 6.9 Tg. The IPCC Tier 2 estimates increased 467 

average biomass from in-situ plot data, resulting in an increase to 7.8 Tg total AGB. The IPCC 468 

estimates were less than 0.8 Tg (12%) difference from the average biomass predicted from all 469 

locally calibrated high-resolution biomass products.470 
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Table 2: Summary of comprehensive biomass calibration and predictions for the 17 products evaluated. All aboveground biomass 471 
(AGB) values are in Mg ha-1 unless other units are specified. Uncertainty in the AGB prediction (σ) was derived from area-wide mean 472 
uncertainty from the AGB model parameter fits. Uncertainty in all baseline datasets was derived from an independent validation of the 473 
mapped values with the plot-level AGB estimates.  474 
 475 
    Calibration Validation Totals 

    
Mean 
AGB Plots ! " RMSE Bias 

Bias 
(%) 

RMSE 
(%) Mean AGB σ 

Area 
(ha) 

Total 
AGB 
(Tg) σ 

               

Global 

[a] ALOS Stereo DEM   
(30 m) 215 17 20.21 0.85 220 7 3 102 178 57 34960 6.4 2.1 

[b] SRTM Local (30 m) 226 16 15.89 0.85 190 18 8 84 232 59 37870 8.4 2.1 
[c] TanDEM-X (12 m) 215 17 4.90 1.29 142 16 8 66 155 29 35295 5.6 1.1 
[d] TanDEM-X (30 m) 215 17 6.47 1.21 146 21 10 68 156 30 36350 5.6 1.1 
[e] TanDEM-X (90 m) 215 17 8.33 1.16 165 26 12 77 169 37 37690 6.1 1.3 
[f] ICESAT-2 TanDEM-X 
 Fusion (100 m) 215 17 9.20 1.11 180 26 12 84 205 45 37771 7.4 1.6 

[g] GEDI TanDEM-X 
 Fusion (30 m) 215 17 4.24 1.30 139 11 5 64 215 41 36808 7.8 1.5 

Local 

[h] LVIS RH100 (50 m) 215 17 11.45 1.01 174 17 8 81 230 57 26650 8.3 2.1 

[i] F-SAR L-Band (30 m) 277 6 2.05 1.56 121 16 6 44 408 50 7322 - - 
[j] F-SAR P-Band (30 m) 238 7 0.10 2.37 71 -11 -5 30 368 33 7595 - - 

[k] UAVSAR (30 m) 215 17 0.01 3.11 92 -5 -2 43 200 28 36191 7.2 1.0 

Baseline 

SRTM Global (30 m)         301 90 31491 10.9 3.3 

LVIS 3-Variable 
Regional (50 m) 

        136 36 26864 4.9 1.3 

Avitabile et al. 2015  
(1 km) 

        170 31 83791 6.2 1.1 

GEOCARBON (1 km)         182 38 73880 6.6 1.4 

IPCC Tier 1         192 264 - 6.9 9.6 
IPCC Tier 2         215 264 - 7.8 9.6 

               

476 
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 477 

 478 

Figure 9: Aboveground biomass totals for [A] nine locally calibrated and [B] six regional, global, 479 
and IPCC-based estimates. Totals are based on the mean estimates across the study area 480 
extrapolated via an area-based estimate. Error bars represent the 95% confidence interval of the 481 
total biomass estimate derived from plot based independent validation. Dotted black line and grey 482 
shaded area in B shows the mean and standard deviation of the locally calibrated area-wide 483 
biomass totals. Note: the y-axis scales between A and B are not fixed to highlight differences in 484 
each figure. 485 
  486 
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4.0 Discussion – 3335 487 

Few previous studies have compared canopy height products from airborne and satellite 488 

products for terrestrial and mangrove forests and those that have are limited in the number of 489 

datasets [55]–[57]. Recently, new satellite sensors were launched and new overlapping airborne 490 

campaigns occurred, collecting a wealth of spatial data.  We evaluate the broad spectrum of 491 

state-of-the-art sensor data products across the full range of height and biomass known to exist 492 

globally in mangrove forest ecosystems, providing a much-needed baseline for sensor 493 

performance. Our major findings are as follows: 494 

[1] height estimates are not consistent across products, with opposing trends in relative 495 

and absolute errors, highlighting the need for an adaptive approach to constraining 496 

height estimates, depending on forest stature; 497 

[2] radar products had the lowest calibration error and bias, with superior results from 498 

airborne instruments and improvements to spaceborne estimates with LiDAR fusion 499 

using height alone; 500 

[3] AGB variability and uncertainty strongly depends on forest stature, with AGBsd 501 

increasing with canopy height, while relative AGBsd variation was highest in low-stature 502 

stands, suggesting the greatest improvements may be in low- to mid-biomass density 503 

ecosystems; 504 

[4] for AGB mapping, a remote sensing product’s sensitivity to variations in canopy 505 

structure is more important than the absolute accuracy of height estimates; 506 

[5] locally-calibrated area-wide totals are more representative than generalized global 507 

biomass models for high-precision biomass estimates; 508 

 509 
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Here, we first consider the more technical aspects of our results (Section 4.1) and follow with a 510 

discussion in the context of scientific and application-focused relevance at local, national, and 511 

global spatial scales (Section 4.2).  512 

4.1 Evaluating Remotely Sensed Forest Height and Biomass 513 

4.1.1 Evaluating Remotely Sensed Mangrove Height 514 

Mangrove canopy height estimates disagreed substantially across sensor type with absolute 515 

errors increasing as a function of canopy height. We attribute these differences almost 516 

universally to the sensor measurement approach capturing canopy height [56]. An extreme 517 

example of the effect of measurement approach is with the ALOS PRISM product; Though past 518 

work highlighted the ALOS PRISM product as capable of capturing broad successional patterns 519 

in mangrove stands [58], here, height estimates were insensitive to both low and tall stature 520 

forests compared to active remote sensing methods. Our comparison of remotely sensed height 521 

to plot-level height percentiles from tree-level inventory measurements highlights major 522 

differences in what part of the forest canopy is being measured with each height estimate 523 

(Figure 3). InSAR instruments are simultaneously sensitive to height and vegetation volume 524 

density, which is preferable for biomass modeling. The existing SRTM Hmax product is most 525 

representative of maximum tree height, but these estimates have high error (RMSE: ~7-8 m). 526 

The 12 m TanDEM-X phase center elevation product captures the 75th percentile of tree heights 527 

with 50% lower error than SRTM (RMSE: ~4 m) – potentially since TanDEM-X measurements 528 

were more closely temporally aligned to the field campaign (5 years vs. 17 years for SRTM). In 529 

both cases, field based validation of these remote sensing estimates is key to understanding the 530 

specific height attribute represented with a particular remote sensing product [59] and sensor 531 

choice should be dependent on the end goal (e.g. height vs. biomass).  532 
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Radar instrument wavelength and measurement technique reflected specific height anomalies. 533 

SRTM heights (C-band PolInSAR) differed positively from average with increasing canopy 534 

height, but height estimates would be substantially underestimated without the ICESat GLAS-535 

calibration and is likely affected by secondary structural variables (e.g. canopy cover or basal 536 

area). In agreement with past work [39], UAVSAR (L-band) heights were consistent (~±10 m 537 

average difference) until ~40 m height, above which heights became shorter than average – 538 

evidence of sensor saturation. TanDEM-X offers a precise, high-resolution height product that 539 

makes it one of the best options for continuous mapping of mangrove stands at a global scale. 540 

With the inclusion of additional height data (e.g ICESat-2 and GEDI), height estimates became 541 

less biased (up to 20 m offset in the tallest stands), pointing to a key fusion application in future 542 

studies. However, when calibrating continuous height products with sampling instruments, 543 

ground surface identification is a major issue in closed canopy systems and is likely 544 

exacerbated in the presence of water and dense aboveground mangrove root networks. All of 545 

these trends are consistent with our expectations of radar wavelength and forest height. In 546 

general, longer wavelengths penetrate further into the canopy, decreasing height estimates from 547 

the canopy top, but we expect height estimates are also influenced by canopy density. 548 

4.1.2 Sensor Aboveground Biomass Calibration and Uncertainty 549 

The height-biomass allometry across sensors varied from sublinear to linear with high 550 

uncertainty to more power-like models with low calibration uncertainty. In fact, we found a 551 

consistent negative trend between the scaling coefficient and model uncertainty. We also found 552 

a consistently higher mean biomass prediction with high-uncertainty models with lower scaling 553 

coefficient values – suggesting higher uncertainty models may be systematically over predicting 554 

biomass density [9]. Sensor measured height was the major factor affecting calibration 555 

uncertainty in our analysis, but other factors (e.g. plot size, plot shape, plot sample location, 556 

sample size, geolocation errors) can directly impact biomass calibration models and predictions. 557 
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Future work in mangrove systems that independently evaluate these factors affecting model 558 

errors will provide more precise estimates of the spatial distribution of prediction uncertainty.  559 

  560 

In general, radar sensors provided the lowest error and bias biomass calibration of the 11 local 561 

models, but the addition of LiDAR-derived canopy heights improved model statistics. InSAR 562 

(TanDEM-X) is likely the best available option for developing an updated global mangrove 563 

biomass product, evidenced by the low errors in calibration minimally affected by product 564 

resolution (e.g. aggregating by a factor of 7.5 inflated RMSE by only 9%). The local scale L-565 

band UAVSAR Polarimetric InSAR product performed even better, likely due to higher 566 

sensitivity to canopy cover, trunks and woody components (i.e. basal area). The higher than 567 

expected RMSE in the LVIS AGB model, suggests canopy height alone is a less powerful 568 

predictor than the phase center height captured with radar instruments. Radar-LiDAR fusion 569 

approaches (e.g. GEDI-corrected TanDEM-X heights) improve calibration by reducing bias and 570 

RMSE, but even greater benefits are possible in areas with greater topographic relief (e.g. non-571 

mangrove systems), since LiDAR is primarily improving heights through more accurate ground 572 

detection. Though our intercomparison provides a robust analysis of height-biomass allometry 573 

for calibration of remote sensing datasets, we did not explicitly evaluate the suite of potential 574 

multi-variate approaches possible for predicting spatial distributions of AGB (e.g. [49]), 575 

especially for LiDAR sensors (e.g. GEDI, ICESat-2, and LVIS). As such, the results presented 576 

here do not emphasize the full benefits of using LiDAR-based multivariate models for biomass 577 

prediction. Future biomass calibration approaches should incorporate multivariate statistical 578 

approaches to take full advantage of the ability of LiDAR to capture internal canopy structure. 579 

4.1.3 Spatial Patterns and Variability in Biomass 580 

Summarizing height-biomass trends from pixel-level predictions highlights the product-specific 581 

variations across AGB products in this tall mangrove system. Though plot based calibration 582 
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models were often super-linear, site scale height-biomass allometry was more linear across all 583 

products, with AGBmean increasing by 13 Mg ha-1 per unit Hmean. The most non-linear calibration 584 

model (UAVSAR) deviated most clearly from the general linear trend increasing more rapidly 585 

than AGBmean from 0-25 m and increasing less rapidly above 25 m Hmean. The observed 586 

consistent linear relationship is ideal for cross-calibration, enabling more compatible multi-587 

sensor approaches to biomass monitoring [60]. Variability of a single AGB product was on the 588 

same order as the AGB variation across all products. Between 0 and 30 m, the standard 589 

deviation in mean biomass across all sensors increased linearly from 20-80 Mg ha-1. Trends in 590 

pixel-level prediction uncertainty were similar for all sensors and within the range of AGB 591 

variation, increasing from 0-30, leveling off, then increasing to a maximum of 60-90 Mg ha-1. 592 

Relative to traditional forest inventory methods, all locally calibrated remote sensing estimates 593 

had pixel-level uncertainty that was low, suggesting the use of a remote sensing framework is 594 

more important than the choice of sensor itself.  For instance, the worst performing product 595 

calibration (ALOS PRISM; RMSE =102%) only translated to a marginal site-wide average 596 

uncertainty (~30-80 Mg ha-1), suggesting a product’s sensitivity to variations in canopy structure 597 

is more important than the absolute accuracy of height estimates. 598 

 599 

Calibration of remote sensing products should be as local as possible in areas of high biomass 600 

density. Our comparison of the global SRTM biomass product to AGBmean highlights the effects 601 

of generalized predictive models excluding representative plot data. The global product was 602 

systematically ~40% higher than the local predictions, resulting in more than 400 Mg ha-1 higher 603 

biomass density in some instances of high AGBmean. While the Simard et al. [9] map is unable to 604 

accurately capture biomass density in the high biomass areas of Pongara National Park, we 605 

believe the core cause is lack of calibration data in these extremely tall stands. Moreover, the 606 

map clearly provides the most accurate AGB predictions in mid-stature stands (10-20 m), where 607 

nearly all plot-level calibration data and global mangrove canopy heights reside. Alternatively, 608 
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the regional LVIS AGB product is more precise, but is negatively biased, remaining within 100 609 

Mg ha-1 throughout the AGBmean range. The negative bias is similarly related to the product 610 

calibration, relying on lower mean wood density forest inventory data, pushing predictions lower 611 

than expected in Pongara, where Rhizophora sp. have ~0.9 specific gravity. We suggest 612 

establishing future field plots and planning airborne campaigns that fill data gaps in high-613 

biomass locations. For example, a targeted approach could use current AGB estimates to 614 

identify key areas of high AGB density with few or no available field data. Adding these 615 

additional in-situ observations will ultimately improve AGB calibration and provide more stable 616 

AGB predictions.  In summary, these two global and regional products highlight the importance 617 

of appropriate plot-level calibration data to ensure both precise and accurate area-wide biomass 618 

distributions.  619 

 620 

Two opposing patterns were clear with respect to variation in spatial biomass trends with forest 621 

stature: [1] absolute variation increases and [2] relative variation decreases. The extreme, tall 622 

forests have ~200 Mg ha-1 (or ~20%) standard deviation on average across sensor predictions. 623 

Short forests (0-15 m) disagree by 40 Mg ha-1 (or ~50%), on average. So, where will biomass 624 

model improvements be most impactful at the global scale: short or tall stands?  We evaluated 625 

biomass models in a unique system capturing greater than 60 m of variation in mangrove forest 626 

structure, but more than 95% of the worlds mangroves are less than 40 m tall [9], suggesting the 627 

greatest benefits may be in low- to mid-biomass density ecosystems. Biomass is an essential 628 

biodiversity variable [61], so improved biomass predictions stand to also directly affect biodiversity 629 

mapping and conservation efforts. These improvements will help to better capture changes in 630 

biomass over time in areas of growth, regeneration, degradation, and loss [62]. With this 631 

knowledge, we suggest developing global biomass products that are most precise in low- to mid-632 

stature forests, but identifying and locally calibrating biomass models in tall-stature forests. 633 
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4.1.4 Total Biomass and Uncertainty 634 

Locally calibrated biomass products provided similar total area-wide biomass estimates (all 95% 635 

confidence intervals overlap), even though biomass distributions often differed depending on 636 

sensor choice, having implications for carbon reporting and forest management. Accurate 637 

representations of the AGB distribution is key for identifying potential sites for restoration or 638 

conservation and carbon accounting priority [63], [64].  639 

 640 

Globally available biomass maps [50], [51] performed well, underestimating total biomass by only 641 

~0.6 Tg (6.2-6.6 Tg totals), with total uncertainty ranging from 18-20%. In contrast, compared to 642 

the mean AGB predicted with local models, the global SRTM model [9] over predicted total 643 

biomass by ~3.9 Tg or 56%. The overprediction reflects two major issues: [i] the structure of this 644 

extremely tall mangrove stand is more closely analogous to a high wood density tropical forest 645 

than mangroves and [ii] inclusion of representative plot data is essential when building global 646 

biomass products (i.e. predictions outside of observations should be considered with caution).  647 

 648 

From a carbon accounting perspective, the high uncertainty of these predictions substantially 649 

reduces their utility in tall forest stands, suggesting these global, coarse resolution generalized 650 

models should not be universally relied on for precise and accurate forest carbon estimates. The 651 

majority of mangrove calibration data resides in shorter stands [9] and it is here where global 652 

biomass maps have less biased carbon estimates. Future global carbon maps should incorporate 653 

updated global height datasets that are freely available (e.g. TanDEM-X 90 m resolution), while 654 

also addressing the need for recalibration of past datasets as more calibration plot data becomes 655 

available. Surprisingly, the average area-based IPCC biomass density produced superior 656 

predictions, albeit not spatially explicit, limiting their utility for forest management and 657 

conservation.  658 

 659 
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4.2 Implications for Multi-scale Forest Structure Applications 660 

4.1 Local Scale 661 

Mangrove forest height is uncertain across the products evaluated, posing a major challenge for 662 

incorporating remote sensing products into local forest management schemes. We found the 663 

relative uncertainty across height products to be highest in low stature stands (>50% in stands 664 

<15 m), while in the tallest stands (~45 m Hmean) uncertainty was ~20% or 7-8 m. For context, 665 

many forest definitions rely on height thresholds of 5 or 10 m, so the uncertainty in these lower 666 

stature forests may impact estimates of forest extent, depending on the product selected [65]. 667 

Further, canopy height is a major determining factor in selecting harvest or conservation areas 668 

and these model errors could potentially lead to misinformed local forest management decisions 669 

[66]. In the context of coastal flood protection, mangrove forest density/cover improves flood 670 

buffering capacity and consistent monitoring over time will provide consistent and precise 671 

estimates for superior disaster planning [67]. The broad relationship between cover and forest 672 

height suggests a similar flood buffering capacity may be observed in taller mangrove forests. 673 

 674 

4.2 National Scale 675 

Inconsistent forest height estimates did not translate to dramatically different estimates of area-676 

wide AGB – an encouraging finding for adopting a diverse array of sensors, depending on data 677 

availability, for national carbon accounting [27], [60]. The most important factor to consider at 678 

the national scale is the availability of representative forest plot data to ensure the accuracy of 679 

remote sensing-based AGB predictions [68]–[73].  680 

 681 

Interestingly, even in the absence of field data or spatially explicit estimates (e.g. IPCC), 682 

average mangrove biomass density provided unbiased total AGB estimates (in this case). The 683 

accuracy of IPCC estimates is encouraging from a mangrove biomass and accounting 684 
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perspective (~12% from locally calibrated remote sensing-based totals), particularly with the 685 

inclusion of mangroves within payment for ecosystem service (PES) schemes such as REDD+, 686 

since nominally attributed values are deemed to be generally representative of reality [74], [75]. 687 

Middle and low income countries make up the majority of mangrove holding nations and forest 688 

area [76], [77], but may be less likely to prioritize expensive field data for improved calibration 689 

models. In these cases, the use of the IPCC estimates for regional and national reporting is 690 

encouraging, but should be more thoroughly evaluated in other countries. Regardless of the 691 

accuracy, the high true uncertainty (based on validation) of IPCC totals (~130%) is still a major 692 

barrier limiting their application in the context of PES, which reduce valuations as AGB 693 

uncertainty increases [75].  694 

 695 

Spatially explicit estimates made with locally calibrated AGB models were essential to reducing 696 

uncertainty in area-wide total mangrove AGB, underscoring the importance of applying remote 697 

sensing-based mapping of AGB for carbon accounting, whenever feasible [79]. In contrast, the 698 

global mangrove AGB model [9] was ~40% biased in every height class in comparison to the 699 

locally calibrated estimates. After a direct comparison of AGB predictions from our local 700 

allometric model, we can clearly attribute this consistent bias to a global allometric height-701 

biomass model calibrated without reference data representing the forest heights observed in 702 

Pongara National Park (maximum observed plot height in the Simard et al. study was ~40 m; 703 

Figure 10).  In the same respect, application of regional calibration models outside of the 704 

specific forest systems can result in bias, altering the total estimates AGB in a forest [5]. In 705 

short, both regional and global AGB products must be locally re-calibrated and validated before 706 

being taken as “truth” at the local or national scale [80], [81]. 707 

 708 
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4.3 Global Scale 709 

The next generation of global mangrove forest structure (height and AGB) products will need to 710 

address three major challenges: [1] reducing uncertainty in remotely sensed heights covering 711 

the vast majority of mangrove area, [2] ensuring representativeness of sparse plot data and 712 

AGB allometry, and [3] understanding of factors controlling secondary structure variables 713 

beyond height that directly influence AGB (e.g. basal area). 714 

 715 

Approximately 95% of all mangrove forests are below 40 m in height with a global median of 716 

~13 m – around 50% of global mangrove area has between 50-70% uncertainty in remotely 717 

sensed height estimates [9]. In effect, our findings of substantial disagreement in height 718 

estimates across sensors for the most common height range of mangroves globally suggests a 719 

universal field-based plot height-biomass allometry cannot be confidently applied across 720 

sensors. Yet, the comparisons made here provide clear expectations for the biases for each 721 

height product and the potential for cross calibration [60]. The near-linear height biomass 722 

relationship present across most remote sensing products in this study suggests cross-723 

calibration is possible with a maximum total uncertainty of ~50-100 Mg ha-1. Similar to the 724 

disagreements in height, relative variations in AGB predictions across products was high in 725 

short stature forests (<15 m), reaching between 50-200%. Given the high cross sensor 726 

variability it is critical global continuous height products be created with rigorously validated and 727 

spatially continuous height products (e.g. TanDEM-X). Moreover, the key to global validation of 728 

canopy height is likely to come with spaceborne LiDAR sensors  (e.g. GEDI; [22]) with direct 729 

ground detection – a major limitation with PolInSAR height estimates in other forests with 730 

topography [23].  731 

 732 

Global AGB calibration datasets are sparse and likely have unrepresentative tree-level 733 

allometric estimates of biomass [5], [31], [82] (Figure 10). The most exhaustive remotely sensed 734 
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mangrove specific AGB map to date used 332 AGB field plots to calibrate ICESat-GLAS 735 

adjusted SRTM data [9]. Spatial biases are especially prevalent in the global calibration dataset, 736 

with 45 % of plot data from a single country (Bangladesh). Simard et al. [9] compared several 737 

regional allometric relationships with significant biases. They did not have allometry for the 738 

Atlantic coast of Africa which may be reflected in the observed biases. Improved plot-level 739 

calibration data is clearly needed to improve the predictions of global models [83]. Sensor 740 

calibration in unique forest ecosystems is limited by a lack of unrepresentative plot-based 741 

calibration data (i.e. plot-level biomass estimates may be inaccurate due to biased tree-level 742 

allometry; [84], [85]). Here, we constrained our analysis to a single allometric equation [31], but 743 

the representativeness of this equation in such an understudied ecosystem remains unknown 744 

[86], [87]. Our evaluation of variation due to plot-level allometric biomass estimates using the 745 

Komiyama et al. [32] equation the highlights potential for a propagation of changes in plot-based 746 

calibration by a simple change in tree-level allometry [73]. In protected and unique systems, as 747 

found in Pongara National Park, non-destructive allometric equations with novel technologies 748 

(e.g. Terrestrial Laser Scanning; [88]) can bridge a critical gap in our understanding of scaling 749 

relationships without detrimentally impacting the study system [82], [89], [90]. Future work 750 

should focus on updating these scaling relationships [91] and assessing their impact on sensor 751 

calibration [92] to better predict changes in forest biomass over time [62], [93], [94].  752 

 753 

  754 
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 755 

Figure 10: Comparison between Simard et al. [9] global Hmax biomass predictions (red) and the 756 

locally calibrated Hmax model developed in this study (blue).  757 
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Major advances in global AGB modeling in mangrove systems will come with the inclusion of 758 

measured or modeled secondary structural variables. Only approximately half of the variation in 759 

global AGB models can be explained by height alone [9], suggesting secondary axes of 760 

variation  (e.g. basal area, stem density, regional allometry) will substantially improve mapped 761 

AGB. Of the available plot data, efforts to understand the drivers in spatial variability of these 762 

secondary structural characteristics will be key in precisely capturing AGB at a global scale. 763 

 764 

Moving forward – especially in the context of this “golden age” of forest-focused active remote 765 

sensing – the findings of this study enable sensor cross calibration for consistent monitoring of 766 

forest function. Calibrated forest height is a key physiological variable representing organismal 767 

function beyond biomass alone (e.g. moderate disturbance: [95]; hurricane damage: [96]-[97]; 768 

drought susceptibility: [98]–[100]). With the sensor evaluation performed here we gain the ability 769 

to monitor three-dimensional structural change across sensors in mangrove forest systems 770 

globally by matching past spaceborne missions (e.g. SRTM) with ongoing (e.g. TanDEM-X, 771 

GEDI and ICESat-2) and future (e.g. BIOMASS or NISAR) missions.  772 

  773 
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Figure Captions 1078 

Figure 1: Map of Pongara National Park with heights from SRTM-based global height product 1079 
(from Simard et al [9]). Inventory plots were placed such that canopy heights were sampled 1080 

proportionally according to the height distribution across the site.   1081 
 1082 

 1083 

Figure 3: Workflow detailing major processing and analysis steps used to compare 17 area-1084 
wide biomass products in Pongara National Park. 1085 

 1086 
Figure 3: Calibration models used to create spatially continuous height estimates by fusing 1087 
ICESat-2 mean canopy height and GEDI RH100 to TanDEM-X continuous heights. Red points 1088 
are removed outliers in the ICESat-2 calibration (anomalous beam 3 data not shown). Colored 1089 
points in C show anomalous elevation values that were removed from the final calibration model 1090 
(B and D). 1091 
 1092 

Figure 4: [A] Comparison between maximum field measured height and remotely sensed 1093 
heights (RMSE shown). Several remote sensing products estimate maximum field measured 1094 

height, while some represent a specific percentile of field measured tree height. [B] RMSE and 1095 
[C] bias in the comparison between field tree height percentiles (50th to 100th) and each remote 1096 

sensing product. Colors correspond to point color shown in panel A and X’s indicate the 1097 

percentile at which RMSE or bias are lowest. 1098 
 1099 

Figure 5:  (A) Example map of mean mangrove canopy height (Hmean) and (B) variation across 1100 
the 9 sensors compared in this study. Relationship between sitewide mean mangrove canopy 1101 
height (Hmean) and (C) product heights minus Hmean and standard deviation (within a product 1102 
(color) and across products (grey)) from 9 remote sensing products. Variability increases with 1103 
Hmean, while the equivalent relative variation decreases with Hmean (See Supplementary Material 1104 
Figure S3).  1105 
 1106 

Figure 6: Non-linear height allometry for 11 remote sensing products. See Table 2 for 1107 
corresponding model coefficients and fit and validation statistics. 1108 

 1109 
Figure 7: (A) Example map of mean mangrove biomass (AGBmean) and (B) variation across the 1110 

9 sensors compared in this study. Relationship between AGBmean and (C) product biomass 1111 
(AGBproduct) minus AGBmean (residuals), with standard deviation (within product (color) and 1112 

across all products (grey)) from 9 remote sensing products. AGB variability increases with 1113 

AGBmean, while the equivalent relative variation decreases with AGBmean (Supplementary 1114 
Material, Figure S5).  1115 

 1116 
Figure 8: Pixel-level comparison of local mean (across 9 products) aboveground biomass 1117 

estimates (AGBmean) and the [A] Global SRTM mangrove biomass and [B] regional LVIS 1118 

biomass products. The residual plots indicate a systematic positive difference in the [C] SRTM-1119 
based model, increasing with increasing biomass values, and a systematic negative difference 1120 

in the [D] regional LVIS biomass model.   1121 

 1122 
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Figure 9: Aboveground biomass totals for [A] nine locally calibrated and [B] six regional, global, 1123 

and IPCC-based estimates. Totals are based on the mean estimates across the study area 1124 
extrapolated via an area-based estimate. Error bars represent the 95% confidence interval of 1125 

the total biomass estimate derived from plot based independent validation. Dotted black line and 1126 
grey shaded area in B shows the mean and standard deviation of the locally calibrated area-1127 

wide biomass totals. Note: the y-axis scales between A and B are not fixed to highlight 1128 

differences in each figure. 1129 
 1130 

Figure 10: Comparison between Simard et al. [9] global Hmax biomass predictions (red) and the 1131 
locally calibrated Hmax model developed in this study (blue).1132 
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