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ABSTRACT

Managing and referencing design knowledge is a critical ac-
tivity in the design process. However, reliably retrieving useful
knowledge can be a frustrating experience for users of knowl-
edge management systems due to inherent limitations of standard
keyword-based searches. In this research, we consider the task
of retrieving relevant lessons learned from the NASA Lessons
Learned Information System (LLIS). To this end, we apply a
state-of-the-art natural language processing (NLP) technique for
information retrieval (IR): semantic search with sentence-BERT,
which is a modification of a Bidirectional Encoder Representa-
tions from Transformers (BERT) model that uses siamese and
triplet network architectures to obtain semantically meaningful
sentence embeddings. While the pre-trained sSBERT model per-
Sforms well out-of-the-box, we further fine-tune the model on data
from the LLIS so that it learns on design engineering-relevant
vocabulary. We quantify the improvement in query results us-
ing both standard sBERT and fine-tuned sBERT over a keyword
search. Our use case throughout the paper is to use queries re-
lated to specific requirements from a NASA project. Fine tuning
the sBERT model on LLIS data yields a mean average precision
(MAP) of 0.807 on queries based on information needs from a
real NASA project. Results indicate that applying state-of-the-art
natural language processing techniques, especially when fine-
tuned using engineering data, to design information retrieval
tasks shows significant promise in modernizing design knowl-
edge management systems.
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1 INTRODUCTION

Leveraging repositories of design information is critical to
informing new designs. Knowledge management assists an
organization in fully utilizing its intellectual assets. NASA’s
Lessons Learned Information System (LLIS) [1], one of NASA’s
knowledge management systems, contains thousands of lessons
learned across all NASA centers and is a valuable resource
for project managers and engineers. However, past reviews of
NASA’s LLIS indicate that the system is underutilized, in part
because it is “not user friendly” and is “unhelpful” [2]. While
there are a variety of reasons for these judgments, one method
for improving the usability and usefulness of such systems is by
improving its information retrieval (IR) capabilities. Particularly
with large repositories, it can be difficult for users to retrieve rel-
evant information using standard keyword or metadata searches.
Consequently, the usefulness of such repositories is diminished
if users are unable to efficiently search for the information they
need.

Recent advances in natural language processing (NLP) have
enabled significant improvements in information retrieval ca-
pabilities. Bi-directional Encoder Representations from Trans-
formers (BERT) [3] models have in recent years revolutionized
NLP and show promise in improving current knowledge man-
agement systems for design. BERT models are trained using a
Masked Language Model (MLM) in which the models learn to
predict masked words, thereby learning context from both left-
to-right and right-to-left (i.e., a “bi-directional” encoder). BERT
models are trained over thousands or millions of documents
from sources covering diverse domains such as Wikipedia so
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that they are broadly applicable. Semantic search with sentence
embeddings using siamese BERT networks (sentence-BERT, or
sBERT) [4] is a BERT-based method suited to the task of infor-
mation retrieval.

However, the specialized technical vocabulary common in
engineering documentation hinders the usefulness of information
retrieval systems that have not been specifically trained on or do
not contain ontologies for engineering concepts. Consequently,
a pre-trained sSBERT model has likely not seen specialized engi-
neering vocabulary in context, which could adversely affect per-
formance for engineering applications. While it is prohibitively
expensive to train an SBERT model from scratch, fine-tuning al-
lows sBERT models to be specialized for a particular task, such
as matching job candidates with positions [5]. One of the ad-
vantages of BERT models is that fine-tuning does not require
substantial re-architecting of the model; instead, only one ad-
ditional output layer is required [3]. Moreover, while training
sBERT models from the ground up is too expensive for most in-
dividual tasks, fine-tuning requires only a fraction of the data and
resources.

In this research, we present a semantic search capability
enabled by sBERT that has been fine-tuned using documents
from the NASA LLIS, which contains publicly available lessons
learned from NASA. This model utilizes the state-of-the-art in
natural language processing, while being specifically tuned to
the needs of design information retrieval. While this model is
tuned for LLIS searches, it can be applied to other repositories
with content similar to the LLIS; alternatively, the model may be
further fine-tuned (building on the model fine-tuned using LLIS
data) on additional design engineering specialized data. We show
and quantify the improvement of the fine-tuning compared to
the baseline, pre-trained SBERT model (not fine-tuned on LLIS
data).

2 BACKGROUND

Information retrieval in design is the task of obtaining re-
sources relevant to an information need from a repository of such
resources. There are variably sophisticated ways in which infor-
mation can be retrieved, including indexing [6] and hierarchical
thesauri [7]. Ontology-based information retrieval is also popu-
lar [8]. In engineering design, much emphasis has been placed
on semantic networks, which represent knowledge and links be-
tween information as a collection of nodes and edges [9]. Se-
mantic networks have been used in the past by NASA engineers
to create SemanticOrganizer, a web application for knowledge
management, search, and document organization across a range
of projects and users [10]. Further development created XSearch,
a platform that allows users (i.e., flight controllers) to search
multiple mission-relevant databases with a signal query [11].
This process relies on textual similarity in addition to seman-
tic networks, and also recommends cross-referenced documents
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via outbound and inbound citation identification. These methods
may outperform keyword searches [12], but are dependent on the
construction and continued relevance of the networks. Network
analysis metrics can be applied to understand knowledge rela-
tions contained in these forms [13]. Some types of networks can
be generated dynamically [14] or can be learned from engineer-
ing design-specific data [15]. The networks that are specialized
for engineering-specific applications tend to perform best.

While some intelligent search capabilities have been pro-
posed [16], information retrieval in design has not kept pace
with the state-of-the-art in artificial intelligence. Natural lan-
guage processing in particular has seen significant strides in re-
cent years largely due to the use of BERT models. As much
of the documentation relevant to engineering design is stored,
at least in part, in natural language format, the application of
BERT models to information retrieval in design shows promise.
BERT models are trained on enormous amounts of diverse data,
making them more powerful than most models built from scratch
for a particular task. BERT and its variations have been applied
to several different tasks within natural language processing, in-
cluding information retrieval [17-19]. sBERT is a more recent
adaptation that utilizes a siamese (i.e., parallel processing of two
or more texts) BERT-network to obtain sentence embeddings
that are semantically meaningful, a variation that is particularly
well-suited to semantic search [4]. Applied to semantic similar-
ity tasks, sSBERT demonstrates significant computational gains
over standard BERT [4]. sBERT-enabled semantic search has
been successfully applied to specialized queries, including coro-
navirus information retrieval [20] and information retrieval for
infrastructure damage queries [21]. Semantic search differs fun-
damentally from keyword searches in that it considers meaning
and context instead of only exact matches of a word. Equiv-
alently, semantic search is more comparable to how a human
would find links from query to search result.

3 METHODOLOGY

This paper uses semantic search with fine-tuned sBERT to
retrieve relevant lessons from the NASA LLIS. Unless otherwise
noted, all steps are implemented using sentence-transformers in
Python [4]. Information retrieval can be defined as a process
by which a system obtains documents relevant to a user’s query.
In design, the documents a user may want to search take many
forms. In this work, we consider documented lessons learned in
NASA’s LLIS. Design case studies and notebooks may also be
useful to query [7]. Searches can use the text of the documents
and/or metadata associated with those documents. In the case of
the LLIS, there is limited metadata, but it is not available for all
documents in the data set. Information retrieval is valuable for
large sets of documents in which manually searching documents
is inconvenient or untenable. An effective information retrieval
system can improve the value of the stored data by increasing its
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accessibility to users of that data. The methodology is summa-
rized in Fig. 1.

3.1 Use Case and Query Formulation

We consider a use case for this search as follows: a project
manager on a NASA project needs to capture relevant lessons
learned from past projects to identify risks and possible mitiga-
tion strategies in a new project. We adopt this use case for the
scope of this paper; however, the information retrieval task is
useful throughout the design process and a system’s life cycle.
The information needs considered in this paper are based on real
requirements documented for NASA’s Human Landing System
program [22], specifically the first three listed in the functional
and performance requirements. The project manager is searching
for project risks relevant to the following general areas:

1. Cyber security: This information need is specifically re-
lated to cyber security, which includes information technol-
ogy, operational technology, and other systems specialized
for HLS [22]. It does not include physical security such as
building security or security personnel at launch sites.

2. Fault tolerance: This information need covers strategies for
fault tolerance, including hazard and risk analysis needed
to decide the level of failure tolerance required as well as
specific implementation methods [22].

3. Fault isolation: This information need relates to isolation
and recovery from faults [22], which is distinct from fault
tolerance, above. We include these two closely related in-
formation needs to test how the information retrieval system
distinguishes between queries with similar words, but differ-
ent concepts.

An effective query is a representation of a user’s information
need. In practice, not all queries are effective representations of
this information need. While in-depth strategies for query for-
mulation are outside the scope of this paper, we conducted small
trial-and-error studies to ensure our chosen queries are good rep-
resentations of the information needs outlined in the HLS re-
quirements. These trials led to the decision to augment the basic
topic of the query with additional keywords to further refine the
information need. For instance, we are looking for methods to
improve the fault tolerance of the system rather than definitions
of fault tolerance. We adopt the following three queries based on
the information needs listed above:

1. “Cyber security data and systems”
2. “Fault tolerance methods”
3. “Fault isolation methods”

3.2 Search Formulation
A key decision point in formulating the problem is whether
the search is symmetric or asymmetric. A symmetric search in-

volves a query and search result of roughly equivalent length;
a rule of thumb to determine whether a search is symmetric is
to ask whether the query and result could be reversed and for
the problem to still be logical. An example of a symmetric
search is retrieving similar scientific articles to a queried arti-
cle. An asymmetric search, in contrast, involves querying the
system with a short phrase and retrieving longer documents. In
this research, we consider the latter. While it may be useful to
input longer documents, such as requirements, to the search sys-
tem, this places restrictions on what is required of the user in
order to search the system and, therefore, at which phase of the
design process the search can be conducted. Instead, by allow-
ing a flexibly formatted, short phrase as the query, our search
system can be used flexibly and, especially, early in the design
process, before substantial project documentation is available. A
final consideration is that, since the encoder limits the maximum
length of the documents to 512 tokens, we search passages rather
than entire documents that are relevant to the query. Traceability
is maintained such that, when a relevant passage is found, the
entire document can be retrieved, with the relevant passage high-
lighted. For this problem, we define a passage as a subsection
of the lessons learned document. All unstructured, text-based
(i.e., non-metadata) subsections of the documents are considered,
at least for those lessons for which they are completed. These
are: Abstract, Driving Event, Lesson(s) Learned, Recommenda-
tion(s), and Evidence of Recurrence Control Effectiveness.

3.3 sBERT Model Selection

There are options for pre-trained sBERT models to use in
the search system hosted on Huggingface. In general, several
factors must be considered when selecting a pre-trained model.
First is whether the model is trained for symmetric or asymmet-
ric search. The inputs planed for use with the model should
be in the same format as those used to train the model. Multi-
QA models generalize well because they are trained on exten-
sive (215M) question-answer pairs from multiple sources, in-
cluding Stack Exchange, Quora, WikiAnswers, and Yahoo An-
swers. MSMARCO models are built from a large information
retrieval corpus created from real user queries and also tend to
generalize well. Models may be tuned either for cosine similar-
ity, which measures the cosine of the angle between two vector-
ized documents (D;, D;) in Equation 1, or dot product. Models
tuned for cosine similarity tend to prefer the retrieval of shorter
documents, while dot product models prefer longer documents.
Other models use normalized vectors which can be used with ei-
ther cosine similarity or dot product. Finally, a model will need
to be selected that is with appropriate language(s) for the applica-
tion. Our application includes only English-language documents,
so we do not opt for a multi-lingual model. With these consider-
ations, we select the Multi-QA model multi-qa-mpnet-base-cos-
v1, which has slightly higher performance compared to similar
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ASYMMETRICAL SEMANTIC SEARCH WITH FINE-TUNED SBERT
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FIGURE 1: Summary of the methodology. Methodology is shown generally for asymmetric search tasks. In this research, design documents are

lessons learned from the NASA LLIS [1].

models at a marginal cost to speed. This model additionally is
appropriate for dot-product, cosine similarity, or Euclidean dis-
tance measures, providing a degree of flexibility in our query
system.

&)

3.4 Fine-Tuning

The selected base sSBERT model is fine-tuned on the LLIS.
Fine-tuning models meant for asymmetric search requires pairs
of queries and results. In many cases, as in ours, this data is
unavailable. It would require a prohibitive amount of time and
effort for humans to generate queries for the LLIS documents.
Instead, we use a method for synthetic query generation, which
creates a synthetic query given a document, thereby allowing us
to fine-tune the model when training data is unavailable [23]. The
queries are generated using docTTTTTquery [24], an improve-
ment to doc2query that uses TS [25] as the expansion model.
docTTTTTquery has been trained on an MS MARCO [26] model
from BelR, specifically query-gen-msmarco-t5-large-v1 [27]. A
small subset of synthetically generated queries is given in Table
1. Three queries are produced per document (in our case, pas-
sage since we decided to subdivide the documents). This gives
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31,530 total pairs for training, with a small subset withheld for
the evaluator.

Some models require annotations for each training pair. For
instance, a similarity score may be provided. In the case of infor-
mation retrieval, no such annotations are required. Instead, the
loss function Multiple Negatives Ranking Loss, which is suitable
for information retrieval tasks, takes as input pairs of queries and
results. For each query, it assumes that all results with which it
is paired are positive pairs and that those that are not specified
as pairs are negative pairs. An Information Retrieval Evaluator
is used to evaluate the model during training. This evaluator re-
trieves the top k most similar documents to each query by mea-
suring Mean Reciprocal Rank, Recall@k, and Normalized Dis-
counted Cumulative Gain (NDCG). The model is fine-tuned for
two epochs and the evaluator is run every one-hundred iterations.
The fine-tuned model can be saved and referenced for semantic
search in the same manner as the pre-trained model.

Fine-tuning, unlike training a BERT model from scratch, is
attainable given moderate computing power. Moderate GPU us-
age can accelerate the process considerably. Depending on your
computing power, it may be necessary to decrease the batch size,
which increases run time. It is usually recommended to train us-
ing larger batches where possible. In our experience fine-tuning
for this paper, switching from CPU to moderate GPU dropped
the run time from being on the order of days to under an hour.
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TABLE 1: Subset of synthetically generated queries, replicated exactly
from the algorithm output other than adding capitalization to acronyms
for readability.

Synthetic Query Lesson Excerpt

What can you test
for HPH

Trace contaminants in high-purity hy-
drazine (HPH) propellant impact a
wide variety of commercial, Depart-
ment of Defense (DoD), and NASA
missions. Depending on thruster de-
sign, contaminants must be kept at ex-
tremely low levels and are verified as
such by routine analysis...

What would hap-
pen if the propulsion
subsystem fail

Propulsion subsystem check valves
on the Juno spacecraft malfunctioned
during preparations for a bi-propellant
main engine orbital maneuver. Al-
though the failure mechanism had no
major impact on the Juno mission, it
poses a risk that an engine may oper-
ate outside of its qualified mixture ra-
tio, which could lead to mission loss...

Why did my VFM

go wrong during
welding

A failure occurred during the first at-
tempt at welding of the Europa Clip-
per Venturi Flow Meter (VFM) flight
units. During the first pass, excessive
heat input to the welding area caused
the weld root reinforcement material
to melt. This left a divot on the top
surface and an obstruction in the in-
ternal flow passage of the VFM...

We use a batch size of 32. A smaller batch size of 16 was also
tested, but this increased the fine tuning time (38 minutes), while
a larger batch size of 64 required more memory than we had
available.

3.5 Semantic Search

Once the model is fine-tuned and saved, it can be easily
called for semantic search. The model is used to generate em-
beddings for the corpus. These embeddings can be stored and
referenced for each search — while testing our model, we found
the corpus embeddings to take a majority of the total time taken
to perform a semantic search (not including model fine-tuning
steps) before we started saving them for future runs, as shown
in Table 2. Embeddings for the query are obtained in the same
manner. Once all embeddings are obtained, a cosine similarity
search is performed between the list of query embeddings and
corpus embeddings, as depicted in Figure 2. Cosine similarity
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TABLE 2: Summary of computational time for each step in the method-
ology. Synthetic query generation, model fine tuning, and corpus em-
beddings can and should be stored and reused. The query embedding
and semantic search must run for each new query to the system.

Step Time

Synthetic query generation 156 minutes

sBERT model fine tuning 31 minutes
Corpus embeddings 30 seconds
Query embedding 0.086 seconds
Semantic search 0.014 seconds

[ Similarity Score ]

A
f ., 1
Embedding Embedding
D = (dy4,...,dn) Q = (94,..-,9n)

LLIS Document

|\ J \ J

FIGURE 2: sBERT model architecture for semantic search. The
siamese model applies BERT to both the query and LLIS document to
produce encoded text in a vector, then their similarity is calculated using
the chosen metric. For a given query, this is performed for each LLIS
document to rank results.

search is effective for corpora up to about one million entries [4].
The top k hits may be returned (ranking all results is possible, but
computationally inefficient and of diminishing utility).
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4 RESULTS

Query results for the first query, “cyber security data and
systems”, using both the pre-trained (not fine-tuned) and fine-
tuned sBERT models are given in Table 3. Note that cosine sim-
ilarity scores (“Score” in Table 3) for ranked results are calcu-
lated using the respective models. Table 3 provides the top three
ranked results for each model. These results share only one les-
son in common; however, all top three results from both models
are judged as relevant by a human reader.

Analysis uses basic information retrieval definitions of pre-
cision and recall with some specializations since the IR system
retrieves ranked results (rather than an unordered set) and the
dataset is large. Precision P is defined in an IR context in Eq.
2 [7]. In Eq. 2, RET is defined as the set of documents retrieved
by the information retrieval system for a given query and REL
is the set of documents that are relevant to that query. REL is
typically (as well as in this paper) determined among human ex-
perts [7]. A precision-recall curve (recall defined in Eq. 3) over
0 < k < 30 for the three queries is given in Fig. 3. Jagged sec-
tions of the graph indicate that as k is increased, a new, relevant
document is found, increasing both the recall and precision. If an
irrelevant document is instead found, recall is constant but preci-
sion decreases. Figure 3 indicates that the fine-tuned model has
higher precision compared to the pre-trained model at the same
recall levels for all three queries tested.

RET NREL
p=""__""C

RET @

RETNREL
R=""ReL ©)

We provide precision at k = 10, kK = 20, and k& = 30 doc-
uments for the three queries for each information retrieval sys-
tem in Table 4. The rationale behind the precision at k metric is
that the user of an information retrieval system will desire rel-
evant results within the first page or two (i.e., within relatively
few total results). Precision at k is a meaningful measure of this
need because it quantifies how relevant the first few results will
be. The fine-tuned sSBERT model performs better than the pre-
trained sSBERT model at each k = 10, k = 20, and k = 30 for
all three queries, with a perfect (1.000) precision for the first ten
results for the first and second queries. We note the larger gap be-
tween the fine-tuned and baseline performance in the third query
compared to the second query. The third query is the most chal-
lenging information retrieval task, as fault isolation is similar in
context and semantics but distinct in concept to fault tolerance.
Moreover, our sampling suggests there are fewer overall lessons
relevant to fault isolation than to fault tolerance. It is likely that
fine-tuning is especially useful for distinguishing between these
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two concepts (fault tolerance and isolation) given their specific
engineering meanings.

Mean average precision (MAP) is given in Eq. 4, where n, is
the number of queries tested, ny ; is the number of relevant docu-
ments for a query j, and P; is the precision at i. For MAP, unlike
precision at k, the entire set of relevant documents is required so
that precision can be averaged across all recall levels. The au-
thors manually searched the data set for relevant lessons. For the
first query, there are forty-five total relevant documents, for the
second, one-hundred forty relevant documents, and for the third,
thirty-five relevant documents. MAP for each model is given in
Table 5. Fine-tuning outperforms the baseline pre-trained model
at a MAP of 0.807 compared to 0.648 across the queries tested.

I W
MAP=—Y —Y P )

Nq j=11d,j i=1

5 DISCUSSION

Although we find both the pre-trained and fine-tuned mod-
els perform well for the given task, the fine-tuned model in par-
ticular shows superior performance. Given the relative ease of
fine-tuning the model given moderate GPU, the results indicate
that fine-tuning is worthwhile. In particular, the precision of the
fine-tuned model for low k is especially high and indicates that
users will be able to use the system to find relevant results quickly
(i.e., without scrolling through many irrelevant results). One im-
plementation challenge is that sSBERT-enabled semantic search
methods have not been integrated with existing search systems
for individual repositories, such as the LLIS. Existing reposito-
ries may store documents in non-Python database formats, such
as SQL or cloud-based services, and thus additional architecture
may be necessary to query these databases using Python-based
sBERT semantic search.

6 CONCLUSIONS AND FUTURE WORK

This work has presented a query system for design infor-
mation retrieval using sentence transformers. We fine-tune the
model for information retrieval from NASA’s Lessons Learned
Information System, which improves performance compared to
the baseline pre-trained model when tested using precision vs.
recall curves, precision at k, and MAP. Our results indicate that
the fine-tuned sSBERT model is a viable solution to the stated IR
problem. The application of the state-of-the-art in natural lan-
guage processing to design information retrieval will improve
efficiency of design information use and re-use.

While this work focuses on applying bi-directional encoders
to information retrieval, they can also be applied to knowledge
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TABLE 3: Query results for the first query, “cyber security data and systems”, from the pre-trained model and fine-tuned model. Though the two
models only share one top-three result, all top-three results from both models belong to REL (i.e., are judged relevant to the query by a human reader).

Query 1: Cyber security measures for data and systems

Pre-Trained Model

Rank Score Lesson Lesson Title

Passage Excerpt

1 0.542 1150 Agency-Wide/ Computer Hardware-
Software/ Computer Security

2 0.523 1149 Agency-Wide/ Computer Hardware-
Software/ Computer Security

3 0.517 1250 Network Security/ Reduction of Vulner-
abilities/ Penetration Exercises

NASA concurs in principle with both parts of this recom-
mendation. Regarding analysis with the National Security
Agency (NSA)...

Implementation of NASA Agency-Wide Computer Security
Plan...

The terrorist attacks on September 11 emphasized the need
for increased security of all national assets including NASA’s
computer systems...

Fine-Tuned Model

Rank Score Lesson Lesson Title

Passage Excerpt

1 0.517 1250 Network Security/ Reduction of Vulner-
abilities/ Penetration Exercises

2 0.513 1175 Computer Hardware-Software/ System
Security/Personnel ~ Awareness  and
Training

3 0.469 1250 Network Security/Reduction of Vulnera-
bilities/Penetration Exercises

The terrorist attacks on September 11 emphasized the need
for increased security of all national assets including NASA’s
computer systems...

16a. Complete and maintain security plans for all appropriate
computer systems and ensure that the computer security pro-
gram is sustaining...

Accelerate the schedule of penetration exercises to gain
greater insights into computer security vulnerabilities...

(b) Que

ry 2 (c) Query 3
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FIGURE 3: Precision versus recall plotted for 1 < k < 30 for fine-tuned and pre-trained sSBERT models. The fine-tuned model offers higher precision

at equivalent recall values compared to the pre-trained model.

discovery. For instance, BERTopic can be applied to discovering
topics within the LLIS and other repositories of design-related
information, as has previously been done with more conventional
natural language processing approaches such as Latent Dirich-
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let Allocation (LDA) [28]. Additionally, while a query system
is undoubtedly essential to a knowledge management system, a
proactive knowledge delivery system will more effectively ex-
ploit the knowledge available to designers. This would mean
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TABLE 4: Precision at k for the first three queries. Fine-tuned sSBERT
outperforms the baseline model on all three queries and at all & levels.

Query 1: cyber security of data and systems

Precision at:

IR Method k=10 k=20 k=30
Pre-trained sBERT 0.700 0.650 0.466
Fine-tuned sBERT 1.000 0.800 0.733

Query 2: fault tolerance methods

Precision at:

IR Method k=10 k=20 k=30
Pre-trained SBERT 1.000 0.900 0.866
Fine-tuned sBERT 1.000 0.950 0.965

Query 3: fault isolation methods

Precision at:

IR Method k=10 k=20 k=30
Pre-trained SBERT 0.400 0.350 0.333
Fine-tuned sBERT 0.700 0.550 0.466

TABLE 5: Mean average precision (MAP) for each IR method. Fine-
tuned sBERT outperforms the baseline model.

IR Method MAP
Pre-trained SBERT 0.648
Fine-tuned sBERT 0.807

anticipating users’ needs based on design characteristics, scope,
or other attributes. One possibility is matching current design
documentation to lessons learned using a symmetric search for-
mulation. These capabilities will be addressed in the broader in-
telligent knowledge management toolkit the team is developing.
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