
AstroLoc: An Efficient and Robust Localizer for a Free-flying Robot

Ryan Soussan1,2, Varsha Kumar3, Brian Coltin1,4, Trey Smith1

Abstract— We present AstroLoc, an efficient and robust
monocular visual-inertial graph-based localization system used
by the Astrobee free-flying robots onboard the International
Space Station (ISS). We provide a novel localization system
that limits the traditionally higher computation times for graph-
based localization systems and enables the resource constrained
Astrobee robots to benefit from their increased accuracy. We
also introduce methods for handling cheirality issues for visual
odometry and localization factors that further increase localiza-
tion robustness. We evaluate the performance of AstroLoc on a
dataset of ISS activities and show that it greatly improves pose,
velocity, and IMU bias estimation accuracy while efficiently
running in a limited computation environment. AstroLoc has
improved the localization accuracy for the Astrobee robots on
the ISS and has led to more successful and longer duration
activities. While the AstroLoc system is tuned for the Astrobee
robots, it can be configured for any resource constrained
platform. The source code for AstroLoc is released to the public.

I. INTRODUCTION

The Astrobee free-flying robots [1] are a set of three robots
currently operating on the International Space Station (ISS)
and used for a variety of experiments in microgravity [2] [3]
and the ISAAC caretaker project [4]. They use an electric
fan for propulsion and an inertial measurement unit (IMU)
and front facing camera for navigation as shown in Fig. 1.

The previous localizer for Astrobee [5] was based on
the Multi-State Constraint Kalman Filter (MSCKF) [6] and
had successfully completed many tasks on the ISS since
its introduction but often suffered from large localization
drift or lost robot events that forced the robot to be reset
or re-docked during an activity. Due to occlusions from
objects such as cargo bags, lighting changes, and other
environmental discontinuities on the ISS, map landmarks
are also not always available, so Astrobee relies heavily on
visual-inertial odometry (VIO) for navigation. Additionally,
free-flying in microgravity prevents the use of a gravity
vector and requires highly accurate localization and velocity
estimation to control and station keep the robot.

To improve upon the performance of the MSCKF-based
localizer, we use graph-based optimization which performs
relinearization during each iteration compared to the single
linearization point used by EKF-based systems. Existing
graph-based approaches rely on sliding window bundle ad-
justment for VIO [7] [8] [9] or a parallel mapping process
[10] [11] for SLAM that are too expensive to run on

The authors are with 1NASA Ames Research Center, Moffett Field,
CA, 94035, USA, 2Aerodyne Industries, 3Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA, 15213, USA, and 4KBR, Inc.
{ryan.soussan, brian.coltin, trey.smith}@nasa.gov,
varshak@andrew.cmu.edu

Fig. 1. Astrobee robot flying in the ISS.

(a) Previous EKF-based Localizer (b) AstroLoc

Fig. 2. AstroLoc reduces drift and more accurately tracks Astrobee’s
position compared to the previous EKF-based localizer.

Astrobee, whose compute platform [1] is roughly 10 times
slower than an Intel i9-9980HK 2.4 GHz CPU and is running
a suite of other processes, leaving only a single core for the
graph-based localizer.

We therefore present AstroLoc: a monocular visual-inertial
graph-based localization system for the Astrobee robots. Our
contributions include:

• A novel localization system for a free-flying robot
that intelligently incorporates visual odometry measure-
ments, performs sliding window marginalization, and
limits factors and optimization times to perform graph-
based optimization in a resource constrained environ-
ment.

• Methods for handling visual odometry and localization
factor cheirality issues to improve robustness.

• Approaches to separately evaluate the accuracy of
tracked velocity and IMU bias estimates.

• A modular software framework for state estimation.

We evaluate the performance of AstroLoc on a dataset of 12
ISS activities and show that it exhibits significant decreases
in pose, velocity, and IMU bias RMSE in localization and
VIO tests while maintaining a fast runtime suitable for the
Astrobee robots. AstroLoc has been deployed to the Astrobee
robots on the ISS and has enabled them to perform longer
duration activities with improved accuracy compared to the



previous localizer. The AstroLoc system is tuned for the
Astrobee robots but many of the parameters in §IV can
be adjusted for other computationally limited platforms. We
release the code1 to the public.

II. RELATED WORK

A. EKF-based Approaches

The MSCKF [6] uses marginalized visual odometry errors
along with map-based features in an augmented-state EKF
for localization, while ROVIO [12] performs monocular VIO
using an EKF with a direct photometric error.

B. Graph-based VIO Approaches

OKVIS [9] performs monocular or stereo VIO using
BRISK features with a graph-based optimizer. SVO [13]
and DSO [7] are both direct graph-based visual odometry
methods with support for monocular and stereo systems and
VI-DSO [14] adds IMU support. Each of these methods
require costly sliding window bundle adjustment and direct
methods often rely on camera frame rates that are much
faster than the Astrobee rate of 15 Hz. Smart factors [15]
marginalize out 3D feature points to more efficiently perform
graph-based visual odometry but correlate state parameters
and require an expensive SVD process as described further
in §IV.

C. Graph-based SLAM Approaches

PTAM [16] introduced the concept of parallel tracking and
mapping that many modern SLAM methods rely on. ORB-
SLAM [10] uses ORB features along with the DBoW2 bag-
of-words library [17] to perform feature-based loop-closures.
Basalt [8] and Kimera [18] perform VIO and SLAM, where
Basalt uses bidirectional patch tracking with LSSD costs and
ORB feature loop-closures and Kimera adds semantics to
produce a 3D mesh construction of an environment with
optional semantic segmentation, but each of these require
a stereo camera. VINS-Mono [11] uses a combination of
direct and indirect features for monocular visual odometry
and adds loop-closures for 4 DoF map optimization, but
relies on a gravity vector to reduce the dimensionality of
its map optimization and requires bundle adjustment for 3D
feature point estimation.

D. Free-flyer Localizers

The SPHERES [19] robots require ultrasonic beacons for
localization while the JAXA Int-Ball [20] needs stereoscopic
markers placed throughout the ISS. The previous localizer
for Astrobee [5] used map-based image features but relied
on the MSCKF for sensor fusion.

E. Other Aerospace Localizers

VISINAV [21] performs localization for planetary en-
try, descent, and landing (EDL) using natural terrain and
an MSCKF. Relative pose estimation is calculated for
autonomous orbital rendezvous and proximity operations

1https://github.com/nasa/astrobee

(RPO) in [22] but requires an EKF and either fiducials or
an existing 3D CAD model for tracked objects.

To take advantage of graph-based optimization while also
using our prebuilt image feature map, we design a localiza-
tion system for Astrobee’s limited compute platform that we
present in the following sections.

III. SYSTEM OVERVIEW

Images
15 Hz

Localizer

B

D

A

C

Low-pass
Filter

Optical Flow
Feature Tracking

IMU
62.5 Hz

BRISK Feature 
MatchingMap

IMU 
Augmentor

Latest
Pose

Velocity
Biases

Fig. 3. Localization pipeline showing map-dependent and independent
data used by the localizer along with the IMU Augmentor which extrap-
olates the navigation state produced by the localizer with the latest IMU
measurements.

The AstroLoc localization pipeline processes map-
dependent and map-independent data to generate a naviga-
tion state Si consisting of the pose, velocity, and IMU biases
of the robot. Fig. 3 shows the pipeline in more detail.

A. Map-Independent Sensor Measurements

The pipeline processes images and IMU measurements
at 15 Hz and 62.5 Hz respectively as shown in Part A of
Fig. 3. Vibrational noise from the impeller fan is removed by
passing the IMU measurements through low-pass and notch
filters. Optical flow feature tracks are generated using the
pyramidal Lucas-Kanade algorithm [23], where forward and
backward passes are conducted on a sequence of images to
limit outliers.

B. Map-Dependent Sensor Measurements

The pipeline uses mapped 3D BRISK features stored in
a DBoW2 library [17] and sends measurements and their
associated map features from each image to the localizer.
The mapping procedure is described in more detail in [5].

C. Graph-Based Localizer

The graph-based localizer in Part C processes the mea-
surement inputs and outputs a navigation state Si. Its design
is discussed further in §IV.

D. IMU Augmentor

Since the localizer is used with a controller that expects
frequent navigation state updates at a rate similar to that of
the IMU, Si is subsequently passed to the IMU Augmentor
in Part D. This is also discussed in more detail in §IV.

https://github.com/nasa/astrobee


S0 S1 S2 S3P0 I01 I12 I23

O123

L0 L2

Fig. 4. Factor graph representation for the AstroLoc localizer. Navigation
states are represented by nodes Si. IMU preintegration factors Iij are used
to connect neighboring navigation states. Factors for map-based landmarks
are represented by Li and for visual odometry smart factors by Oi. Priors
for the oldest navigation state are shown using Pi.

IV. EFFICIENT LOCALIZATION

AstroLoc performs graph-based nonlinear optimization
with the factor graph representation shown in Fig. 4. It adds
IMU measurements as preintegration factors [24] to avoid
reintegrating IMU data during each optimization iteration
and uses smart factors [15] to incorporate optical-flow feature
tracks as visual odometry constraints and remove the costly
estimation of 3D features that most graph-based visual odom-
etry and SLAM approaches require. AstroLoc inserts map-
based feature measurements using projection factors with the
error function in (1) where the map feature is not included
in the optimization problem to avoid increasing graph solve
times. Optimization is performed using the GTSAM library
[25].

A. Limiting Cost of Visual Odometry Smart Factors

Visual odometry smart factors are the most expensive
component of the AstroLoc graph optimization process. The
factor error is formed by projecting a triangulated feature
point f into a set of images containing feature point mea-
surements per (1).

pi = ui − π(C
BTB

WTf) (1)

The projection function π for a camera model represents the
mapping π : R3 7→ R2 where R2 is image space, transform
C
BT is the extrinsic calibration of the camera, transform B

WT is
the inverse of the robot body pose in the the world frame, and
ui is the feature measurement in image i. The smart factor
forms the error vector e by stacking the errors per (1) for
each feature measurement in the measurement set. The error
function is the same as a bundle-adjustment approach but
unlike bundle-adjustment procedures the 3D feature points
are not included in the optimization problem. These are
removed with a marginalization procedure mirroring that of
[6] that requires the singular value decomposition of the
feature Jacobian matrix.

While the smart factor marginalization procedure reduces
the dimensionality of the factor as shown in Fig. 5, many
off-diagonal components of the Hessian may still be present
that increase the optimization time for the graph, indicated
by the non-empty blocks of the Hessian matrix in the same
figure. Additionally, each smart factor in the graph performs
the singular value decomposition marginalization during each
optimization iteration, greatly reducing the speed of the

P0 S0 S1 S2 S3

P0

S0

S1

S2

S3

S0 S1 S2 S3

S0

S1

S2

S3

Fig. 5. Example Hessian before and after smart factor marginalization for
a graph containing feature track measurements at states S1, S2, and S3 and
the feature point P0.

(a) Maximum number of smart factors (b) Max measurements per smart factor

Fig. 6. Trade-offs in accuracy versus computation time for the number of
smart factors included in the graph and the number of measurements added
per smart factor. AstroLoc uses a maximum of 12 smart factors and five
measurements per factor.

localization procedure. AstroLoc therefore limits both the
overall number of smart factors included in the graph and
the measurements included in each smart factor to reduce
their computational cost. The impact of limiting the total
number of smart factors on the graph solve time is shown in
Fig. 6a where the data is generated using a parameter sweep
with the evaluation procedure described in §VI.

AstroLoc also performs measurement selection to reduce
the number of off-diagonal terms in the graph’s Hessian
matrix. Each feature track includes measurements from the
same subset of timestamps which are evenly spaced over the
duration of the graph. This limits the correlation between
navigation state nodes in the graph and increases the sparsity
of the optimization problem while also increasing the portion
of the graph constrained by visual odometry factors. Fig. 6b
shows the tradeoff in optimization time and accuracy versus
the number of measurements included per smart factor. In
practice, AstroLoc uses five measurements per smart factor
and includes a maximum of 12 smart factors in its factor
graph.

B. Sliding Window Marginalization

While AstroLoc supports adding marginalization factors
when sliding the graph window using the linearization of
each removed factor [9], it uses a more efficient method
instead that inserts priors for the oldest state parameter nodes
remaining in the graph. Marginalization with linearized fac-
tors correlates state parameters that shared a factor with
marginalized parameters and introduces many off-diagonal
elements in the resulting Hessian matrix,increasing optimiza-
tion times. Additionally, when using smart factors adding
marginalization factors becomes difficult as only a subset
each smart factor’s measurements are removed when the
window is slid rather than the entire smart factor. AstroLoc



therefore adds priors to the oldest remaining state param-
eters in the graph using their current estimated values and
the covariances generated by the most recent optimization
iteration’s inverted Hessian matrix. This limits the density of
the optimization problem and yields faster solve times.

C. Limiting Optimization Runtime
AstroLoc’s convergence criteria include both a threshold

for the minimum change in relative error while optimiz-
ing and a limit on the maximum number of optimization
iterations performed. As Fig. 7a shows, error reduction

(a) Maximum optimization iterations (b) Sliding window duration

Fig. 7. Trade-offs in accuracy versus computation time for the maximum
optimization iterations and sliding window duration of the graph. AstroLoc
uses a maximum of four optimization iterations and a sliding window
duration of 3.5 seconds.

quickly saturates while the iteration threshold and resulting
computation time continue to increase. To prevent outlier
optimization times that use many iterations, AstroLoc limits
the maximum optimization iterations to four.

In addition to limiting the total number of smart factors,
AstroLoc limits the total factor count for map-based localiza-
tion factors to around 40. The localization factors are much
more efficient to compute as they are image projection factors
that only depend on one state parameter node. AstroLoc
limits the sliding window graph duration to 3.5 seconds
which provides some extra buffer time for outlier map-based
feature measurement delays. The trade-off in accuracy versus
runtime for graph duration is depicted in Fig. 7b. These
constraints help limit the maximum runtime for AstroLoc
and enable it to provide localization updates at a frequency
of around 5 Hz which are then fed into the IMU Augmentor
described in the following section to provide even higher
frequency updates to the controller.

D. High Frequency Updates using the IMU Augmentor
The IMU Augmentor delivers high frequency 62.5Hz

localization updates that the controller requires by extrapolat-
ing the latest localization estimates provided by the localizer
with the latest IMU data. It performs extrapolation by
maintaining a queue of IMU measurements and integrating
them on top of the most recent navigation state using its IMU
bias estimates. Without the IMU Augmentor, feedback to the
controller occurs at 5Hz instead of 62.5Hz and Astrobee over
and undershoots its desired poses and velocities while path
planning.

V. ROBUST LOCALIZATION

AstroLoc introduces several techniques along with using
a robust loss function to prevent lost robot and high drift
events during localization.

A. Robust Cost using Huber Loss

To avoid drift due to outlier measurements AstroLoc feeds
each factor through a Huber loss function per (2).

h(n) =

{
n if n < k

n
√
k/n otherwise

(2)

Here n = eT e is the error norm for a factor. AstroLoc uses
the standard threshold k = 1.345. The Huber loss assumes
that large factor errors are often correlated with outlier data.

B. Preventing Cheirality Errors for Map-based Projection
Factors using Pose Factor Fallback

AstroLoc inserts map association pairs pi consisting of an
image measurement ui and its associated 3D map features
fi using the error function in (1). If every feature point in
the set of pairs P for an image suffers a cheirality error, the
localizer instead adds a pose prior factor so the measurements
can still be included in the optimization problem. The pose
W
CeT, where Ce is the estimated camera frame, is found using
the perspective-three-point algorithm [26] with a RANSAC
selection procedure described in [5]. Four randomly selected
pairs from P are used to estimate W

CeT and the rest of the
associations are checked for consistency. This is repeated
for several iterations and the pose with the most inliers is
used for W

CeT. The error function for the factor is shown in
(3), where W

BT is the pose estimate in the graph at the image
timestamp and C

BT is the transform from the body to camera
frame.

e = log(W
BT−1W

CeTC
BT) (3)

This fallback procedure helps avoid localization drift as more
map-based measurements can be included in the graph even
with poor current position and orientation estimates that often
lead to cheirality errors.

C. Preventing Cheirality Issues in Visual Odometry Smart
Factors using Measurement Pruning

In addition to providing a fallback for cheirality issues for
map-based localization factors, AstroLoc also introduces a
measurement pruning procedure to help eliminate cheirality
issues for visual odometry smart factors. Smart factors are
more susceptible to cheirality issues since if one measure-
ment in the smart factor suffers a cheirality issue, the
entire factor is ignored. Recognizing that these are often
the result of a faulty pose estimate or sequence of faulty
pose estimates that have been recently added to the localizer,
AstroLoc tests each smart factor before an optimization
cycle and fixes smart factors with cheirality errors using the
following approach. It first removes the most recent feature
measurements and checks the resulting smart factor for
errors. The measurements are checked individually, and if the
cheirality error is removed by discarding a measurement the
factor is added without the faulty measurement. Otherwise,
measurement sequences are checked, starting again with
the most recent measurements and additionally removing
previous measurements until the error is removed. If the
cheirality error still remains the factor is discarded.



D. Sanity Checking

The resulting navigation state from the localizer is checked
using a covariance based sanity checker and pose history
sanity checker. If covariances for Si exceed a set threshold,
the localizer is reset. Additionally, if a set length of poses
from the localizer drift too far from pose estimates derived
using map-based associations as described in §V-B, the
localizer is also reset.

VI. EXPERIMENTS

We evaluate AstroLoc on a dataset of 12 ISS activities
and compare results with the previous Astrobee localizer
and a base GTSAM localizer described in §VI-A. Ground
truth is created using our mapping pipeline described in
[5]. AstroLoc runs on Astrobee’s Inforce 6501 Micro SoM
featuring a Qualcom Snapdragon SoC mobile processor and
utilizes a single processing core which as mentioned in §I
runs ∼10 times slower than an Intel i9-9980HK 2.4 GHz
CPU.

A. Comparisons

The reliance on a gravity vector and lack of a prebuilt
feature-based map prevent the comparison with many of
the methods from §II, in addition to their increased com-
putational cost that prohibits their use on Astrobee’s limited
compute platform. We therefore compare AstroLoc to both
the previous Astrobee localizer [5] and a base GTSAM im-
plementation. The base GTSAM localizer provides a graph-
based localization reference that still incorporates the IMU
preintegration and visual odometry smart factors used by
AstroLoc but does not include the efficiency improvements
discussed in §IV or the robust techniques of §V.

B. Evaluation Metrics

We evaluate the localizer in two modes: (1) VIO mode,
using only VIO information, with map-based measurements
suppressed. (2) Localization mode, using both VIO and map-
based measurements. VIO mode is useful for simulating
the localizer behavior when prior map features are not
recognized, as often occurs due to environment changes. As
an additional performance metric we measure the number of
lost events that occur on each dataset defined as when the
robot has drifted by more than 1.5 meters. Lost events can
require crew intervention during activities and avoiding them
is therefore a high priority for AstroLoc.

1) Velocity and IMU Bias Integration: To more precisely
track performance of velocity and IMU bias estimates we
integrate graph estimates for each of these and compare the
results with ground truth data. Integrating velocities utilizes
the time difference between successive velocity estimates to
add position updates to the starting position of the robot per
(4).

p = p0 +

N∑
i=1

∆Tvi (4)

Here ∆T is the time difference between successive velocity
estimates vi and vi−1 and p0 is the initial position of

the robot. Accurate velocity estimation is critical for the
controller to station keep and execute precise maneuvers in
microgravity.

To evaluate the IMU biases estimated by the localizer,
we integrate each IMU measurement in a recording using
the latest IMU bias estimate occurring before or at the
measurement’s timestamp and generate a set of relative
integrated IMU pose increments i-1

i T. These are then added
to the initial robot pose per (5), much like to the velocity
integration procedure.

w
i T = w

i-1Ti-1
i T (5)

Here w
0T is the initial pose of the robot in the world frame.

While some degree of noise will still be present in the in-
tegration, accurately tracked biases will produce less overall
drift. Tracking IMU biases is especially important as we use
these to extrapolate localization estimates as described in
§III.

C. VIO Results

AstroLoc exhibits large improvements in VIO mode com-
pared to the previous localizer and base GTSAM localizer
as displayed in Table I. RMSEs are reported for all activities
but the two lost events suffered by the previous localizer and
base GTSAM implementation, while the last row shows the
position RMSE including these outliers.

TABLE I. VIO RESULTS

RMSE Prev Loc BaseGT AstroLoc
Pos. (m) 0.6212 0.5328 0.2777
Orientation (rad) 0.0730 0.0783 0.0696
Rel Pos. (m) 0.2788 0.2080 0.1440
Rel Orientation (rad) 0.0662 0.0632 0.0659
Integrated Vel. Pos. (m) 0.7953 0.9614 0.2931
Rel Integrated Vel. Pos. (m) 0.2624 0.2179 0.1470
IMU Bias Pos. (m) 83.9615 4.0982 2.1535
Rel IMU Bias Pos. (m) 12.3075 0.7425 0.4033
Lost Events 2 2 0
Pos. w/ Outliers (m) 2.4179 0.7508 0.3721

1) Robustness: Both the base GTSAM implementation
and AstroLoc outperform the previous localizer in most
VIO categories, demonstrating the improved accuracy of
graph-based approaches. AstroLoc though further improves
upon the base GTSAM method in position, velocity, and
IMU bias estimation. The base GTSAM method naively
includes every visual odometry measurement and without
the AstroLoc methods for smart factor spacing and handling
cheirality errors it accrues more drift and gets lost twice
akin to the previous localizer. It additionally suffers larger
errors in IMU bias estimation and velocity estimation as
shown in Table I, which can result in erroneous velocity and
position corrections performed by the live controller during
an activity. Fig. 8 shows an example of the reduced drift for
AstroLoc in VIO mode compared to the previous localizer.

2) Efficiency: AstroLoc greatly improves upon the base
GTSAM implementation’s runtimes, running roughly six
times faster as shown in Table II. The combination of
intelligent visual odometry measurement selection, factor and



(a) Previous Localizer (b) AstroLoc

Fig. 8. AstroLoc reduces drift in VIO mode by utilizing an efficient graph-
based localization system while the previous localizer steadily veers off
course.

TABLE II. VIO RUNTIMES

Localizer Avg. Runtime (s) Avg. Opt. Time (s)
BaseGT 1.0588 0.8525
AstroLoc 0.1785 0.1259
Rel Decrease 83% 85%

iteration limiting, and efficient sliding window marginaliza-
tion prevent excessive computation that would lead to large
delays for Astrobee. The previous localizer is not included
as it runs at a fixed 62.5Hz.

D. Localization (VIO+Map) Results

Table III displays AstroLoc’s significant improvements
in position, orientation, velocity, and IMU bias estimation
compared to the previous localizer and base GTSAM imple-
mentation.

TABLE III. LOCALIZATION (VIO+MAP) RESULTS

RMSE Prev Loc BaseGT AstroLoc
Pos. (m) 0.0948 0.2417 0.0491
Orientation (rad) 0.0439 0.0505 0.0275
Integrated Vel. Pos. (m) 0.2681 0.3228 0.1417
Rel Integrated Vel. Pos. (m) 0.1200 0.1534 0.0656
IMU Bias Pos. (m) 83.5386 2.4744 2.4173
Rel IMU Bias Pos. (m) 12.2643 0.4682 0.4784
Lost Events 2 0 0
Pos. w/ Outliers (m) 1.0277 0.3105 0.2636

1) Robustness: The AstroLoc and the base GTSAM lo-
calizer suffer no lost events compared to the two the previous
localizer experiences, however AstroLoc yields a further
80% and 15% decrease in position RMSE with and with-
out outlier events compared to the base GTSAM localizer.
The combination of AstroLoc’s fallback approach for map-
based measurement factor cheirality errors and improved
VIO performance when map-based features are sparse or
unavailable help prevent it from getting lost and accruing
large drift on the dataset. Results from one activity where
AstroLoc accurately tracks localization position while the
previous localizer gets lost are displayed in Fig. 9.

2) Efficiency: Table IV displays the improved runtime of
AstroLoc compared to the base GTSAM localizer. Similar to
the VIO results, AstroLoc demonstrates significant runtime
improvements. Runtimes are only slightly increased com-
pared to VIO as localization map-based factors do not yield
as significant of a performance hit as the smart factors.

(a) Previous Localizer (b) AstroLoc

Fig. 9. Previous EKF-based localizer accruing position errors and ulti-
mately getting lost during an activity whereas AstroLoc accurately tracks
the robot position.

TABLE IV. LOCALIZATION (VIO+MAP) RUNTIMES

Localizer Avg. Runtime (s) Avg. Opt. Time (s)
BaseGT 1.1335 0.8919
AstroLoc 0.2050 0.1389
Rel Decrease 82% 84%

VII. CONCLUSION

We have presented AstroLoc, a localization system for the
Astrobee robots that efficiently runs graph-based monocular
visual-inertial localization on their limited compute platform
and introduces methods to recover from cheirality issues for
visual odometry and localization factors to improve local-
ization accuracy and robustness. While the AstroLoc system
is carefully tuned for the Astrobee robots, the parameters
in §IV including number of smart factors, measurements
per smart factor, sliding window duration, and maximum
optimization iterations can be adjusted for other resource
limited platforms. We have validated the system on data from
12 ISS activities and shown that it helps prevent Astrobee
from getting lost while improving pose, velocity, and IMU
bias estimation accuracy.

Since AstroLoc was deployed on the ISS, Astrobee’s im-
proved navigation when map-based updates are unavailable
has dramatically improved operational reliability. Astrobee
has executed multiple ISS activities with over two hours of
flying time. Reduced reliance on the prior map has allowed
the Astrobee team to invest much less effort in running ISS
activities specifically to collect new map imagery (∼40%
fewer activities and 30% fewer images per activity).

While this work primarily addresses limiting localization
and VIO drift for Astrobee and has enabled longer duration
and more robust experiments on the ISS, we additionally
investigate using semantics for mapping and localization in
[27] and in future work we wish to explore using more life-
long mapping approaches to further reduce the impact of
environmental changes on localization performance.

VIII. ACKNOWLEDGEMENTS

We would like to thank Marina Moreira, Kathryn Hamil-
ton, Oleg Alexandrov, and the rest of the Astrobee and
Astrobee Facilities team for supporting this work.



REFERENCES

[1] T. Smith, J. Barlow, M. Bualat, T. Fong, C. Provencher, H. Sanchez,
E. Smith, et al., “Astrobee: A new platform for free-flying robotics on
the International Space Station,” in Int. Symp. on Artificial Intelligence,
Robotics and Automation in Space, 2016.

[2] K. Albee, C. Oestreich, C. Specht, A. Teran Espinoza, J. Todd,
I. Hokaj, R. Lampariello, and R. Linares, “A robust observation, plan-
ning, and control pipeline for autonomous rendezvous with tumbling
targets,” Frontiers in Robotics and AI, p. 234, 2021.

[3] C. Oestreich, A. T. Espinoza, J. Todd, K. Albee, and R. Linares,
“On-orbit inspection of an unknown, tumbling target using NASA’s
Astrobee robotic free-flyers,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021, pp. 2039–
2047.

[4] T. Smith, M. Bualat, A. Akanni, O. Alexandrov, L. Barron, J. Benton,
B. Coltin, T. Fong, J. Garcia, K. Hamilton, L. Hill, M. Moreira,
R. Morris, N. Ortega, J. Pea, J. Rogers, M. Savchenko, K. Sharif,
and R. Soussan, “ISAAC: An integrated system for autonomous and
adaptive caretaking,” in ISS R&D Conference, 2021.

[5] B. Coltin, J. Fusco, Z. Moratto, O. Alexandrov, and R. Nakamura,
“Localization from visual landmarks on a free-flying robot,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 4377–4382.

[6] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[7] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[8] V. Usenko, N. Demmel, D. Schubert, J. Stueckler, and D. Cre-
mers, “Visual-inertial mapping with non-linear factor recovery,” IEEE
Robotics and Automation Letters (RA-L) & Int. Conference on Intel-
ligent Robotics and Automation (ICRA), vol. 5, no. 2, pp. 422–429,
2020.

[9] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[10] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE transactions
on robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[11] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[12] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual iner-
tial odometry using a direct EKF-based approach,” in 2015 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2015, pp. 298–304.

[13] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in 2014 IEEE international conference
on robotics and automation (ICRA). IEEE, 2014, pp. 15–22.

[14] L. Von Stumberg, V. Usenko, and D. Cremers, “Direct sparse visual-
inertial odometry using dynamic marginalization,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2510–2517.

[15] L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert, “Elim-
inating conditionally independent sets in factor graphs: A unifying
perspective based on smart factors,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.
4290–4297.

[16] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. IEEE, 2007, pp. 225–234.

[17] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[18] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 1689–1696.

[19] S. Nolet, “The spheres navigation system: from early development
to on-orbit testing,” in AIAA Guidance, Navigation and Control
Conference and Exhibit, 2007, p. 6354.

[20] S. Mitani, M. Goto, R. Konomura, Y. Shoji, K. Hagiwara, S. Shigeto,
and N. Tanishima, “Int-ball: Crew-supportive autonomous mobile
camera robot on iss/jem,” in 2019 IEEE Aerospace Conference. IEEE,
2019, pp. 1–15.

[21] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Transactions on Robotics, vol. 25, no. 2,
pp. 264–280, 2009.

[22] J. Kelsey, J. Byrne, M. Cosgrove, S. Seereeram, and R. Mehra,
“Vision-based relative pose estimation for autonomous rendezvous and
docking,” in 2006 IEEE Aerospace Conference, 2006, pp. 20 pp.–.

[23] J.-Y. Bouguet et al., “Pyramidal implementation of the affine Lucas
Kanade feature tracker description of the algorithm,” Intel corporation,
vol. 5, no. 1-10, p. 4, 2001.

[24] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU preinte-
gration on manifold for efficient visual-inertial maximum-a-posteriori
estimation,” in Proc. RSS. Georgia Institute of Technology, 2015.

[25] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[26] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 25, no. 8, pp.
930–943, 2003.

[27] I. Miller, R. Soussan, B. Coltin, T. Smith, and V. Kumar, “Robust
semantic mapping and localization on a free-flying robot in micro-
gravity,” in 2022 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2022.


	INTRODUCTION
	Related Work
	EKF-based Approaches
	Graph-based VIO Approaches
	Graph-based SLAM Approaches
	Free-flyer Localizers
	Other Aerospace Localizers

	System Overview
	Map-Independent Sensor Measurements
	Map-Dependent Sensor Measurements
	Graph-Based Localizer
	IMU Augmentor

	Efficient Localization
	Limiting Cost of Visual Odometry Smart Factors
	Sliding Window Marginalization
	Limiting Optimization Runtime
	High Frequency Updates using the IMU Augmentor

	Robust Localization
	Robust Cost using Huber Loss
	Preventing Cheirality Errors for Map-based Projection Factors using Pose Factor Fallback
	Preventing Cheirality Issues in Visual Odometry Smart Factors using Measurement Pruning
	Sanity Checking

	Experiments
	Comparisons
	Evaluation Metrics
	Velocity and IMU Bias Integration

	VIO Results
	Robustness
	Efficiency

	Localization (VIO+Map) Results
	Robustness
	Efficiency


	Conclusion
	Acknowledgements
	References

