

National Aeronautics and Space Administration

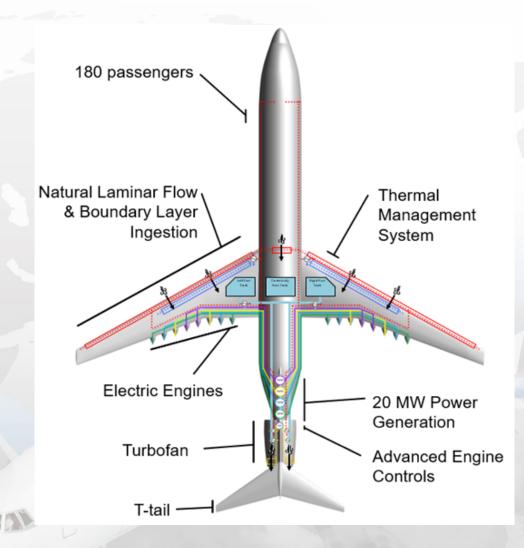
Brief Overview of Subsonic Single Aft Engine (SUSAN) Transport Aircraft Concept and Trade Space Exploration

Ralph Jansen and coauthors NASA Glenn Research Center

ARPA-E Zero Emissions Aviation Café February 17th, 2022

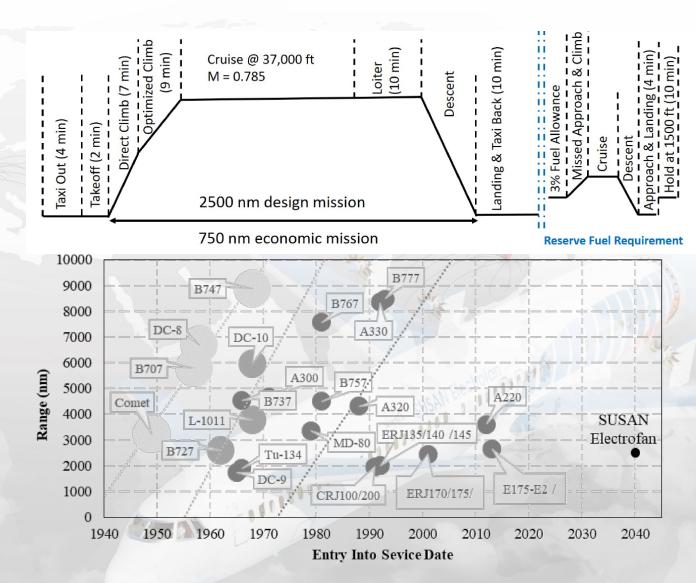
Introduction

- International Civil Aviation Organization (ICAO) has established two aspirational goals for international aviation
 - A 2% annual fuel efficiency improvement through 2050
 - Carbon neutral growth from 2020 onwards
- Aviation growth is driven by continued cost reduction while maintaining extremely high safety standards
- The SUSAN Electrofan concept is intended to address both key drivers in aircraft design



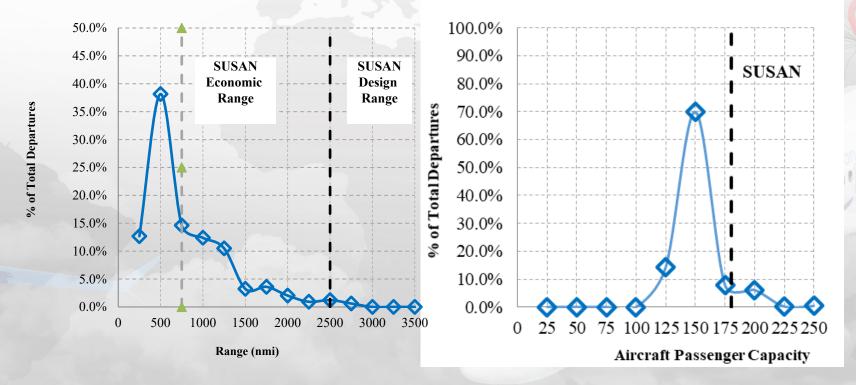
SUSAN Electrofan Aircraft Concept

- The SUSAN Electrofan utilizes a 20 MW Electrified Aircraft Propulsion (EAP) system to enable
 - Single turbofan operation on a large transport category aircraft
 - Increased aerodynamic and propulsive efficiency through placement of electric engines
 - Optimized turbofan sizing and efficiency through control and electric boosting
 - Reduced control surface sizing through thrust augmentation



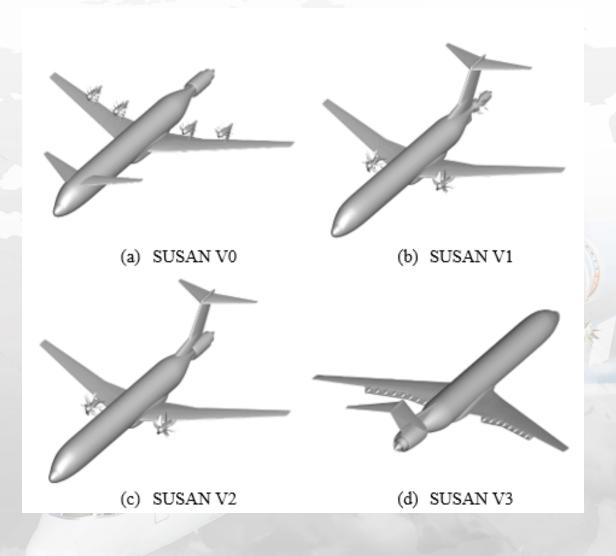
SUSAN Operational Concept

- Operates within current airspace constraints with a design range of 2500 miles, an economic range of 750 miles and a cruise speed of Mach 0.785
- Operates using current airport infrastructure with no battery charging or swapping required
- A single use battery powers the
 ³ electric engines in case of turbofan failure
 - Certification aspects are part of concept development



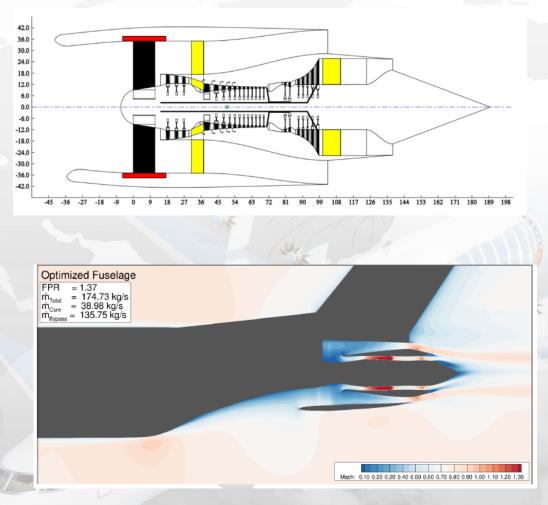
Market

- SUSAN is designed to meet the needs of regional and domestic air carriers
- The range and passenger capacity requirement was determined from a primary analysis of three domestic U.S. airlines and two European regional carriers
- SUSAN meets the vast majority of the flight segment needs for these users

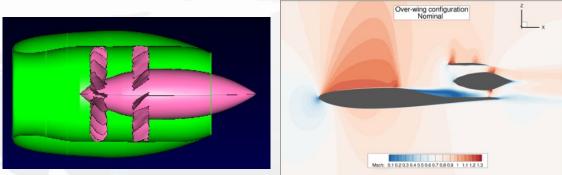


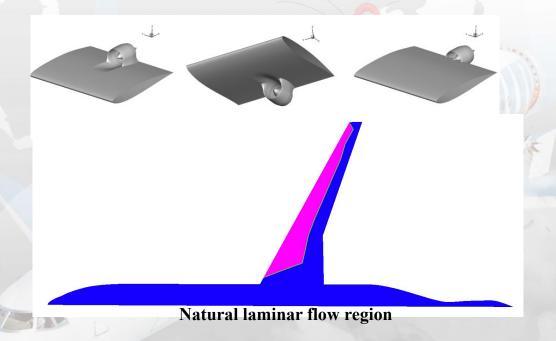
Aircraft Study Approach

- Low and medium fidelity analysis is being conducted to trade aircraft configurations
- Subsystem trades are being conducted on the turbofan, wing, electric engine, power system, thermal system, and structure
- The SUSAN concept continues to evolve as the trades become more coupled



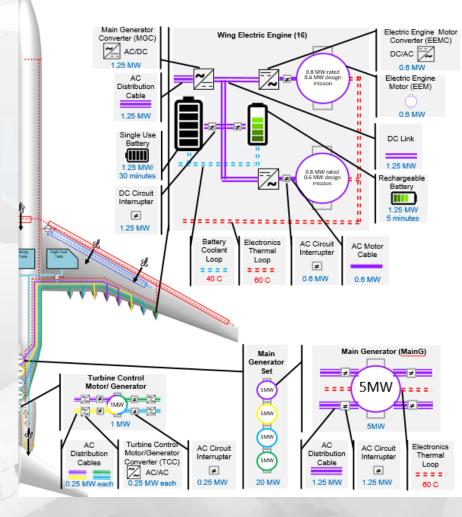
- The turbofan engine provides thrust and powers four 5MW electric generators (20MW total) to power the electric engines
- Trade studies are continuing to determine the optimal engine architecture
- Fuselage integration studies are being conducted to maximize the benefit of fuselage boundary layer ingestion





Wing and Electric Engines

- Ducted, unducted, single and dual fan row electric engines are being traded.
- Positioning of the electric engines on top of, below, and behind the wing are being considered.
- The wing is being optimized for natural laminar flow (NLF)
- Overall optimization of propulsive efficiency, wing shape, wing BLI, and NLF is an ongoing trade.



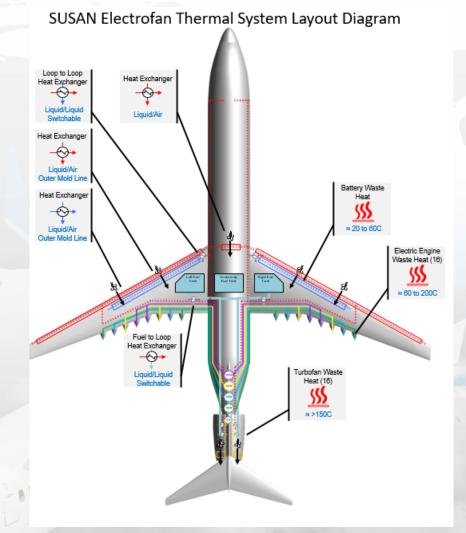
Power System

- Four 5 MW turbofan driven generators power the wing mounted electric engines
- Relatively small, in-flight rechargeable batteries are used for climb boost and to improve turbofan operability
- A single use battery provides power if the turbofan fails
- The power system must be extremely light weight and highly efficient to reduce aircraft mission energy use.

Power System Key Performance Parameters

Table 3: Specific Power and Efficiency Ranges Being Evaluated for SUSAN EPS Components

- A range of key performance parameters have been established for each of the power components in the trade study
- Light weight and high efficiency must be simultaneously achieved at power ratings an order of magnitude above other aircraft power systems.


	Weight			Efficiency				
	Nominal	Min	Max	Unit	Nominal	Min	Max	Unit
Electric Machines								
Main Generator	25	15	50	kW/kg	99%	98%	99.5%	%
Turbine Control	20	10	30	kW/kg	99%	98%	99.5%	%
Motor/Generator (TCMG)								
Electric Engine Motor (EEM)	20	10	30	kW/kg	98.5%	97%	99.0%	%
Power Conversion								
Main Generator Converter (MGC)AC to DC	30	20	40	kW/kg	99%	97%	99.5%	%
Turbine Control M/G	15	10	20	kW/kg	98%	94%	99%	%
Converter (TCC) AC to AC				_				
Electric Engine Motor	20	10	40	kW/kg	99%	97%	99.5%	%
Converter (EEMC) DC to AC								
Batteries								
Rechargeable Battery	500	200	1000	w-hr/kg	97%	90%	98.0%	%
Single Use Battery	1500	700	3000	w-hr/kg	90%	50%	98.0%	%
Cables								
AC Distribution Cable	2	0.5	10	kg/m/MW	0.040%	0.080%	0.020%	% loss/m
DC Distribution Cable	2	0.5	10	kg/m/MW	0.040%	0.080%	0.020%	% loss/m
Circuit Interrupters								
AC Circuit Interrupters	300	200	600	kW/kg	99.5%	99.7%	99.9%	%
DC Circuit Interrupters	150	100	300	kW/kg	99.5%	99.7%	99.9%	%

Thermal System

- The approach to minimize thermal management system mass, drag and power requirements consists of five elements:
 - Minimization of heat loads
 - Three loops operating at temperatures appropriate for their thermal loads
 - Use of waste heat from the engine to warm electrical systems on cold day conditions
 - Management of transient heat loads through heat capacitance of the fuel
 - Removal of heat using a combination of traditional heat exchangers and outer mold line cooling

11

Control / Pilot Interface

- A flight simulation system for the SUSAN Electofan is being developed for two purposes
 - Mature the integrated flight, propulsion, and power control design
 - Create a cockpit design and receive feedback to improve the pilot interfaces

Conclusions

- The SUbsonic Single Aft eNgine (SUSAN) Electrofan trade study is being conducted to determine if a 50% emissions reduction can be achieved while retaining the range and speed of large transport aircraft
- The SUSAN concept uses 20MW EAP to enable aerodynamic, propulsive, and thermal efficiencies to reduce total mission energy.
- Reduced mission energy is combined with alternative fuels to further reduce emissions.
- The SUSAN concept operates within the constraints of the current airport, airspace, and economic systems.
- Although preliminary assessments are promising, substantial work is required to complete a closed concept with an understanding of benefits.

13

Co Authors

Ralph H. Jansen NASA Glenn Research Center, Brook Park, Ohio 44135

Cetin C. Kiris, Timothy Chau, Gaetan K. W. Kenway, Leonardo G. Machado, Jared C. Duensing NASA Ames Research Center, Moffett Field, California, 94035

Arman Mirhashemi, Joseph M. Haglage, Timothy, P. Dever, Jeffryes W. Chapman, Bradley D. French, Thomas W. Goodnight, Lilia R. Miller, Jonathan S. Litt NASA Glenn Research Center, Brook Park, Ohio, 44135

> Casey L. Denham, Michelle Lynde, Richard Campbell, and Brett Hiller NASA Langley Research Center, Hampton, VA 23666

Nic Heersema NASA Armstrong Flight Research Center, Edwards, CA 93523

Reference Papers

TITLE	Lead Author	Link to Paper
Subsonic Single Aft Engine (SUSAN) Transport Aircraft Concept and Trade Space Exploration	Ralph Jansen	https://arc.aiaa.org/doi/10.2514/6.2022-2179
Initial Regulatory and Certification Approach for the SUSAN Electrofan Concept	Casey L Denham	https://arc.aiaa.org/doi/10.2514/6.2022-2180
Conceptual Exploration of Aircraft Configurations for the SUSAN Electrofan	Timothy Chau	https://arc.aiaa.org/doi/10.2514/6.2022-2181
Tail-mounted engine Architecture and Design for the Subsonic Single Aft Engine Electrofan Aircraft	Arman Mirhashemi	https://arc.aiaa.org/doi/10.2514/6.2022-2182
Electrical System Trade Study for SUSAN Electrofan Concept Vehicle	Joe Haglage	https://arc.aiaa.org/doi/pdf/10.2514/6.2022-2183
Thermal Management System Trade Study for SUSAN Electrofan Aircraft	Nic Heersema	https://arc.aiaa.org/doi/10.2514/6.2022-2302
A Design Exploration of Natural Laminar Flow Applications for the SUSAN Electrofan Concept	Michelle N Lynde	https://arc.aiaa.org/doi/10.2514/6.2022-2303
High Fidelity Computational Analysis and Optimization of the SUSAN Electrofan Concept	Leonardo M. G. Machado	https://arc.aiaa.org/doi/10.2514/6.2022-2304
Conceptual Design of Propulsors for the SUSAN Electro-fan Aircraft	May-Fun Liou	https://arc.aiaa.org/doi/10.2514/6.2022-2305
Implementation Approach for an Electrified Aircraft Concept Vehicle in a Research Flight Simulator	Jonathan S Litt	https://arc.aiaa.org/doi/10.2514/6.2022-2306

