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 Abstract 

 The  Community  Radiative  Transfer  Model  (CRTM)  is  a  powerful  and  versatile  scalar  radiative  transfer  model  for  satellite  data 

 assimilation  and  remote  sensing  applications.  It  is  implemented  as  an  object-oriented  Fortran  library,  enabling  flexible  code  development 

 and  optimal  runtime  performance  on  clusters.  The  downsides  of  the  Fortran  interface  are  a  steep  learning  curve  for  students  and  the 

 reduced  productivity  of  users  that  is  typical  for  static  compiled  languages,  in  contrast  to  dynamic  interpreted  languages  like  Python. 

 pyCRTM  is  a  new  software  framework  that  directly  interfaces  the  CRTM  Fortran  data  structures  and  procedures  in  Python,  leveraging 

 both  the  simplicity  and  ease  of  use  of  Python  syntax  as  well  as  the  flexibility  arising  from  the  vast  contemporary  Python  ecosystem.  The 

 goal  of  pyCRTM  is  to  lower  the  barrier  of  entry  for  university  students  to  learn  and  use  the  CRTM  and  to  boost  the  productivity  of 

 researchers  seeking  to  create  new  methods  in  radiative  transfer  and  data  assimilation,  or  seeking  to  apply  the  CRTM  to  study  atmospheric 

 phenomena without having to go through the pre-existing complexity of the CRTM Fortran interface. 

 Keywords: radiative transfer; CRTM; Python; data assimilation; remote sensing; 

 1.  Introduction 

 1.1.  Background 

 The  Community  Radiative  Transfer  Model  (CRTM)  [1-6]  has  proven  to  be  an  invaluable  fast  scalar  radiative  transfer  model 

 which  enables  direct  assimilation  of  radiance  measurements  for  numerical  weather  prediction,  calibration  and  validation 

 studies  of  passive  microwave  and  infrared  satellite  instruments,  and  planning  for  new  instruments  and  platforms  via 

 Observation  System  Simulation  Experiments  (OSSEs).  In  the  past,  the  CRTM  was  primarily  utilized  as  a  part  of  a  larger 

 framework  typically  a  data  assimilation  system  like  the  NASA  Global  Earth  Observing  System-Atmospheric  Data 

 Assimilation  System  (GEOS-ADAS),  NOAA’s  Global  Data  Assimilation  System  (GDAS),  or  the  US  Naval  Research 

 Laboratory’s  (  NRL)  NRL  Atmospheric  Variational  Data  Assimilation  System-Accelerated  Representer  (NAVDAS-AR).  The 

 CRTM  has  also  been  used  in  satellite  retrievals  such  as  the  Microwave  Integrated  Retrieval  System  (MiRS),  in  the  Global 
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 Modeling  and  Assimilation  Office’s  (GMAO)  GMAO-OSSE  system,  and  the  operational  calibration  and  validation  (CalVal) 

 at  the  NOAA  NESDIS  STAR  line  office.  The  CRTM  is  implemented  in  Fortran  for  reasons  of  parallel  performance  and 

 optimization.  While  the  Fortran  interface  is  versatile  in  the  hands  of  Fortran  experts,  there  is  a  steep  learning  curve  for 

 students  and  new  researchers  unfamiliar  with  Fortran.  There  are  also  research  applications  with  a  rapid  development  cycle, 

 or  where  a  researcher  just  wants  a  quick  plot  of  brightness  temperature  given  a  meteorological  analysis  or  forecast  where 

 Fortran  is  not  ideally  suited.  This  particular  performance  metric  is  increasingly  referred  to  as  time-to-plot  in  scientific 

 programming.  A  Python  interface  to  CRTM  known  as  pyCRTM  was  developed  with  students  and  researchers  in  mind  who 

 would  prefer  working  with  Python  in  lieu  of  Fortran,  for  applications  where  rapid  prototyping  is  required,  and  other 

 applications that could harness the power of the Python ecosystem. 

 1.2.  Previous Work on Python Interfaces for Radiative Transfer 

 It  should  be  noted  that  pyCRTM  is  not  the  first  and  only  interface  to  a  fast  radiative  transfer  model  as  the  Radiative  Transfer 

 Model  for  TOVS  (RTTOV)  has  a  Python  interface  known  as  pyRTTOV  [7].  While  pyCRTM  is  not  the  first  interface  to  a 

 fast  radiative  transfer  model,  it  does  allow  researchers  to  simulate  observations  as  the  GEOS-ADAS,  GDAS,  and 

 NAVDAS-AR  simulate  them  versus  how  they  would  be  simulated  in  the  European  Center  for  Medium-Range  Weather 

 Forecasts  (ECMWF),  UK  Met  Office,  or  Meteo  France  systems.  Having  a  Python  interface  to  both  RTTOV  and  the  CRTM 

 lowers the barrier for researchers and students to perform intercomparison studies between the two systems. 

 1.3.  Purpose of this study 

 The  purpose  of  this  study  is  to  present  the  basic  design,  and  implementation  of  pyCRTM.  Along  with  presenting  the 

 interface  itself,  some  examples  that  demonstrate  the  ease  of  use,  and  powerful  applications  that  can  be  developed  with 

 pyCRTM are presented. 

 1.4.  Manuscript Overview 

 In  the  following,  the  manuscript  is  divided  into  5  remaining  sections.  Section  2  provides  the  design  goals  of  pyCRTM. 

 Section  3  briefly  describes  the  implementation,  and  access  to  data  structures.  Section  4  describes  connections  to  other 

 frameworks  that  when  combined  with  pyCRTM  minimize  the  barriers  to  novice  users,  and  novel  applications.  Section  5 

 discusses  some  of  the  powerful  results  that  may  be  obtained  using  pyCRTM.  Finally,  in  Section  6  concluding  remarks  are 

 made. 

 2.  Design Goals 

 The overarching design goal with pyCRTM is to maintain access to the many features available within the underlying 

 Fortran model, while keeping the interface simple enough for users with only a basic knowledge of radiative transfer 

 calculations and Python. Additionally, given there is an existing Python module for RTTOV, an effort was made to keep 

 variable names and methods consistent between pyCRTM and pyRTTOV. The design essentially wraps two models 

 available in CRTM: the Forward Model (accessed in pyCRTM as runDirect) which can be used to compute brightness 

 temperature or radiance, along with transmission, and the CRTM K-Matrix Model (accessed in pyCRTM as runK) which 

 performs the same computations along with Jacobians of atmospheric temperature, concentration of atmospheric 
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 constituents, surface temperature, surface emissivity, surface reflectance, wind speed, and wind direction. Finally, the 

 OpenMP capability of the underlying Fortran models is preserved allowing for parallel processing of many atmospheric 

 profiles. 

 3.  Conceptual Implementation 

 The  CRTM  is  more  fully  described  in  other  publications  [1-6]  and  this  paper  describes  only  the  interfaces  and  configurable 

 options  of  the  model.  This  section  provides  an  overview  of  the  implementation  of  the  pyCRTM  interface  and  the  underlying 

 concepts.  The  main  class  by  which  a  Python  user  interacts  with  pyCRTM  is  through  the  pyCRTM  class  and  profiles  data 

 structure. A UML diagram of the initialized pyCRTM class is shown in Fig. 1. 

 Figure 1: UML diagram of the pyCRTM core class. 
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 Most  of  the  variables  in  the  pyCRTM  class  are  output  variables  which  are  populated  by  the  loadInst,  runDirect,  or  runK 

 methods.  Once  the  pyCRTM  class  is  initialized,  the  user  must  provide  the  profiles  data  structure,  and  the  sensor_id.  The 

 sensor_id  is  a  string  which  defines  the  simulated  sensor  which  is  the  sensor  name  followed  by  an  “_”,  then  the  observation 

 satellite  platform  (e.g.,  ‘atms_n20’  would  indicate  the  Advanced  Technology  Microwave  Sounder  on  the  NOAA  20 

 satellite).  Next,  the  user  must  run  the  loadInst  method  in  the  pyCRTM  class  to  populate  metadata  such  as  channel 

 frequencies  or  wavelengths,  along  with  setting  the  wmo_sensor_id  and  wmo_satellite_id  for  the  underlying  CRTM.  The 

 user can then choose to run either the runDirect function, or runK function. 

 If  the  user  calls  the  runDirect  function  shown  in  Fig.  2,  it  will  set  required  inputs  to  the  CRTM  based  on  the  user’s  input 

 profiles,  run  the  Forward  Model  in  the  CRTM,  populate  brightness  temperature  or  radiance  (variable  Bt  in  the  pyCRTM 

 class),  along  with  the  option  to  return  transmission  (TauLevels),  surface  emissivity  and  surface  reflectance  (surfEmisRefl). 

 The  dimensions  of  the  brightness  temperature  variable  (Bt)  are  profile  number,  followed  by  channel  number.  For  the 

 transmission  variable  (TauLevels)  the  dimensions  are  profile  number,  followed  by  channel  number,  along  with  layer  number 

 indexed  by  increasing  pressure  (top  of  atmosphere  is  index  0,  bottom  of  atmosphere  is  the  last  index).  The  user  can  then 

 take  the  variables  from  the  pyCRTM  class  and  use  them  in  further  numpy  calculations,  plot  them  using  the  aid  of  matplotlib, 

 or include them in user defined Python applications. 

 Alternatively,  the  user  may  call  the  runK  function  shown  in  Fig.  3.  It  will  set  required  inputs  to  the  CRTM  based  on  the 

 user’s  input  profiles,  run  the  K-Matrix  model  in  the  CRTM,  populate  brightness  temperature  or  radiance  (in  Bt),  along  with 

 the  option  to  return  transmission  (TauLevels),  surface  emissivity  and  surface  reflectance  (surfEmisRefl)  as  with  the 

 runDirect  function.  In  addition  runK  will  populate  the  Jacobians  (any  variable  in  Fig.  1  ending  with  a  capital  “K”).  If  the 

 user  does  not  provide  a  gas  concentration  in  the  profiles  structure,  it  will  not  populate  the  associated  trace  gas  Jacobian  (e.g., 

 N2OK  will  not  be  populated  if  the  user  does  not  include  N  2  O).  The  user  must  provide  at  minimum  water  vapor  and  ozone  to 

 the  CRTM,  therefore  their  associated  Jacobians  (QK,  and  O3K)  will  alway  be  populated.  The  dimensions  of  all  Jacobian 

 variables  with  a  vertical  dimension  (e.g.,  QK,O3K,TK)  have  array  dimensions  of  profile  number,  channel  number,  and 

 layer  number  (increasing  pressure).  The  skinK  Jacobian  array  has  dimensions  of  profile  number,  channel  number,  and 

 surface  index  (0=Land  Temperature,  1=Water  Temperature,  2=Ice  Temperature,  3=Snow  Temperature).  Jacobians  for  all 

 other  variables  which  do  not  have  a  vertical  dimension  (e.g.  emisK,  reflK,  windSpeedK,  windDirectionK)  have  array 

 dimensions  of  profile  number,  and  channel  number.  Again,  the  user  may  take  the  variables  populated  into  further  NumPy 

 calculations, plot them using the aid of matplotlib, or include them into any desired Python application. 

 Most  of  the  pathways  triggered  within  runDirect  or  runK  (see  Figs.  2  and  3)  are  defined  by  the  user  provided  profile  data 

 structure.  The  user  initializes  a  profile  data  structure  using  the  profilesCreate  function  providing  the  number  of  profiles,  and 

 number  of  layers  in  the  profiles,  along  with  optionally  providing  the  number  of  aerosol  types,  number  of  cloud  types,  and  a 

 list  of  additional  trace  gases.  The  fields  the  user  must  specify  in  the  profiles  data  structure  are  shown  in  Fig.  4.  Required 

 fields  include  layer  pressures,  layer  temperatures,  layer  specific  humidity,  layer  ozone  concentration,  level/layer  interface 

 pressure,  angles  (sensor  zenith,  sensor  azimuth,  solar  zenith,  solar  azimuth,  sensor  scan  angle),  surface  types,  surface 

 fractions,  surface  temperatures,  wind  speed  at  10  meters,  and  wind  direction  at  10  meters.  Additionally,  the  user  may  set 

 desired inputs for aerosols and clouds present in the  profiles  data structure. 
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 Figure 2: Flowchart of the forward operator method of the pyCRTM class. 
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 Figure 3: Flowchart of the Jacobian (K-Matrix)  method of the pyCRTM class . 
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 Figure 4: UML of the profiles data structure 
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 4.  Connections to Other Frameworks 

 4.1.  Interaction with other Python frameworks 

 A major advantage of encapsulating the CRTM into pyCRTM as a convenient Python interface is the direct interaction with 

 the vast selection of other scientific Python packages. For radiative transfer, remote sensing, and data assimilation these 

 include in particular: 

 - NumPy for numerics and linear algebra [8]. 

 - Matplotlib for plotting and data visualization [9]. 

 - MetPy for meteorological analysis [10]. 

 - Cartopy for geographic maps [11]. 

 Often the goal of a computational study is the analysis of some numerical data that is the result of a CRTM calculation. 

 However, running the CRTM as a standalone Fortran program requires saving the calculation results in an intermediate 

 format as an additional step. The output data are often further analyzed using NumPy, or visualized using Matplotlib. Using 

 pyCRTM makes the aforementioned intermediate step unnecessary and the data can be processed directly in a single Python 

 program. A more elaborate example of this functionality is given in subsection 5.1 on sensor simulation in the microwave 

 region. 

 4.2.  Jupyter Notebooks 

 Computational notebook programming was first introduced in the proprietary Mathematica software [12] as a form of 

 literate programming [13] suitable for scientific research. A popular open-source alternative is the Jupyter framework [14] 

 which, as its name implies, supports Python as one of its languages. pyCRTM, as a Python module, can easily be called 

 from inside Jupyter notebooks. A screenshot of running pyCRTM within a Jupyter notebook is shown in Fig. 5. 
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 Figure 5  : Screenshot of running pyCRTM inside of a  Jupyter notebook.. 

 This  makes  it  particularly  convenient  for  the  type  of  exploratory  analysis  that  Jupyter  notebooks  are  well  suited  for. 

 University  courses  may  also  benefit  from  using  pyCRTM  within  Jupyter  notebooks  as  a  tool  to  teach  radiative  transfer, 

 remote  sensing,  and  data  assimilation,  further  emphasizing  the  practical  value  of  pyCRTM.  pyCRTM  Jupyter  notebooks 

 provide  a  dynamic  environment  with  a  low  barrier-of-entry  and  can  be  used  for  coursework  assignments  that  can 

 automatically be graded using the nbgrader tool [15]. 
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 4.3.  GeoIPS 

 The Geolocated Information Processing System (GeoIPS) [16]  version 2.0 is a Python-based, efficient generalized 

 processing system that will bridge the gap between satellite remote sensing and data assimilation and NWP modeling by 

 providing modern modular scripts to facilitate rapid incorporation of satellite, model and other environmental data. GeoIPS 

 is intended to replace Terascan software currently in operation at Fleet Numerical Meteorology and Oceanography Center 

 (FNMOC). Expanding the capability of GeoIPS with augmentations of radiative transfer calculations and various data 

 assimilation applications will increase its synergy of satellite processing/imaging, model output and other environmental 

 data. NRL has incorporated CRTM into GeoIPS using pyCRTM to facilitate rapid incorporation of satellite, model and other 

 environmental data. While GeoIPS is publically available, the pyCRTM functionality is available by request only. 

 5.  Research and Real-Time Applications 

 5.1.  Sensor Simulation in Microwave 

 pyCRTM provides a standalone Python interface for the forward calculations of CRTM, as discussed above. The Python 

 interface provides more flexibility for applications such as calibration and validation (CalVal) of the satellite sensor data, 

 inter-comparison between different radiative transfer models, different model background, and different static and dynamic 

 ancillary inputs. NRL scientists have utilized pyCRTM to calibrate the simulated brightness temperatures for various 

 existing and new microwave satellite sensors by using either the ECMWF or NAVGEM model outputs. We have established 

 an efficient workflow to simulate brightness temperatures from the Advanced Technology Microwave Sounder (ATMS), 

 Special Sensor Microwave Imager/Sounder (SSMIS), and WindSat. The sensor simulator is easily configured to incorporate 

 new sensors such as the Compact Ocean Wind Vector Radiometer (COWVR) and the Temporal Experiment for Storms and 

 Tropical Systems (TEMPEST). Such fast RTM simulations can be compared with the line-by-line RTM simulations to 

 calibrate the satellite sensor performance, which then can be used to provide quality control statistics for NWP applications. 

 At NASA GMAO, evaluation of new microwave sensors has been done routinely via Observation System Simulation 

 Experiments, and Observation System Experiments. However, these systems often don’t have an easy method to quickly 

 visualize vertical sensitivity via weighting functions.  This is typically calculated using 

 (1)  𝑊𝐹 =     𝑑𝑇𝑎𝑢 
 𝑑𝑙𝑜𝑔 ( 𝑃 )

 where  Tau  is  the  atmospheric  transmission,  and  P  is  the  atmospheric  pressure.  While  pyCRTM  does  not  output  weighting 

 functions  directly,  it  may  be  computed  by  taking  the  transmission  and  taking  the  finite  difference  of  transmission  and  log 

 pressure.  (e.g.,  using  NumPy’s  diff  function).  An  example  of  this  is  shown  in  Fig.  6  comparing  water  vapor  sensitive 

 channels  from  the  Global  Precipitation  Mission  Microwave  Imager  (GMI),  and  the  Temporal  Experiment  for  Storms  and 

 Tropical  Systems  -  Demonstration  (TEMPEST-D).  Both  are  microwave  instruments  that  sound  the  183  GHz  water  vapor 

 absorption line. 
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 Figure 6  : An example of weighting function computed  utilizing pyCRTM for GMI and TEMPEST-D channels sensitive to water vapor. 

 Furthermore, pyCRTM retains the capability of the CRTM to compute the adjoint Jacobians for all possible instrument 

 types, which is crucial for variational data assimilation applications and in-depth analysis of instruments. Similar to the 

 weighting function, an example of the adjoint brightness temperature Jacobian w.r.t. the atmospheric input profile layer 

 temperature is shown in Fig. 7 for the  Advanced Microwave Sounding Unit-A (AMSU-A) instrument onboard the 

 Meteorological Operational Satellite-A (MetOp-A). 
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 Figure 7  : Adjoint brightness temperature Jacobian  for channels 1 through 14 of AMSU-A MetOp-A. 
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 This provides a further example for the interaction of pyCRTM with other frameworks in the Python ecosystem. 

 As the Jacobian is the linearized form (or K-Matrix) of the nonlinear pyCRTM Forward operator, an important first step in 

 the analysis of an instrument is the singular value decomposition (SVD) of this K-Matrix, as it provides the basis for the 

 identification of the row- and null space of a measurement, and the computation of the information content and Shannon 

 entropy. NumPy here provides the facilities to store the K-Matrix conveniently in a matrix array and also to perform the 

 SVD operation itself. The resulting left singular vectors and corresponding singular values for the AMSU-A case of Fig. 7 

 are shown in Fig. 8. 

 Figure 8  : First 5 singular values and singular vectors  of the K-Matrix shown in Fig. 7 for AMSU-A MetOp-A. 

 The listing of the corresponding Python code is given in Listing 1 and its clarity and brevity despite symbolizing such a 

 complex operation is a good example for the principle to encapsulate and hide the complexity of a process from the user and 

 for the conciseness of pyCRTM. 

 Listing 1  : Seamless computation of a temperature Jacobian  (K-Matrix) for AMSU-A MetOp-A and its SVD using pyCRTM and NumPy. 

 import numpy as np 
 ... 
 crtmOb.runK() 
 kTb = crtmOb.Bt 
 u, s, vh = np.linalg.svd( kTb.T ) 
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 5.2.  Sensor Simulation and Visualization using GeoIPS 

 An active area of development in numerical weather prediction is the use of model forecast data to produce simulated 

 satellite imagery with a “look and feel” resembling the satellite data that many meteorologists use regularly (e.g. 

 Bodas-Salcedo et al. [17]). Generation of “synthetic” microwave sensor imagery is a similar process to forward modeling 

 involved in data assimilation, and also relies on models such as CRTM. Microwave sensor simulator capability for CalVal 

 applications have been adapted and integrated with GeoIPS. Currently this capability supports typical microwave sensors 

 such as SSMIS and AMSU-B, and model outputs from ECMWF, NAVGEM and COAMPS. Users can visualize the 

 simulations by calling the script with input of satellite sensor and interested channels, which can be done either in batch or 

 interactively using Jupyter notebooks or similar frameworks. Figs. 9 and 10 provide an example of global and regional 

 visualization of synthetic SSMIS  37 GHz and 89 GHz brightness temperatures computed by CRTM based on NAVGEM 

 model outputs. 

 Figure 9  : An example of SSMIS channel 37H brightness  temperature (a), simulated brightness temperature using NAVGEM model 

 outputs (b), and their differences (c). 
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 Figure 10  : GeoIPS/pyCRTM observed (a) and simulated  (b) SSMIS channel 89GHz brightness temperatures using NAVGEM  model 

 outputs, and their differences (c). 

 5.3.  Hyperspectral Infrared Simulations Including Sensitivities 

 Another NRL application of pyCRTM relates to aerosol impacts on hyperspectral IR data. The impact of scattering and 

 absorbing particles on satellite infrared radiances has been long recognized (e.g. Griggs [18]), and the quantitative studies 

 have shown that 1) aerosol impacts can frequently be large relative to other uncertainties in forward calculations (Marquis et 

 al. [19]) and 2) fairly precise estimates of aerosols are needed to constrain satellite radiances within tolerances needed by 

 atmospheric and oceanic prediction systems (Bogdanoff et al. [20] ). However, computation of vertically-resolved particle 

 scattering and absorption adds computational cost and potentially time to the forward calculation of radiances. In 

 preparation for implementation of aerosol-aware radiance DA, it was necessary to establish criteria for when the aerosol 

 computations were likely to significantly affect the forward solutions. NRL approached this problem by applying aerosol 

 fields from the Navy Aerosol Analysis and Prediction System (NAAPS, Lynch et al. [21]) using CRTM to estimate the 

 impacts of aerosols on simulated infrared radiances, and the fraction of forward radiance computations that would need to 

 include aerosol to achieve a specified uncertainty. The pyCRTM interface, working inside a Jupyter notebook, greatly 

 simplified this experimental setup, and the output of results directly in the interactive Python notebook meant that 

 visualization of results could be done immediately after computations were completed. The time saved by the use of Python 

 tools for this work translates into additional testing, resulting in a robust method for establishing thresholds for operational 

 implementation of aerosol-aware radiance assimilation. 

 At NASA GMAO, pyCRTM has proven to be a valuable tool in a number of studies using hyperspectral sounders. While 

 data assimilation systems such as NASA’s  Global Earth Observing System- Atmospheric Data Assimilation System 

 (GEOS-ADAS) , and NOAA’s Global Data Assimilation System (GDAS) utilize Jacobians in the data assimilation process, 

 they do not provide a convenient method to output or visualize temperature or constituent Jacobians. The ability to easily 

 access Jacobians from the CRTM has enabled visualizations of the sensitivity of constituents, and temperature in data 

 assimilation applications.  An example is shown in Fig. 8 where temperature, water vapor and ozone Jacobians are 

 calculated offline using pyCRTM. The analysis fields from the GEOS-ADAS are read in via netCDF and are provided to the 
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 pyCRTM interface, and Jacobians are computed. The resulting Jacobians are then convolved with an estimate of the model 

 background error and displayed in Fig. 11.  This provides an estimate of the vertical sensitivity of temperature, water vapor, 

 and ozone in the GEOS-ADAS. The longwave infrared (LWIR) and shortwave infrared (SWIR) are compared in Fig. 8 to 

 highlight a potential benefit of adding CrIS shortwave channels to the GEOS-ADAS. Longwave infrared temperature 

 sounding channels display a much higher sensitivity to water vapor and ozone, whereas temperature sounding channels in 

 the shortwave infrared are primarily sensitive to temperature. A similar approach of convolving background error with 

 Jacobians was utilized in Karpowicz et al. [22]  along with Han and McNally [23] as a criteria for selecting ozone sensitive 

 channels. Additionally, Karpowicz et al. [22] used pyCRTM to obtain Jacobians and weighting functions of ozone sensitive 

 channels from hyperspectral instruments. 

 Figure 11  : Jacobians computed from pyCRTM for  the  Cross-track Infrared Spectrometer (CrIS) convolved against an estimate of 

 background error of the GEOS-ADAS . 

 6.  Conclusion 

 The applications shown demonstrate the power of having a fast radiative transfer model paired with an interpretative 

 language that allows for rapid prototyping for development. The ease of use provides an opportunity for students to learn the 
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 basics of radiative transfer tools like CRTM using a widely taught interpreted language in modern undergraduate curricula, 

 without having to learn Fortran which, as a more cumbersome compiled language, is more often taught in graduate courses. 

 pyCRTM adds to the rich ecosystem of tools for research and development and is ideally suited for quick simulations and 

 visualizations. The framework is flexible enough to provide simulations of varying complexity whether it be an infrared 

 hyperspectral  sounder simulation with aerosols and clouds present, or a simple simulation of cloud free microwave 

 brightness temperature over ocean. The pyCRTM interface is freely available on the JCSDA github repository 

   https://github.com/JCSDA/pycrtm. 
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