
 pyCRTM: A Python Interface for the Community Radiative Transfer

 Model

 Bryan M. Karpowicz a,b,c, 1 , Patrick G. Stegmann d , Benjamin T. Johnson d , Hui W.

 Christophersen e , Edward J. Hyer e , Andrew Lambert e,f and Eric Simon e,g

 a Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
 b Goddard Earth Sciences Technology and Research II, Greenbelt, MD, USA

 c University of Maryland Baltimore County, Baltimore, MD, USA
 d Joint Center for Satellite Data Assimilation, NOAA Center for Weather and Climate Prediction, College Park, MD, USA

 e U.S. Naval Research Laboratory, Monterey, CA, USA
 f General Dynamics Information Technology, Monterey, CA, USA

 g Science Applications International Corporation, Inc., Monterey, CA, USA

 Abstract

 The Community Radiative Transfer Model (CRTM) is a powerful and versatile scalar radiative transfer model for satellite data

 assimilation and remote sensing applications. It is implemented as an object-oriented Fortran library, enabling flexible code development

 and optimal runtime performance on clusters. The downsides of the Fortran interface are a steep learning curve for students and the

 reduced productivity of users that is typical for static compiled languages, in contrast to dynamic interpreted languages like Python.

 pyCRTM is a new software framework that directly interfaces the CRTM Fortran data structures and procedures in Python, leveraging

 both the simplicity and ease of use of Python syntax as well as the flexibility arising from the vast contemporary Python ecosystem. The

 goal of pyCRTM is to lower the barrier of entry for university students to learn and use the CRTM and to boost the productivity of

 researchers seeking to create new methods in radiative transfer and data assimilation, or seeking to apply the CRTM to study atmospheric

 phenomena without having to go through the pre-existing complexity of the CRTM Fortran interface.

 Keywords: radiative transfer; CRTM; Python; data assimilation; remote sensing;

 1. Introduction

 1.1. Background

 The Community Radiative Transfer Model (CRTM) [1-6] has proven to be an invaluable fast scalar radiative transfer model

 which enables direct assimilation of radiance measurements for numerical weather prediction, calibration and validation

 studies of passive microwave and infrared satellite instruments, and planning for new instruments and platforms via

 Observation System Simulation Experiments (OSSEs). In the past, the CRTM was primarily utilized as a part of a larger

 framework typically a data assimilation system like the NASA Global Earth Observing System-Atmospheric Data

 Assimilation System (GEOS-ADAS), NOAA’s Global Data Assimilation System (GDAS), or the US Naval Research

 Laboratory’s (NRL) NRL Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR). The

 CRTM has also been used in satellite retrievals such as the Microwave Integrated Retrieval System (MiRS), in the Global

 1 Corresponding author.
 E-mail address: bryan.m.karpowicz@nasa.gov

 2 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 Modeling and Assimilation Office’s (GMAO) GMAO-OSSE system, and the operational calibration and validation (CalVal)

 at the NOAA NESDIS STAR line office. The CRTM is implemented in Fortran for reasons of parallel performance and

 optimization. While the Fortran interface is versatile in the hands of Fortran experts, there is a steep learning curve for

 students and new researchers unfamiliar with Fortran. There are also research applications with a rapid development cycle,

 or where a researcher just wants a quick plot of brightness temperature given a meteorological analysis or forecast where

 Fortran is not ideally suited. This particular performance metric is increasingly referred to as time-to-plot in scientific

 programming. A Python interface to CRTM known as pyCRTM was developed with students and researchers in mind who

 would prefer working with Python in lieu of Fortran, for applications where rapid prototyping is required, and other

 applications that could harness the power of the Python ecosystem.

 1.2. Previous Work on Python Interfaces for Radiative Transfer

 It should be noted that pyCRTM is not the first and only interface to a fast radiative transfer model as the Radiative Transfer

 Model for TOVS (RTTOV) has a Python interface known as pyRTTOV [7]. While pyCRTM is not the first interface to a

 fast radiative transfer model, it does allow researchers to simulate observations as the GEOS-ADAS, GDAS, and

 NAVDAS-AR simulate them versus how they would be simulated in the European Center for Medium-Range Weather

 Forecasts (ECMWF), UK Met Office, or Meteo France systems. Having a Python interface to both RTTOV and the CRTM

 lowers the barrier for researchers and students to perform intercomparison studies between the two systems.

 1.3. Purpose of this study

 The purpose of this study is to present the basic design, and implementation of pyCRTM. Along with presenting the

 interface itself, some examples that demonstrate the ease of use, and powerful applications that can be developed with

 pyCRTM are presented.

 1.4. Manuscript Overview

 In the following, the manuscript is divided into 5 remaining sections. Section 2 provides the design goals of pyCRTM.

 Section 3 briefly describes the implementation, and access to data structures. Section 4 describes connections to other

 frameworks that when combined with pyCRTM minimize the barriers to novice users, and novel applications. Section 5

 discusses some of the powerful results that may be obtained using pyCRTM. Finally, in Section 6 concluding remarks are

 made.

 2. Design Goals

 The overarching design goal with pyCRTM is to maintain access to the many features available within the underlying

 Fortran model, while keeping the interface simple enough for users with only a basic knowledge of radiative transfer

 calculations and Python. Additionally, given there is an existing Python module for RTTOV, an effort was made to keep

 variable names and methods consistent between pyCRTM and pyRTTOV. The design essentially wraps two models

 available in CRTM: the Forward Model (accessed in pyCRTM as runDirect) which can be used to compute brightness

 temperature or radiance, along with transmission, and the CRTM K-Matrix Model (accessed in pyCRTM as runK) which

 performs the same computations along with Jacobians of atmospheric temperature, concentration of atmospheric

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 3

 constituents, surface temperature, surface emissivity, surface reflectance, wind speed, and wind direction. Finally, the

 OpenMP capability of the underlying Fortran models is preserved allowing for parallel processing of many atmospheric

 profiles.

 3. Conceptual Implementation

 The CRTM is more fully described in other publications [1-6] and this paper describes only the interfaces and configurable

 options of the model. This section provides an overview of the implementation of the pyCRTM interface and the underlying

 concepts. The main class by which a Python user interacts with pyCRTM is through the pyCRTM class and profiles data

 structure. A UML diagram of the initialized pyCRTM class is shown in Fig. 1.

 Figure 1: UML diagram of the pyCRTM core class.

 4 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 Most of the variables in the pyCRTM class are output variables which are populated by the loadInst, runDirect, or runK

 methods. Once the pyCRTM class is initialized, the user must provide the profiles data structure, and the sensor_id. The

 sensor_id is a string which defines the simulated sensor which is the sensor name followed by an “_”, then the observation

 satellite platform (e.g., ‘atms_n20’ would indicate the Advanced Technology Microwave Sounder on the NOAA 20

 satellite). Next, the user must run the loadInst method in the pyCRTM class to populate metadata such as channel

 frequencies or wavelengths, along with setting the wmo_sensor_id and wmo_satellite_id for the underlying CRTM. The

 user can then choose to run either the runDirect function, or runK function.

 If the user calls the runDirect function shown in Fig. 2, it will set required inputs to the CRTM based on the user’s input

 profiles, run the Forward Model in the CRTM, populate brightness temperature or radiance (variable Bt in the pyCRTM

 class), along with the option to return transmission (TauLevels), surface emissivity and surface reflectance (surfEmisRefl).

 The dimensions of the brightness temperature variable (Bt) are profile number, followed by channel number. For the

 transmission variable (TauLevels) the dimensions are profile number, followed by channel number, along with layer number

 indexed by increasing pressure (top of atmosphere is index 0, bottom of atmosphere is the last index). The user can then

 take the variables from the pyCRTM class and use them in further numpy calculations, plot them using the aid of matplotlib,

 or include them in user defined Python applications.

 Alternatively, the user may call the runK function shown in Fig. 3. It will set required inputs to the CRTM based on the

 user’s input profiles, run the K-Matrix model in the CRTM, populate brightness temperature or radiance (in Bt), along with

 the option to return transmission (TauLevels), surface emissivity and surface reflectance (surfEmisRefl) as with the

 runDirect function. In addition runK will populate the Jacobians (any variable in Fig. 1 ending with a capital “K”). If the

 user does not provide a gas concentration in the profiles structure, it will not populate the associated trace gas Jacobian (e.g.,

 N2OK will not be populated if the user does not include N 2 O). The user must provide at minimum water vapor and ozone to

 the CRTM, therefore their associated Jacobians (QK, and O3K) will alway be populated. The dimensions of all Jacobian

 variables with a vertical dimension (e.g., QK,O3K,TK) have array dimensions of profile number, channel number, and

 layer number (increasing pressure). The skinK Jacobian array has dimensions of profile number, channel number, and

 surface index (0=Land Temperature, 1=Water Temperature, 2=Ice Temperature, 3=Snow Temperature). Jacobians for all

 other variables which do not have a vertical dimension (e.g. emisK, reflK, windSpeedK, windDirectionK) have array

 dimensions of profile number, and channel number. Again, the user may take the variables populated into further NumPy

 calculations, plot them using the aid of matplotlib, or include them into any desired Python application.

 Most of the pathways triggered within runDirect or runK (see Figs. 2 and 3) are defined by the user provided profile data

 structure. The user initializes a profile data structure using the profilesCreate function providing the number of profiles, and

 number of layers in the profiles, along with optionally providing the number of aerosol types, number of cloud types, and a

 list of additional trace gases. The fields the user must specify in the profiles data structure are shown in Fig. 4. Required

 fields include layer pressures, layer temperatures, layer specific humidity, layer ozone concentration, level/layer interface

 pressure, angles (sensor zenith, sensor azimuth, solar zenith, solar azimuth, sensor scan angle), surface types, surface

 fractions, surface temperatures, wind speed at 10 meters, and wind direction at 10 meters. Additionally, the user may set

 desired inputs for aerosols and clouds present in the profiles data structure.

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 5

 Figure 2: Flowchart of the forward operator method of the pyCRTM class.

 6 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 Figure 3: Flowchart of the Jacobian (K-Matrix) method of the pyCRTM class .

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 7

 Figure 4: UML of the profiles data structure

 8 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 4. Connections to Other Frameworks

 4.1. Interaction with other Python frameworks

 A major advantage of encapsulating the CRTM into pyCRTM as a convenient Python interface is the direct interaction with

 the vast selection of other scientific Python packages. For radiative transfer, remote sensing, and data assimilation these

 include in particular:

 - NumPy for numerics and linear algebra [8].

 - Matplotlib for plotting and data visualization [9].

 - MetPy for meteorological analysis [10].

 - Cartopy for geographic maps [11].

 Often the goal of a computational study is the analysis of some numerical data that is the result of a CRTM calculation.

 However, running the CRTM as a standalone Fortran program requires saving the calculation results in an intermediate

 format as an additional step. The output data are often further analyzed using NumPy, or visualized using Matplotlib. Using

 pyCRTM makes the aforementioned intermediate step unnecessary and the data can be processed directly in a single Python

 program. A more elaborate example of this functionality is given in subsection 5.1 on sensor simulation in the microwave

 region.

 4.2. Jupyter Notebooks

 Computational notebook programming was first introduced in the proprietary Mathematica software [12] as a form of

 literate programming [13] suitable for scientific research. A popular open-source alternative is the Jupyter framework [14]

 which, as its name implies, supports Python as one of its languages. pyCRTM, as a Python module, can easily be called

 from inside Jupyter notebooks. A screenshot of running pyCRTM within a Jupyter notebook is shown in Fig. 5.

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 9

 Figure 5 : Screenshot of running pyCRTM inside of a Jupyter notebook..

 This makes it particularly convenient for the type of exploratory analysis that Jupyter notebooks are well suited for.

 University courses may also benefit from using pyCRTM within Jupyter notebooks as a tool to teach radiative transfer,

 remote sensing, and data assimilation, further emphasizing the practical value of pyCRTM. pyCRTM Jupyter notebooks

 provide a dynamic environment with a low barrier-of-entry and can be used for coursework assignments that can

 automatically be graded using the nbgrader tool [15].

 10 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 4.3. GeoIPS

 The Geolocated Information Processing System (GeoIPS) [16] version 2.0 is a Python-based, efficient generalized

 processing system that will bridge the gap between satellite remote sensing and data assimilation and NWP modeling by

 providing modern modular scripts to facilitate rapid incorporation of satellite, model and other environmental data. GeoIPS

 is intended to replace Terascan software currently in operation at Fleet Numerical Meteorology and Oceanography Center

 (FNMOC). Expanding the capability of GeoIPS with augmentations of radiative transfer calculations and various data

 assimilation applications will increase its synergy of satellite processing/imaging, model output and other environmental

 data. NRL has incorporated CRTM into GeoIPS using pyCRTM to facilitate rapid incorporation of satellite, model and other

 environmental data. While GeoIPS is publically available, the pyCRTM functionality is available by request only.

 5. Research and Real-Time Applications

 5.1. Sensor Simulation in Microwave

 pyCRTM provides a standalone Python interface for the forward calculations of CRTM, as discussed above. The Python

 interface provides more flexibility for applications such as calibration and validation (CalVal) of the satellite sensor data,

 inter-comparison between different radiative transfer models, different model background, and different static and dynamic

 ancillary inputs. NRL scientists have utilized pyCRTM to calibrate the simulated brightness temperatures for various

 existing and new microwave satellite sensors by using either the ECMWF or NAVGEM model outputs. We have established

 an efficient workflow to simulate brightness temperatures from the Advanced Technology Microwave Sounder (ATMS),

 Special Sensor Microwave Imager/Sounder (SSMIS), and WindSat. The sensor simulator is easily configured to incorporate

 new sensors such as the Compact Ocean Wind Vector Radiometer (COWVR) and the Temporal Experiment for Storms and

 Tropical Systems (TEMPEST). Such fast RTM simulations can be compared with the line-by-line RTM simulations to

 calibrate the satellite sensor performance, which then can be used to provide quality control statistics for NWP applications.

 At NASA GMAO, evaluation of new microwave sensors has been done routinely via Observation System Simulation

 Experiments, and Observation System Experiments. However, these systems often don’t have an easy method to quickly

 visualize vertical sensitivity via weighting functions. This is typically calculated using

 (1) 𝑊𝐹 = 𝑑𝑇𝑎𝑢
 𝑑𝑙𝑜𝑔 (𝑃)

 where Tau is the atmospheric transmission, and P is the atmospheric pressure. While pyCRTM does not output weighting

 functions directly, it may be computed by taking the transmission and taking the finite difference of transmission and log

 pressure. (e.g., using NumPy’s diff function). An example of this is shown in Fig. 6 comparing water vapor sensitive

 channels from the Global Precipitation Mission Microwave Imager (GMI), and the Temporal Experiment for Storms and

 Tropical Systems - Demonstration (TEMPEST-D). Both are microwave instruments that sound the 183 GHz water vapor

 absorption line.

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 11

 Figure 6 : An example of weighting function computed utilizing pyCRTM for GMI and TEMPEST-D channels sensitive to water vapor.

 Furthermore, pyCRTM retains the capability of the CRTM to compute the adjoint Jacobians for all possible instrument

 types, which is crucial for variational data assimilation applications and in-depth analysis of instruments. Similar to the

 weighting function, an example of the adjoint brightness temperature Jacobian w.r.t. the atmospheric input profile layer

 temperature is shown in Fig. 7 for the Advanced Microwave Sounding Unit-A (AMSU-A) instrument onboard the

 Meteorological Operational Satellite-A (MetOp-A).

 12 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 Figure 7 : Adjoint brightness temperature Jacobian for channels 1 through 14 of AMSU-A MetOp-A.

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 13

 This provides a further example for the interaction of pyCRTM with other frameworks in the Python ecosystem.

 As the Jacobian is the linearized form (or K-Matrix) of the nonlinear pyCRTM Forward operator, an important first step in

 the analysis of an instrument is the singular value decomposition (SVD) of this K-Matrix, as it provides the basis for the

 identification of the row- and null space of a measurement, and the computation of the information content and Shannon

 entropy. NumPy here provides the facilities to store the K-Matrix conveniently in a matrix array and also to perform the

 SVD operation itself. The resulting left singular vectors and corresponding singular values for the AMSU-A case of Fig. 7

 are shown in Fig. 8.

 Figure 8 : First 5 singular values and singular vectors of the K-Matrix shown in Fig. 7 for AMSU-A MetOp-A.

 The listing of the corresponding Python code is given in Listing 1 and its clarity and brevity despite symbolizing such a

 complex operation is a good example for the principle to encapsulate and hide the complexity of a process from the user and

 for the conciseness of pyCRTM.

 Listing 1 : Seamless computation of a temperature Jacobian (K-Matrix) for AMSU-A MetOp-A and its SVD using pyCRTM and NumPy.

 import numpy as np
 ...
 crtmOb.runK()
 kTb = crtmOb.Bt
 u, s, vh = np.linalg.svd(kTb.T)

 14 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 5.2. Sensor Simulation and Visualization using GeoIPS

 An active area of development in numerical weather prediction is the use of model forecast data to produce simulated

 satellite imagery with a “look and feel” resembling the satellite data that many meteorologists use regularly (e.g.

 Bodas-Salcedo et al. [17]). Generation of “synthetic” microwave sensor imagery is a similar process to forward modeling

 involved in data assimilation, and also relies on models such as CRTM. Microwave sensor simulator capability for CalVal

 applications have been adapted and integrated with GeoIPS. Currently this capability supports typical microwave sensors

 such as SSMIS and AMSU-B, and model outputs from ECMWF, NAVGEM and COAMPS. Users can visualize the

 simulations by calling the script with input of satellite sensor and interested channels, which can be done either in batch or

 interactively using Jupyter notebooks or similar frameworks. Figs. 9 and 10 provide an example of global and regional

 visualization of synthetic SSMIS 37 GHz and 89 GHz brightness temperatures computed by CRTM based on NAVGEM

 model outputs.

 Figure 9 : An example of SSMIS channel 37H brightness temperature (a), simulated brightness temperature using NAVGEM model

 outputs (b), and their differences (c).

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 15

 Figure 10 : GeoIPS/pyCRTM observed (a) and simulated (b) SSMIS channel 89GHz brightness temperatures using NAVGEM model

 outputs, and their differences (c).

 5.3. Hyperspectral Infrared Simulations Including Sensitivities

 Another NRL application of pyCRTM relates to aerosol impacts on hyperspectral IR data. The impact of scattering and

 absorbing particles on satellite infrared radiances has been long recognized (e.g. Griggs [18]), and the quantitative studies

 have shown that 1) aerosol impacts can frequently be large relative to other uncertainties in forward calculations (Marquis et

 al. [19]) and 2) fairly precise estimates of aerosols are needed to constrain satellite radiances within tolerances needed by

 atmospheric and oceanic prediction systems (Bogdanoff et al. [20]). However, computation of vertically-resolved particle

 scattering and absorption adds computational cost and potentially time to the forward calculation of radiances. In

 preparation for implementation of aerosol-aware radiance DA, it was necessary to establish criteria for when the aerosol

 computations were likely to significantly affect the forward solutions. NRL approached this problem by applying aerosol

 fields from the Navy Aerosol Analysis and Prediction System (NAAPS, Lynch et al. [21]) using CRTM to estimate the

 impacts of aerosols on simulated infrared radiances, and the fraction of forward radiance computations that would need to

 include aerosol to achieve a specified uncertainty. The pyCRTM interface, working inside a Jupyter notebook, greatly

 simplified this experimental setup, and the output of results directly in the interactive Python notebook meant that

 visualization of results could be done immediately after computations were completed. The time saved by the use of Python

 tools for this work translates into additional testing, resulting in a robust method for establishing thresholds for operational

 implementation of aerosol-aware radiance assimilation.

 At NASA GMAO, pyCRTM has proven to be a valuable tool in a number of studies using hyperspectral sounders. While

 data assimilation systems such as NASA’s Global Earth Observing System- Atmospheric Data Assimilation System

 (GEOS-ADAS) , and NOAA’s Global Data Assimilation System (GDAS) utilize Jacobians in the data assimilation process,

 they do not provide a convenient method to output or visualize temperature or constituent Jacobians. The ability to easily

 access Jacobians from the CRTM has enabled visualizations of the sensitivity of constituents, and temperature in data

 assimilation applications. An example is shown in Fig. 8 where temperature, water vapor and ozone Jacobians are

 calculated offline using pyCRTM. The analysis fields from the GEOS-ADAS are read in via netCDF and are provided to the

 16 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 pyCRTM interface, and Jacobians are computed. The resulting Jacobians are then convolved with an estimate of the model

 background error and displayed in Fig. 11. This provides an estimate of the vertical sensitivity of temperature, water vapor,

 and ozone in the GEOS-ADAS. The longwave infrared (LWIR) and shortwave infrared (SWIR) are compared in Fig. 8 to

 highlight a potential benefit of adding CrIS shortwave channels to the GEOS-ADAS. Longwave infrared temperature

 sounding channels display a much higher sensitivity to water vapor and ozone, whereas temperature sounding channels in

 the shortwave infrared are primarily sensitive to temperature. A similar approach of convolving background error with

 Jacobians was utilized in Karpowicz et al. [22] along with Han and McNally [23] as a criteria for selecting ozone sensitive

 channels. Additionally, Karpowicz et al. [22] used pyCRTM to obtain Jacobians and weighting functions of ozone sensitive

 channels from hyperspectral instruments.

 Figure 11 : Jacobians computed from pyCRTM for the Cross-track Infrared Spectrometer (CrIS) convolved against an estimate of

 background error of the GEOS-ADAS .

 6. Conclusion

 The applications shown demonstrate the power of having a fast radiative transfer model paired with an interpretative

 language that allows for rapid prototyping for development. The ease of use provides an opportunity for students to learn the

 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000 17

 basics of radiative transfer tools like CRTM using a widely taught interpreted language in modern undergraduate curricula,

 without having to learn Fortran which, as a more cumbersome compiled language, is more often taught in graduate courses.

 pyCRTM adds to the rich ecosystem of tools for research and development and is ideally suited for quick simulations and

 visualizations. The framework is flexible enough to provide simulations of varying complexity whether it be an infrared

 hyperspectral sounder simulation with aerosols and clouds present, or a simple simulation of cloud free microwave

 brightness temperature over ocean. The pyCRTM interface is freely available on the JCSDA github repository

 https://github.com/JCSDA/pycrtm.

 Acknowledgements

 NRL work is supported by the Office of Naval Research, Code 322, project number N0001421WX00385. NASA GMAO

 work supported by NASA’s Modeling Analysis and Prediction (MAP) funding.

 Joint Center for Satellite Data Assimilation research in cooperation with the NOAA OAR Office of Weather and Air Quality

 is supported by NOAA's Science Collaboration Program and administered by UCAR's Cooperative Programs for the

 Advancement of Earth System Science (CPAESS) under awards NA16NWS4620043, NA18NWS4620043B, and

 NA20NWS4620043C.

 References

 [1] Han Y, van Delst P, Liu Q, Weng F, Yan B, Treadon R, et al. JCSDA Community Radiative Transfer Model (CRTM)-Version 1. 2006.

 [2] Chen Y, Weng F, Han Y, Liu Q. Validation of the community radiative transfer model by using cloudsat data. Journal of Geophysical Research

 Atmospheres 2009;114. https://doi.org/10.1029/2007JD009561 .

 [3] Tang G, Yang P, Stegmann PG, Panetta RL, Tsang L, Johnson BT. Effect of Particle Shape, Density, and Inhomogeneity on the Microwave

 Optical Properties of Graupel and Hailstones. IEEE Transactions on Geosciences and Remote Sensing 2017;55(11).

 https://doi.org/ 10.1109/TGRS.2017.2726994 .

 [4] Stegmann PG, Tang G, Yang P, Johnson BT. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of

 the NOAA JCSDA community radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer 202018;211, 9-24.

 https://doi.org/10.10 16/j.jqsrt.2018.02.026 .

 [5] Lu CH, Liu Q, Wei SW, Johnson BT, Dang C, Stegmann PG, Grogan D, Ge G, Hu M. The Aerosol Module in the Community Radiative Transfer

 Model (v2.2 and v2.3): accounting for aerosol transmittance effects on the radiance observation operator. Geoscientific Model Development

 Discussion [preprint] 2021. https://doi.org/10.5194/gmd-2021-145 .

 [6] Wei SW, Lu CH, Johnson BT, Dang C, Stegmann P, Grogan D, Ge G, Hu M. The Influence of Aerosols on Satellite Infrared Radiance

 Simulations and Jacobians: Numerical Experiments of CRTM and GSI. MDPI Remote Sensing 2022;14(3). https://doi.org/10. 3390/rs14030683 .

 [7] Saunders R, Hocking J, Turner E, Rayer P, Rundle D, Brunel P, et al. An update on the RTTOV fast radiative transfer model (currently at version

 12). Geoscientific Model Development 2018;11:2717–37. https://doi.org/10.5194/gmd-11-2717-2018 .

 [8] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

 [9] J. D. Hunter, "Matplotlib: A 2D Graphics Environment", Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, 2007.

 [10] May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R., Goebbert, K., Thielen, J. E., Bruick, Z., and Camron, M. D., 2022: MetPy:

 Python Package for Meteorological Data. Unidata, https://github.com/Unidata/MetPy, doi:10.5065/D6WW7G29.

 [11] Cartopy. V0.6. 19-Feb-2013. Met Office. UK. http://github.com/SciTools/cartopy/archive/v0.6.0.tar.gz

 [12] Wolfram Research, Inc. (n.d.). Mathematica, Version 12.0.

https://doi.org/10.1029/2007JD009561
https://doi.org/10.1029/2007JD009561
https://doi.org/10.1029/2007JD009561
https://doi.org/10.5194/gmd-2021-145
https://doi.org/10.1029/2007JD009561
https://doi.org/10.5194/gmd-11-2717-2018

 18 Bryan M. Karpowicz / Journal of Quantitative Spectroscopy and Radiative Transfer 00 (2020) 000–000

 [13] Knuth, Donald E. (1992). Literate Programming. California: Stanford University Center for the Study of Language and Information. ISBN

 978-0-937073-80-3.

 [14] Kluyver, T., Ragan-Kelley, B., Fernando Perez, Granger, B., Bussonnier, M., Frederic, J., … Willing, C. (2016). Jupyter Notebooks – a

 publishing format for reproducible computational workflows. In F. Loizides & B. Schmidt (Eds.), Positioning and Power in Academic

 Publishing: Players, Agents and Agendas (pp. 87–90).

 [15] "nbgrader 0.6.1 documentation". nbgrader.readthedocs.io. Retrieved 2020-11-13.

 [16] "GeoIPS2". https://github.com/USNavalResearchLaboratory/geoips2. Retrieved 2022-04-07.

 [17] Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne JL, Klein SA, et al. COSP: Satellite simulation software for model assessment.

 Bulletin of the American Meteorological Society 2011;92:1023–43. https://doi.org/10.1175/2011BAMS2856.1.

 [18] Griggs M. A METHOD TO CORRECT SATELLITE MEASUREMENTS OF SEA SURFACE TEMPERATURE FOR THE EFFECTS OF

 ATMOSPHERIC AEROSOLS.Journal of Geophysical Research: Atmospheres, Volume 90, Issue D7, pp. 12,951-12,959,. 1985.

 [19] Marquis JW, Oyola MI, Campbell JR, Ruston BC, Córdoba-Jabonero C, Cuevas E, et al. Conceptualizing the impact of dust-contaminated

 infrared radiances on data assimilation for numerical weather prediction. Journal of Atmospheric and Oceanic Technology 2021;38:209–21.

 https://doi.org/10.1175/JTECH-D-19-0125.1.

 [20] Bogdanoff AS, Westphal DL, Campbell JR, Cummings JA, Hyer EJ, Reid JS, et al. Sensitivity of infrared sea surface temperature retrievals to

 the vertical distribution of airborne dust aerosol. Remote Sensing of Environment 2015;159:1–13. https://doi.org/10.1016/j.rse.2014.12.002.

 [21] Lynch P, Reid JS, Westphal DL, Zhang J, Hogan TF, Hyer EJ, et al. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for

 atmospheric and climate sciences. Geoscientific Model Development 2016;9:1489–522. https://doi.org/10.5194/gmd-9-1489-2016 .

 [22] Karpowicz BM, McCarty W, Wargan K. Investigating the utility of hyperspectral sounders in the 9.6 μm band to improve ozone analyses.

 Quarterly Journal of the Royal Meteorological Society 2021. https://doi.org/10.1002/qj.4198.

 [23] Han W, McNally AP. The 4D-Var assimilation of ozone-sensitive infrared radiances measured by IASI. Quarterly Journal of the Royal

 Meteorological Society 2010;136:2025–37. https://doi.org/10.1002/qj.708.

https://doi.org/10.5194/gmd-9-1489-2016

