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Abstract: 30 

L-band passive microwave remote sensing is currently considered a robust technique for 31 

global monitoring of soil moisture. However, soil roughness complicates the relationship 32 

between brightness temperature and soil moisture, with current soil moisture retrieval 33 

algorithms typically assuming a constant roughness parameter globally, leading to a potential 34 

degradation in retrieval accuracy. This current investigation established a tower-based 35 

experiment site in Victoria, Australia. P-band (~40-cm wavelength/0.75 GHz) was compared 36 

with L-band (~21-cm wavelength/1.41 GHz) over random and periodic soil surfaces to 37 

determine if there is an improvement in brightness temperature simulation and soil moisture 38 

retrieval accuracy for bare soil conditions, due to reduced roughness impact when using a 39 

longer wavelength. The results showed that P-band was less impacted by random and periodic 40 

roughness than L-band, evidenced by more comparable statistics across different roughness 41 

conditions. The roughness effect from smooth surfaces (e.g., 0.8-cm root-mean-square height 42 

and 11.1-cm correlation length) could be potentially ignored at both P- and L-band with 43 

satisfactory simulation and retrieval performance. However, for rougher soil (e.g., 1.6-cm root-44 

mean-square height and 6.8-cm correlation length), the roughness impact needed to be 45 

accounted for at both P- and L-band, with P-band observations showing less impact than L-46 

band. Moreover, a sinusoidal soil surface with 10-cm amplitude and 80-cm period substantially 47 

impacted the brightness temperature simulation and soil moisture retrieval at both P- and L-48 

band, which could not be fully accounted for using the SMOS and SMAP default roughness 49 

parameters. However, when retrieving roughness parameters along with soil moisture, the 50 
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ubRMSE at P-band over periodic soil was improved to a similar level (0.01-0.02 m3/m3) as that 51 

of smooth flat soil (0.01 m3/m3), while L-band showed higher ubRMSE over the periodic soil 52 

(0.03-0.04 m3/m3) than over smooth flat soil (0.01 m3/m3). Accordingly, periodic roughness 53 

effects were reduced by using observations at P-band. 54 

Keywords: Soil roughness, row structure, soil moisture retrieval, P-band, passive microwave 55 

  56 
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1 Introduction 57 

Soil moisture (SM) plays a key role in the earth's system since it impacts the water, energy 58 

and biogeochemical cycles, and subsequently climate-change projections (Seneviratne et al., 59 

2010). L-band (~21-cm wavelength/1.4 GHz) passive microwave remote sensing has been 60 

widely accepted as a robust technique for soil moisture remote sensing due to its all-61 

time/weather capability, direct relationship with soil moisture, relatively deep sensing depth (~ 62 

5 cm), and being a protected band allocated exclusively for radio astronomy and earth 63 

observation use (Wigneron et al., 2017). Moreover, L-band has advantages in reducing the 64 

impact from soil surface roughness and the vegetation canopy compared to shorter wavelengths 65 

due to its relatively long wavelength (Ulaby et al., 1986). 66 

The scientific community has made great efforts to improve soil moisture retrieval models 67 

at L-band over the past five decades based on ground (Blinn and Quade, 1972; Njoku and 68 

O'Neill, 1982; Wigneron et al., 2001; Cano et al., 2010; Schwank et al., 2012; Zheng et al., 69 

2019) and airborne (Blanchard, 1972; Paloscia et al., 1993; Rosnay et al., 2006; Merlin et al., 70 

2008; Panciera et al., 2008; Colliander et al., 2017; Ye et al., 2020a; Ye et al., 2020b; Zhao et 71 

al., 2020b) experiments. As a result of supporting evidence on capability and expected benefits 72 

in applications, the European Space Agency (ESA) launched the Soil Moisture and Ocean 73 

Salinity (SMOS) satellite (Kerr et al., 2010) in 2009 and the National Aeronautics and Space 74 

Administration (NASA) launched the Soil Moisture Active Passive (SMAP) satellite 75 

(Entekhabi et al., 2010) in 2015; both with L-band radiometers. 76 
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It is well known that soil roughness effects complicate the microwave emission and reduce 77 

the sensitivity of brightness temperature (TB) to soil moisture (Choudhury et al., 1979; Newton 78 

and Rouse, 1980; Newton et al., 1982; Njoku and O'Neill, 1982; Wang et al., 1983). The soil 79 

roughness effects are considered to result from a mixture of complex phenomena including 3-80 

D soil spatial heterogeneities, volume scattering under dry soil conditions, and soil anisotropy, 81 

making it impractical to model the effects physically (Panciera et al., 2009; Wigneron et al., 82 

2017). Accordingly, a tractable semi-empirical model (referred to as the HQN model) was 83 

proposed by Wang and Choudhury (1981) and further developed by Prigent et al. (2000) to 84 

simulate the roughness effects over flat soil exhibiting only random roughness. This model has 85 

been adopted in the baseline soil moisture retrieval algorithms of the SMOS (Kerr et al., 2017) 86 

and SMAP (O'Neill et al., 2015) missions. 87 

According to the Fraunhofer criterion (Ulaby et al., 1982), a surface may be considered 88 

electromagnetically smooth in the microwave range if the root-mean-square (rms) of the 89 

surface height distribution (rms height; otherwise known as 𝑠𝑠) fulfills 𝑠𝑠 < 𝜆𝜆
32cos (𝜃𝜃)

, where 𝜆𝜆 90 

is the observation wavelength and 𝜃𝜃 is the incidence angle. This provides a theoretical basis 91 

that asserts observations at longer wavelength should be less affected by soil roughness than 92 

those at shorter wavelength. This has also been demonstrated by experiments (Blinn and Quade, 93 

1972; Wang et al., 1983). Moreover, periodic (e.g., sinusoidal) row structures, a common type 94 

of soil tillage used for cultivation purposes, usually result in larger roughness impacts on 95 

radiometric observations compared to flat soil (Ulaby et al., 1986). However, as these 96 
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experiments focused on L-band and higher frequencies, a demonstration of the impact at P-97 

band is lacking. 98 

The periodic soil surface consists of micro-scale random variations, i.e., random 99 

roughness, superimposed on a macro-scale one-dimensional surface undulation, i.e., periodic 100 

roughness (Ulaby et al., 1986; Gao, 2016). A common modeling approach is to simulate the 101 

micro-scale roughness and assume that the macro-scale roughness acts like topography by 102 

changing the local incidence angle of the micro-scale roughness (Wang et al., 1980; Ulaby et 103 

al., 2014; Neelam et al., 2020). Wang et al. (1980) were the first to model the emissivity over 104 

a periodic surface at varying azimuth. However, the model was found to overestimate the 105 

influence of the row structure (Promes et al., 1988). While Promes et al. (1988) concluded that 106 

the periodic structures can be ignored in most cases without notable error at L-band, this has 107 

been challenged by Zheng et al. (2012), who showed that row structures can lead to a retrieval 108 

error of up to 0.1 m3/m3. The results of Pham et al. (2005) also indicated that the azimuthal 109 

signal present in periodic row structures can lead to a retrieval error. 110 

The current soil moisture retrieval algorithms of the SMOS and SMAP missions assume 111 

constant roughness parameters of the HQN model for different land cover types (Entekhabi et 112 

al., 2014; Kerr et al., 2017). Additionally, the impact of a periodic soil surface has not been 113 

considered in the SMOS and SMAP algorithms due to difficulties such as the lack of a global 114 

map for row structure, row height, and orientation, etc. Since these assumptions and 115 

simplifications impose errors on the soil moisture datasets (Peng et al., 2017), global soil 116 

moisture sensing could be improved by using P-band radiometry, if it can be proven that the 117 



7 

roughness effects are reduced from those at L-band. Consequently, use of the HQN model to 118 

account for roughness at P-band (~40-cm wavelength/0.75 GHz), including periodic row 119 

structure, is tested in this paper. This follows from the work of Shen et al. (2021) which 120 

demonstrated an increased moisture retrieval depth at P- compared to L-band. 121 

2 Data 122 

A comprehensive tower-based experimental site was established at Cora Lynn, Melbourne, 123 

Australia (Fig. 1, see https://www.prism.monash.edu/) in October 2017 for exploring P-band 124 

radiometer soil moisture remote sensing. The field was 160 m × 160 m in size and divided into 125 

four quadrants (numbered as Q1 to Q4 from the northwest clockwise). A ten-meter-high tower 126 

 

Fig. 1. Illustrations of the tower-based experiment at Cora Lynn, Melbourne, Australia, 

including a) location map of the site; b) the tower carrying PPMR and PLMR; c) a station 

monitoring soil moisture and temperature evolution; and d) diagram showing the installation 

of the stations. 
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was located at the center of the field, carrying the two radiometers (Fig. 1b), namely the 127 

Polarimetric P-band Multi-beam Radiometer (PPMR) and the Polarimetric L-band Multi-beam 128 

Radiometer (PLMR). The tower rotated and tilted the instruments on a schedule such that 129 

PPMR and PLMR alternatively observed the four quadrants of the paddock at a range of 130 

incidence angles. The spatial resolution of the 3-dB footprints of PPMR and PLMR for 40° 131 

incidence angle is approximately 8.2 m × 7.0 m and 4.0 m × 4.0 m, respectively. 132 

The PPMR and PLMR operate at 0.742-0.752 GHz and 1.401-1.425 GHz, respectively. 133 

PPMR has four antenna beams at dual linear (horizontal (H) and vertical (V)) polarizations (H- 134 

and V-pol) while PLMR has six antenna beams at H- and V-pol. Warm and cold calibration of 135 

PPMR and PLMR were performed regularly: the former was undertaken weekly by positioning 136 

PPMR/PLMR over a blackbody chamber constructed from microwave absorbers and having 137 

16 temperature sensors to provide the reference TB; the latter was performed every midnight 138 

according to the tower schedule by pointing the PPMR and PLMR towards the sky for 2 hours. 139 

The calibration accuracy for both the PPMR and PLMR was found to be better than 1.5 K. 140 

Note that the use of “P-band” and “L-band” hereafter specifically refers to the frequencies at 141 

which PPMR and PLMR operate unless otherwise specified. 142 
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For the period of data collection used in this paper, the temporal evolution of soil moisture 143 

and temperature was monitored by two stations (Fig. 1a, c) having 12 Hydra-probes inserted 144 

 

Fig. 2. Photos of the roughness conditions (left column) and soil profiles (right column) of the 

quadrants for the data used in this paper. Quadrants 3 and 4 were plowed in one pass and had 

the same roughness structures but with different orientations (perpendicular and parallel, 

respectively) relative to the tower look direction. Quadrant 3r is quadrant 3 under a different 

roughness configuration. 
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into the soil at 5-cm increments down to 60 cm (Fig. 1d). To investigate the representativeness 145 

of the station, the spatial variation in surface soil moisture (~5 cm) was measured weekly at the 146 

locations shown in Fig. 1a using an in-house Hydra-probe Data Acquisition System (HDAS, 147 

Merlin et al., 2007). Particle size analysis on soil samples collected over the paddock found the 148 

soil to be a silt loam consisting of 18.0% clay, 10.9% sand, and 71.1% silt. The soil bulk density 149 

of the surface soil layer in this site was 0.87 kg/m3. 150 

The data collected from July 17, 2019 to July 31, 2019 were used in this paper. Because 151 

the field was plowed and sown with wheat in late July, only a limited period of data could be 152 

used for the study of bare soil. During this period, quadrants 1-4 were all bare soil and managed 153 

with different roughness conditions (Fig. 2, Table 1). Quadrant 2 was smooth flat soil while 154 

quadrants 1, 3, and 4 had periodic row structures. To provide a rougher flat bare soil as part of 155 

the comparison, the data in quadrant 3 collected from November 18, 2020 to November 30, 156 

2020 were also used, referred to as quadrant 3r hereafter. The periodic row structures in 157 

Table 1. Characterization of the roughness structures in the five quadrants. 

Quadrant 
Row 

structure 

Periodic roughness Random roughness 

Azimuth 
(°) 

Period 
(cm) 

Amplitude 
(cm) 

RMS 
height (cm) 

Correlation 
length (cm) 

RMS 
slope 

1 
Sinusoidal 

bench 
90 165 12 1.3 ± 0.2 5.4 ± 1.9 0.3 ± 0.1 

2 Flat – – – 0.8 ± 0.3 11.1 ± 4.4 0.1 ± 0.1 
3 Sinusoidal 90 

80 10 1.1 ± 0.3 5.5 ± 1.3 0.2 ± 0.1 
4 Sinusoidal 0 
3r Flat – – – 1.6 ± 0.6 6.8 ± 2.2 0.2 ± 0.0 

The measurements in Q1, Q3, and Q4 were decomposed into periodic and random components for calculating 
the periodic and random roughness statistics, respectively. Quadrants 3 and 4 were plowed in one pass and had 
the same roughness structure (just different orientations relative to the tower look direction), and therefore the 
measurements in these two quadrants were averaged.  
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quadrants 1, 3, and 4 had different shapes and/or azimuth, with azimuth defined here as the 158 

angle between the radiometer look direction and the row direction. The period of the row 159 

structure is defined as the row spacing, while the amplitude is half of the vertical distance 160 

between the bottom and the top of the row. 161 

The roughness measurements were performed on July 17 and 31, 2019 for quadrants 1-4 162 

and on November 19, 2020 for quadrant 3r. Three consecutive 1-m measurements (i.e., 3-m in 163 

total) in two perpendicular directions were conducted in every quadrant on every sampling day 164 

using a pin-profiler with an ~0.5-cm pin interval. Photographs of the pin-profiler were taken 165 

during measurements, and the heights of the red pin tops in the photographs were derived from 166 

image processing, for calculating the rms height and correlation length (Table 1). RMS slope 167 

was also calculated to characterize the surface roughness, being rms height divided by 168 

correlation length. Although it has been suggested that a roughness profile longer than 10 m is 169 

required to guarantee a good precision (Oh and Kay, 1998; Baghdadi et al., 2000), such a long 170 

profile is not practical to measure in field experiments, and so a 3-m profile has been widely 171 

taken as a compromise (McNairn et al., 2014; Neelam et al., 2020; Ye et al., 2020a; Zhao et 172 

al., 2020b). 173 

In total, four profiles were measured for each of the quadrants labeled 1-4, and two profiles 174 

were measured in quadrant 3r. The measurements were performed across and along the rows 175 

for the periodic surfaces. The profiles measured across the rows were decomposed into random 176 

(micro-scale) and periodic (macro-scale) components (Fig. 3). The periodic components (in 177 

orange in Fig. 3) of the profiles in quadrant 1 as well as quadrants 3 and 4 were approximated 178 
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using two-term and one-term sinusoidal functions, respectively. The fitting residuals (in green 179 

in Fig. 3) were taken as the random roughness component across the rows. The rms height, 180 

correlation length and rms slope in all five quadrants were calculated and averaged (with 181 

standard deviation) from using the random roughness components in the two perpendicular 182 

directions (Table 1). The roughness properties did not change much during the observing 183 

period, as indicated by the small standard deviation in Table 1, making it fair to assume a 184 

constant roughness condition over the analysis period. Consequently, the time-average of the 185 

rms height and correlation length measurements was used in this paper. 186 

Fig. 4 presents the collected data during the study period. The TB data at 38° for L-band 187 

and 40° for P-band collected at around 6 am were plotted and used in this paper, with 6 am 188 

 

Fig. 3. Decomposition of measured roughness profile into periodic and random profiles, for a) 

the sinusoidal bench profile of quadrant 1 and b) the sinusoidal profile of quadrants 3 and 4. 
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used to minimize uncertainties from the soil temperature gradient and diurnal temperature 189 

variations (Fig. 4a). An approximately 40° incidence angle was used because 40° to 45° has 190 

been proven to provide the best retrieval accuracy (Zhao et al., 2020a) and 40° is also the 191 

incidence angle adopted by SMAP (Entekhabi et al., 2014). 192 

 

Fig. 4. Collected data including a) TB observations at 6 am in quadrant 1 as an example; b) 

station time-series soil moisture with weekly HDAS measurements (boxplots) on two 

occasions; and c) station time-series soil temperature. The data gaps in a) resulted from the 

tower being lowered due to high wind on those days. Only the data collected from the top 3 

of the 12 sensors are plotted in b) and c). Corresponding to the soil moisture evolutions of 

station 126 (in blue) for quadrant 2 and station 127 (in red) for quadrants 1, 3, and 4, the 

HDAS measurements in quadrant 2, and quadrants 1, 3, and 4, are plotted as the blue and red 

boxplots in b), respectively, showing the maximum, 75% percentile, median, 25% percentile, 

and minimum. 
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The time series of soil moisture and temperature collected from stations 126 and 127 is 193 

plotted in Figs. 4b and c. Stations 126 and 127 showed similar soil moisture evolution over 194 

time, but with higher near-surface soil moisture values at station 126. The reason for this offset 195 

is that station 126 was in the flat quadrant, while station 127 was in the furrowed quadrant 196 

(Figs. 1a and 2); the drier moisture condition in the furrowed quadrants was also supported by 197 

the HDAS measurements shown in Fig. 4b. Considering the HDAS measurement agreement 198 

with the station soil moisture in the flat and periodic quadrants, in this paper station 126 was 199 

used as the soil moisture reference for quadrant 2 and station 127 was used as the soil moisture 200 

reference for quadrants 1, 3, and 4. 201 

Consistent with the TB observations, the time-averaged soil moisture at around 6 am in 202 

the 0-5-cm layer was used to evaluate the retrieved soil moisture at P- and L-band. While the 203 

thermal sensing depth was calculated to be approximately 10 cm at L-band and 20 cm at P-204 

band for a 0.3-m3/m3 moisture condition (Njoku and Entekhabi, 1996), the moisture retrieval 205 

depth was much less, being approximately 5 cm or less at L-band (Escorihuela et al., 2010; Liu 206 

et al., 2012; Zheng et al., 2019) and up to 10 cm at P-band (Shen et al., 2021). However, Shen 207 

et al. (2021) showed that the moisture retrieval depth varies with moisture condition and profile 208 

shape, and thus differs from time to time. Consequently, the moisture retrieval depth for the 209 

conditions of this study was calculated using the moisture retrieval depth model from Shen et 210 

al. (2021), being approximately 4-5 cm at P-band and 2-3 cm at L-band. Given the difficulty 211 

to monitor soil moisture in a layer shallower than 5 cm, and that the soil moisture between 212 
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neighboring layers is highly correlated, the soil moisture observation in the 0-5-cm layer has 213 

been used as the reference for both the P- and L-band retrievals in this paper. 214 

3 Method 215 

3.1 Physical model for random roughness 216 

To estimate the impact of soil surface roughness, a physical model (Ulaby et al., 1982; 217 

Fung, 1994) was used to calculate soil emissivity based on Kirchhoff’s reciprocity theorem 218 

such that 219 

 𝑒𝑒𝑃𝑃 = 1 − Γ𝑃𝑃 = 1 − Γ𝑃𝑃non − Γ𝑃𝑃coh, (1) 220 

where Γ𝑃𝑃nonand Γ𝑃𝑃coh are the noncoherent and coherent soil surface reflectivity, and subscript 221 

P denotes either H or V polarization. The Γ𝑃𝑃coh can be calculated as 222 

 Γ𝑃𝑃coh = Γ𝑃𝑃∗ exp{−[2𝑘𝑘𝑠𝑠cos(𝜃𝜃)]2}, (2) 223 

where 𝑘𝑘 is the wave number, 𝑠𝑠 is the rms height of the soil surface, and Γ𝑃𝑃∗ is the specular 224 

reflectivity calculated from the Fresnel equation as a function of the relative soil dielectric 225 

constant 𝜀𝜀𝑟𝑟 (𝜀𝜀𝑟𝑟 = 𝜀𝜀𝑟𝑟′ − 𝑗𝑗𝜀𝜀𝑟𝑟′′) including real (′) and imaginary (′′) parts 226 

 Γ𝐻𝐻∗ = �cos(𝜃𝜃)−�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)
cos(𝜃𝜃)+�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)

�
2
 (3) 227 

 Γ𝑉𝑉∗ = �𝜀𝜀𝑟𝑟cos(𝜃𝜃)−�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)
𝜀𝜀𝑟𝑟cos(𝜃𝜃)+�𝜀𝜀𝑟𝑟−sin2(𝜃𝜃)

�
2
. (4) 228 

The Γ𝑃𝑃non can be obtained by integrating the bistatic scattering coefficient 𝜎𝜎𝑠𝑠 over the 229 

upper hemisphere 230 

 Γ𝐻𝐻non = 1
4𝜋𝜋cos(𝜃𝜃)∫ ∫ [𝜎𝜎𝐻𝐻𝐻𝐻𝑠𝑠 (𝜃𝜃,𝜙𝜙, 𝜃𝜃𝑠𝑠,𝜙𝜙𝑠𝑠) + 𝜎𝜎𝐻𝐻𝑉𝑉𝑠𝑠 (𝜃𝜃,𝜙𝜙,𝜃𝜃𝑠𝑠,𝜙𝜙𝑠𝑠)]𝜋𝜋/2

0 sin(𝜃𝜃𝑠𝑠)𝑑𝑑𝜃𝜃𝑠𝑠𝑑𝑑𝜙𝜙𝑠𝑠
2𝜋𝜋
0  (5) 231 
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 Γ𝑉𝑉non = 1
4𝜋𝜋cos(𝜃𝜃)∫ ∫ [𝜎𝜎𝑉𝑉𝑉𝑉𝑠𝑠 (𝜃𝜃,𝜙𝜙,𝜃𝜃𝑠𝑠,𝜙𝜙𝑠𝑠) + 𝜎𝜎𝑉𝑉𝐻𝐻𝑠𝑠 (𝜃𝜃,𝜙𝜙,𝜃𝜃𝑠𝑠,𝜙𝜙𝑠𝑠)]𝜋𝜋/2

0 sin(𝜃𝜃𝑠𝑠)𝑑𝑑𝜃𝜃𝑠𝑠𝑑𝑑𝜙𝜙𝑠𝑠
2𝜋𝜋
0 , (6) 232 

where 𝜃𝜃 and 𝜙𝜙 are the zenith and azimuth of the incident direction, respectively, while 𝜃𝜃𝑠𝑠 233 

and 𝜙𝜙𝑠𝑠 are the zenith and azimuth of the scattering direction, respectively. Moreover, 𝜎𝜎𝑃𝑃𝑃𝑃𝑠𝑠  234 

(subscripts P and Q denote either H and V or V and H polarizations) was modeled by the I2EM 235 

(Improved Integral Equation Model, Fung et al., 2002), being a physical model that solves 236 

Maxwell’s equations by accounting for the boundary conditions on a rough soil surface. The 237 

I2EM was compared with another descendant of the IEM (Fung et al., 1992; Fung, 1994), i.e., 238 

the Advanced IEM (AIEM, Chen et al., 2003), by Wu et al. (2008), showing that the I2EM 239 

performed equally to or even better than the AIEM for low frequencies and small roughness, 240 

which is the case in this research. In addition, the I2EM has been used in similar simulations of 241 

the emissivity of soil surfaces (e.g., Ulaby et al. 2014). 242 

The main equation of the I2EM used in this research is 243 

 𝜎𝜎𝑃𝑃𝑃𝑃𝑠𝑠 = 𝑆𝑆(𝜃𝜃,𝜃𝜃𝑠𝑠) 𝑘𝑘
2

2
exp[−𝑠𝑠2(𝑘𝑘𝑧𝑧2 + 𝑘𝑘𝑠𝑠𝑧𝑧2 )]∑ 𝑠𝑠2𝑛𝑛�𝐼𝐼𝑃𝑃𝑃𝑃𝑛𝑛 �2 𝑊𝑊

(𝑛𝑛)(𝑘𝑘𝑠𝑠𝑠𝑠−𝑘𝑘𝑠𝑠,   𝑘𝑘𝑠𝑠𝑠𝑠−𝑘𝑘𝑠𝑠 )
𝑛𝑛!

∞
𝑛𝑛=1 , (7) 244 

where 𝑆𝑆(𝜃𝜃,𝜃𝜃𝑠𝑠)  is the bistatic shadowing function, 𝑘𝑘𝑥𝑥 = 𝑘𝑘sin(𝜃𝜃)cos (𝜙𝜙) , 𝑘𝑘𝑦𝑦 =245 

𝑘𝑘sin(𝜃𝜃)sin(𝜙𝜙) , 𝑘𝑘𝑧𝑧 = 𝑘𝑘cos(𝜃𝜃) , with 𝑘𝑘𝑠𝑠𝑥𝑥, 𝑘𝑘𝑠𝑠𝑦𝑦, 𝑘𝑘𝑠𝑠𝑧𝑧  similarly defined in terms of the 246 

scattering angles 𝜃𝜃𝑠𝑠 and 𝜙𝜙𝑠𝑠 , and 𝑊𝑊(𝑛𝑛)  is the Fourier transform of the 𝑛𝑛 th power of the 247 

surface correlation coefficient. The inputs to the I2EM are dielectric constant, observation 248 

frequency and surface properties including the type of correlation function, rms height and 249 

correlation length. An exponential correlation function was assumed in this research since soil 250 
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surfaces are mostly considered exponential-like (Fung and Kuo, 2006; Schwank et al., 2009; 251 

Zhu et al., 2020). 252 

The dielectric constant was related to soil moisture in this paper using the model of 253 

Mironov et al. (2013), because it accounts for the interfacial (Maxwell-Wagner) relaxation of 254 

water in the soil, which is important at P-band (Mironov et al., 2013). The Mironov model 255 

neglects the dependence of temperature on the dielectric constant by assuming a constant 256 

temperature of 20 ℃. While the Peplinski model is also applicable at P-band (Peplinski et al., 257 

1995), it was proven to have a much larger standard deviation from dielectric measurements 258 

(~0.3 compared to 0.014 using the Mironov model) and thus not adopted here (Mironov et al., 259 

2013). 260 

3.2 Physical model for sinusoidal surface 261 

A one-dimensional sinusoidal surface with height 𝛧𝛧(𝑦𝑦) can be described by   262 

 𝛧𝛧(𝑦𝑦) = A �1 + cos (2π𝑦𝑦
Λ

)�, (8) 263 

with amplitude A  and spatial period Λ . Assuming that there are many spatial periods  Λ 264 

within the antenna footprint, the emissivity of this sinusoidal surface (𝑒𝑒𝑃𝑃sin) can be integrated 265 

across a single period such that (Ulaby et al., 2014)  266 

 𝑒𝑒𝑃𝑃sin(𝜙𝜙) = 1
Λcos(𝜃𝜃)∫ 𝑒𝑒𝑃𝑃 sec(𝛼𝛼) cos(𝜃𝜃′)𝑑𝑑𝑦𝑦Λ

0 , (9) 267 

where 𝜃𝜃 is the beam incidence angle, 𝜙𝜙 is the beam azimuth angle, 𝑒𝑒𝑃𝑃 is the emissivity of 268 

the local small-scale surface with local incidence angle 𝜃𝜃′ calculated using Eq. 1, and 𝛼𝛼 is 269 

the angle whose tangent is equal to the slope of the surface 𝛧𝛧(𝑦𝑦). Please refer to Ulaby et al. 270 
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(2014) for more details on this model. Apart from the regular inputs of the I2EM model, 271 

additional input requirements include azimuth, amplitude and period of the sinusoidal surface.  272 

3.3 Semi-empirical model 273 

This paper adopted the semi-empirical zero-order incoherent model (Ulaby et al., 1986) 274 

as the forward model to retrieve soil moisture from the tower brightness temperature 275 

observations. The total intensity of the thermal emission measured by radiometers (TB𝑃𝑃) is the 276 

sum of the brightness temperature from soil ( TB𝑃𝑃
s ) and the downwelling sky emission 277 

(TBsky_down) reflected by the soil (TB𝑃𝑃
sky) 278 

 TB𝑃𝑃 = TB𝑃𝑃
s + TB𝑃𝑃

sky = (1 − Γ𝑃𝑃)𝑇𝑇effs + TBsky_downΓ𝑃𝑃, (10) 279 

with Γ𝑃𝑃  and 𝑇𝑇effs  representing the reflectivity and effective temperature of the soil, 280 

respectively. The TBsky_down was assumed to be constant and calculated to be 13.9 K at P-281 

band and 5.3 K at L-band (ITU, 2015). 282 

Kirchhoff’s reciprocity theorem relates 𝑒𝑒𝑃𝑃 to Γ𝑃𝑃 through 283 

 𝑒𝑒𝑃𝑃 = 1 − Γ𝑃𝑃, (11) 284 

where Γ𝑃𝑃 can be computed using the HQN model (Choudhury et al., 1979; Wang and 285 

Choudhury, 1981; Prigent et al., 2000) 286 

 Γ𝑃𝑃 = Γ𝑃𝑃∗exp[−𝐻𝐻𝑅𝑅cos𝑁𝑁𝑅𝑅𝑅𝑅(𝜃𝜃)] (12) 287 

for low frequencies, i.e., P- and L-band, with the 𝑄𝑄𝑅𝑅 parameter set to zero as it is commonly 288 

believed to be negligible (Wigneron et al., 2001; Wigneron et al., 2011; Lawrence et al., 2013). 289 
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The empirical parameters 𝐻𝐻𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃 characterize the intensity of the roughness effects and 290 

polarization dependence, respectively. Γ𝑃𝑃∗ is the specular reflectivity calculated by the Fresnel 291 

equations (Eqs. 3 and 4). 292 

According to radiative transfer theory, 𝑇𝑇effs  can be computed as (Choudhury et al., 1982)  293 

 𝑇𝑇effs = ∫ 𝑇𝑇(𝑧𝑧)𝛼𝛼(𝑧𝑧) exp�−∫ 𝛼𝛼(𝑧𝑧′)𝑑𝑑𝑧𝑧′𝑧𝑧
0 � 𝑑𝑑𝑧𝑧∞

0 , (13) 294 

where 𝑇𝑇(𝑧𝑧) is the soil temperature at depth z, and 𝛼𝛼(𝑧𝑧) is the power absorption coefficient 295 

depending on the soil dielectric constant 𝜀𝜀𝑟𝑟  and the observation wavelength 𝜆𝜆 written as 296 

(Ulaby et al., 1986) 297 

 𝛼𝛼(𝑧𝑧) = 2(2𝜋𝜋/𝜆𝜆)�Im��𝜀𝜀𝑟𝑟(𝑧𝑧)��, (14) 298 

where Im[ ] represents the imaginary part. In this paper, the effective temperature was 299 

calculated using Eqs. 13 and 14 as well as the soil moisture and temperature measurements. 300 

The soil was modeled as a semi-infinite medium using the soil moisture and temperature 301 

observations from the twelve hydra-probes of the station, respectively, with the soil moisture 302 

and temperature below 60 cm assumed to be the same as those observed in the 55-60-cm layer. 303 

Roughness has been found to impact microwave radiometry by reducing polarization 304 

difference, i.e., the depolarization effect (Shi et al., 2002; Mialon et al., 2012). Accordingly, 305 

the magnitude of the depolarization effect was calculated as 306 

 ∆Γ = (Γ𝐻𝐻 − Γ𝑉𝑉) − (Γ𝐻𝐻∗ − Γ𝑉𝑉∗). (15) 307 
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3.4 Inversion algorithm 308 

In this paper the roughness parameters were retrieved together with the soil moisture as a 309 

single process, using the full-time series of P- and L-band observations (Fig. 4) over each 310 

quadrant individually, i.e., 24 observations at both H- and V-pol per band per quadrant were 311 

used to retrieve 15 unknowns (i.e., soil moisture across 12 days plus 𝐻𝐻𝑅𝑅 , 𝑁𝑁𝑅𝑅𝐻𝐻 , 𝑁𝑁𝑅𝑅𝑉𝑉). No 312 

calibration of these parameters was undertaken to ensure a fair comparison of the roughness 313 

impact for P- and L-band. With the assumption that the roughness remained constant over the 314 

study period, use of the full-time series of measurements allowed for a robust estimation of the 315 

retrieved roughness parameters, as they become less sensitive to measurement noise and/or 316 

small imperfections in the forward model (Konings et al., 2016). 317 

Inversion of the forward model used a generalized least-squares iterative algorithm to 318 

minimize a cost function (CF) computed from the differences between observed (TB𝑃𝑃
obs) and 319 

simulated (TB𝑃𝑃) TB, expressed as 320 

 CF =
∑�TB𝑅𝑅

obs−TB𝑅𝑅�
2

𝜎𝜎(TB)2 + ∑
�𝑃𝑃𝑖𝑖

ini−𝑃𝑃𝑖𝑖�
2

𝜎𝜎(𝑃𝑃𝑖𝑖)2𝑖𝑖 , (16) 321 

where the sum of the difference between TB𝑃𝑃
obs  and TB𝑃𝑃  was calculated using both 322 

polarizations at ~40° incidence angle during the retrieval period, 𝜎𝜎(TB)  is the standard 323 

deviation related to the TB observations, 𝑃𝑃𝑖𝑖  (i = 1, 2, 3, 4) is the value of the retrieved 324 

parameter (SM, 𝐻𝐻𝑅𝑅, 𝑁𝑁𝑅𝑅𝐻𝐻, and 𝑁𝑁𝑅𝑅𝑉𝑉), 𝑃𝑃𝑖𝑖ini is the initial value of each retrieved parameter, and 325 

𝜎𝜎(𝑃𝑃𝑖𝑖) is the standard deviation associated with these initial values. 326 
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4 Results 327 

4.1 Theoretical impact of random surface roughness 328 

Fig. 5 shows the smooth surface roughness limit for different wavelengths and incidence 329 

angles according to the Fraunhofer criterion (Ulaby et al., 1982). Accordingly, it can be seen 330 

that at 40° incidence angle, the roughness effects can notionally be ignored at both P- and L-331 

band providing the rms roughness height is lower than 0.8 cm. However, for a surface with rms 332 

height ranging from 0.8 to 1.6 cm it can only be considered electromagnetically smooth at P-333 

band. Moreover, if the rms height increases beyond 1.6 cm, it suggests that the roughness 334 

cannot be neglected even at P-band. 335 

 

Fig. 5. The maximum rms height to consider a surface electromagnetically smooth for a given 

observation wavelength in the microwave range, calculated using the Fraunhofer criterion 

(Ulaby et al., 1982). 
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Fig. 6 presents the simulated emissivity using the physical model (Eqs. 1-7) for a specular 336 

surface, a smooth surface with 0.8-cm rms height and 11.1-cm correlation length as observed 337 

in quadrant 2, and a relatively rough surface with 1.6-cm rms height and 6.8-cm correlation 338 

length as observed in quadrant 3r, encompassing the roughness range of typical flat soil surfaces, 339 

being mostly located within the range of 0.5-2 cm and 4-15 cm for rms height and correlation 340 

length, respectively (Mialon et al., 2012; Lawrence et al., 2013; Fernandez-Moran et al., 2015). 341 

In Fig. 6, the offset from the specular surface curve can characterize the impact of the random 342 

roughness, being reduced at longer wavelengths. Accordingly, a surface with 0.8-cm rms 343 

height and 11.1-cm correlation length could be considered smooth at 0.3 GHz/100-cm 344 

 

Fig. 6. Emissivity simulated using the physical model over different soil surfaces and at three 

frequencies, i.e., 0.3 GHz, 0.75 GHz, and 1.4 GHz. The dielectric constant was assumed to be 

12 - j2.4 (~0.25 m3/m3 in soil moisture). The specular surface was assumed to have zero rms 

height and 50-cm correlation length. The rms height and correlation length of quadrants 2 and 

3r, being the break points according to the Fraunhofer criterion, were adopted in the simulation 

as the smooth and rough surface here, respectively. 
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wavelength and 0.75 GHz/40-cm wavelength, evidenced by the overlapped blue and orange 345 

curves. This also was true at 1.4 GHz/21-cm wavelength for incidence angles close to 40°. For 346 

the rough surface, the roughness effects could be ignored at 0.3 GHz/100-cm wavelength but 347 

not at 0.75 GHz/40-cm wavelength or 1.4 GHz/21-cm wavelength. However, it can still be 348 

seen that the impact at 1.4 GHz/21-cm wavelength was more pronounced than that at 0.75 349 

GHz/40-cm wavelength. 350 

4.2 Forward simulation using the Fresnel model 351 

Fig. 7 shows the simulated against observed emissivity at both P- and L-band. From the 352 

comparison of P- and L-band emissivity in Fig. 7, it can be observed that overall P-band 353 

outperformed L-band in terms of both correlation coefficient (R) and unbiased root-mean-354 

square error (ubRMSE), indicating that P-band observations were more representative to the 355 

0-5-cm soil moisture compared to L-band observations. Due to the smoothness of quadrant 2, 356 

the scatter plots of quadrant 2 were very close to the 1:1 line for both P- and L-band. This 357 

demonstrates the possibility for the roughness impact of smooth soil surfaces, such as those in 358 

quadrant 2, to be limited at P- and L-band. However, the roughness impact was more 359 

 

Fig. 7. Comparison of emissivity simulations using the Fresnel model against observations at P- and L-band. 
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considerable in the other four quadrants, having either periodic roughness or large random 360 

roughness. In addition, H-pol observations seemed to be influenced by roughness to a larger 361 

degree than V-pol observations, particularly in those quadrants with large roughness. 362 

4.3 Physical simulation of multi-scale roughness 363 

Fig. 8 shows the comparison of simulated and observed emissivity using the physical 364 

model over different periodic surfaces. Only sinusoidal surfaces (quadrants 3 and 4) were 365 

considered herein to explore the multi-roughness and azimuth issue. First, only the random 366 

roughness was modeled using the physical model (Eqs. 1-7) by ignoring periodic roughness. 367 

Next, the physical model for sinusoidal surfaces (Eqs. 1-9) was used to simulate the multi-scale 368 

roughness with random roughness on top of periodic roughness. The roughness measurements 369 

in Table 1 were used in simulations accordingly. 370 

Similar to Fig. 7, it can be seen in Fig. 8 that P-band had a better performance than L-band 371 

in all scenarios. Although the ubRMSE in quadrant 3 was the same at P- and L-band, P-band 372 

had higher R values compared to L-band. From the comparison of top and bottom rows, the 373 

performance in quadrant 4 was improved substantially after accounting for the periodic 374 

roughness, while the statistics were degraded in quadrant 3. Notably, Promes et al. (1988) 375 

observed that another similar model (Wang et al., 1980) had a better agreement with 376 

observations for parallel- than perpendicular-look direction. Therefore, it is suggested that this 377 

type of model should be used with caution over periodic surfaces with a perpendicular-look 378 

direction. 379 
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4.4 Soil moisture retrieval using the semi-empirical model 380 

Soil moisture retrieval was carried out using the semi-empirical model introduced in 381 

Section 3.3 through minimizing the cost function in Eq. 16. Table 2 presents the root-mean-382 

square error (RMSE) for the four retrieval schemes in each quadrant. The initial values of all 383 

retrieved parameters were set to zero to avoid any potentially misleading prior knowledge in 384 

the retrieval (Wigneron et al., 2011). All four schemes made the retrieved SM and 𝐻𝐻𝑅𝑅 “free” 385 

variables by omitting them from the cost function (Eq. 16). 386 

 

Fig. 8. Emissivity simulations compared against observations at P- and L-band using the 

physical model over sinusoidal surfaces. Top row: only random roughness was simulated; and 

bottom row: both periodic and random roughness was simulated. 
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Scheme 1 used the Fresnel model only and did not account for the roughness impact with 387 

the HQN model, with RMSE being similar at P- and L-band in quadrants 1 to 4 but not in 388 

quadrant 3r. Schemes 2 and 3 used the HQN model and the same roughness parameters (𝐻𝐻𝑅𝑅, 389 

𝑁𝑁𝑅𝑅𝐻𝐻, and 𝑁𝑁𝑅𝑅𝑉𝑉) as SMOS (Kerr et al., 2017) and SMAP (O'Neill et al., 2015) for bare soil, 390 

respectively. These two schemes had a similar parameter configuration and therefore the same 391 

RMSE in all quadrants except quadrant 4 for L-band. The average accuracy of the five 392 

quadrants for schemes 2 and 3 was the same, being 0.03 m3/m3 and 0.04 m3/m3 at P- and L-393 

band respectively. Scheme 4 was a 4-parameter retrieval that retrieved 𝐻𝐻𝑅𝑅, 𝑁𝑁𝑅𝑅𝐻𝐻, and 𝑁𝑁𝑅𝑅𝑉𝑉 394 

together with SM, achieving the best performance in terms of the average RMSE. Overall, P-395 

band was found to have a 0.01- to 0.02-m3/m3 improvement over L-band when using the HQN 396 

Table 2. RMSE (m3/m3) of the retrieved soil moisture using different retrieval schemes in each quadrant. 

Scheme 
No. 

Retrieval scheme 
 P-band  L-band 

Q1 Q2 Q3 Q4 Q3r Avg Q1 Q2 Q3 Q4 Q3r Avg 

1 
Retrieved parameter: SM 

𝜎𝜎(TB) = 0.5 
0.05 0.03 0.05 0.06 0.05 0.05 0.06 0.03 0.04 0.05 0.08 0.05 

2 

Constant parameter: 𝐻𝐻𝑅𝑅 = 
0.1, 𝑁𝑁𝑅𝑅𝐻𝐻 = 2, 𝑁𝑁𝑅𝑅𝑉𝑉 = 0 

Retrieved parameter: SM 
𝜎𝜎(TB) = 0.5 

0.03 0.02 0.03 0.04 0.04 0.03 0.05 0.02 0.04 0.04 0.07 0.04 

3 

Constant parameter: 𝐻𝐻𝑅𝑅 = 
0.15, 𝑁𝑁𝑅𝑅𝐻𝐻 = 𝑁𝑁𝑅𝑅𝑉𝑉 = 2 

Retrieved parameter: SM 
𝜎𝜎(TB) = 0.5 

0.03 0.02 0.03 0.04 0.04 0.03 0.05 0.02 0.04 0.03 0.07 0.04 

4 
Retrieved parameter: SM, 

𝐻𝐻𝑅𝑅, 𝑁𝑁𝑅𝑅𝐻𝐻, 𝑁𝑁𝑅𝑅𝑉𝑉 
𝜎𝜎(TB) = 0.5, 𝜎𝜎(𝑁𝑁𝑅𝑅𝑃𝑃) = 5 

0.02 0.02 0.02 0.02 0.03 0.02 0.04 0.02 0.04 0.05 0.04 0.04 
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model, except for quadrant 2 where P- and L-band had the same RMSE, possibly due to the 397 

low roughness. 398 

The R and ubRMSE were also computed for scheme 4 as an example and shown in Table 399 

3. Similar to the RMSE results in Table 2, it can be observed that P-band still outperformed L-400 

band in each quadrant. For quadrant 2 with a smooth soil surface, while the ubRMSE at P- and 401 

L-band was the same, the R value was higher at P-band. Compared to the ubRMSE in quadrant 402 

2, the ubRMSE in other quadrants was similar at P-band while much higher at L-band. 403 

Table 4 shows the roughness parameters retrieved simultaneously with soil moisture using 404 

scheme 4. Quadrant 2 had relatively low values of 𝐻𝐻𝑅𝑅 and 𝑁𝑁𝑅𝑅𝑃𝑃, indicating a minimal random 405 

roughness impact at P- and L-band. Compared to quadrant 2, the quadrants with periodic 406 

roughness (quadrants 1, 3 and 4) and the flat quadrant with higher roughness (quadrant 3r) had 407 

a more substantial roughness impact on radiometric observations, evidenced by the larger 𝐻𝐻𝑅𝑅 408 

values and the larger difference between 𝑁𝑁𝑅𝑅𝐻𝐻 and 𝑁𝑁𝑅𝑅𝑉𝑉. 409 

Table 3. R and ubRMSE (m3/m3) of the retrieved SM using scheme 4 in each quadrant. 

Metrics 
 P-band  L-band 

Q1 Q2 Q3 Q4 Q3r Avg Q1 Q2 Q3 Q4 Q3r Avg 

R 0.92 0.94 0.92 0.92 0.93 0.93 0.86 0.81 0.94 0.95 0.82 0.88 
ubRMSE 0.02 0.01 0.02 0.01 0.02 0.02 0.04 0.01 0.04 0.03 0.03 0.03 

 

Table 4. Retrieved roughness parameters in each quadrant using scheme 4. 

Parameter 
P-band L-band 

Q1 Q2 Q3 Q4 Q3r Q1 Q2 Q3 Q4 Q3r 

𝐻𝐻𝑅𝑅 0.10 0.03 0.11 0.18 0.21 0.06 0.07 0.08 0.20 0.10 
𝑁𝑁𝑅𝑅𝐻𝐻 -2.4 0 -2.9 -2.3 -1.9 -4.4 -1.6 -3.9 -3.5 -5.5 
𝑁𝑁𝑅𝑅𝑉𝑉 2.4 0 3.0 2.4 2.0 4.4 1.6 4.0 3.5 5.6 
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Fig. 9 shows the magnitude of the depolarization effect of roughness (∆Γ) using Eq. 15 410 

and different 𝑁𝑁𝑅𝑅𝑃𝑃 values. It can be seen from the figure that both the SMOS (𝑁𝑁𝑅𝑅𝐻𝐻  = 2 and 411 

𝑁𝑁𝑅𝑅𝑉𝑉  = 0) and SMAP ( 𝑁𝑁𝑅𝑅𝐻𝐻 =  𝑁𝑁𝑅𝑅𝑉𝑉 = 2) parameterization did not imply a substantial 412 

depolarization effect, being close to 0. Mapping the 𝑁𝑁𝑅𝑅𝑃𝑃 values in Table 4 to Fig. 9, it was 413 

found that P-band had a reduced depolarization compared to L-band, confirming the reduced 414 

roughness impact at P-band. 415 

 

Fig. 9. Magnitude of the depolarization effect (∆Γ) calculated using different 𝑁𝑁𝑅𝑅𝐻𝐻 and 𝑁𝑁𝑅𝑅𝑉𝑉 

values. The dielectric constant, 𝐻𝐻𝑅𝑅 and incidence angle were assumed to be 12 - j2.4 (~0.25 

m3/m3 in soil moisture), 0.1 and 40°, respectively. 
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5 Discussion 416 

5.1 Impact of random roughness 417 

The Fraunhofer criterion (Fig. 5) and physical modeling (Fig. 6) indicated that brightness 418 

temperature observations at a longer wavelength should have a reduced impact from random 419 

roughness. The soil moisture retrieval (Tables 2 and 3) showed that the difference of the RMSE 420 

and ubRMSE in quadrants 2 and 3r was reduced at P-band (0.01 m3/m3) compared to L-band 421 

(0.02 m3/m3). Therefore, it could be concluded that P-band had a reduced roughness impact 422 

over typical random roughness conditions. 423 

The retrieval result using scheme 1 in Table 2 shows that the RMSE of both P- and L-424 

band in quadrant 2 was 0.03 m3/m3, being smaller than the 0.04-m3/m3 target accuracy of SMOS 425 

and SMAP even though scheme 1 did not account for the roughness effect. By contrast, the 426 

RMSE of quadrant 3r was 0.05 m3/m3 and 0.08 m3/m3 at P- and L-band respectively. This 427 

indicates that the roughness impact for smooth flat surfaces (quadrant 2) can be potentially 428 

ignored while the impact for rougher flat surfaces (quadrant 3r) should not be neglected either 429 

at P- or L-band. This is confirmed by Fig. 7 where lower ubRMSEs (0.01-0.02 m3/m3) were 430 

found in quadrant 2, but higher ubRMSEs (0.02-0.03 m3/m3) were observed in quadrant 3r. 431 

5.2 Impact of periodic roughness 432 

Compared with L-band, a reduced impact from periodic roughness was observed at P-433 

band. From the retrieval result of schemes 2 and 3 in Table 2, it can be seen that using the 434 

SMOS and SMAP default roughness parameters resulted in a good performance in quadrant 2 435 
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at both P- and L-band (RMSE = 0.02 m3/m3), but the performance over periodic soil was not 436 

as good, being 0.03-0.04 m3/m3 at P-band and 0.04-0.05 m3/m3 at L-band. When retrieving 437 

roughness parameters along with soil moisture in scheme 4, the RMSE in quadrants 1, 3, and 438 

4 for P-band was reduced to the same level as that for quadrant 2 at 0.02 m3/m3, while the 439 

RMSE for L-band was higher in quadrants 1, 3, and 4 (0.04-0.05 m3/m3) than in quadrant 2 440 

(0.02 m3/m3). Similar differences can also be seen from the ubRMSE results in Table 3. In 441 

addition, it can be noticed from Table 2 that the RMSE for L-band in quadrant 4 was slightly 442 

higher using scheme 4 (0.05 m3/m3) compared to using schemes 2 and 3 (0.04 and 0.03 m3/m3, 443 

respectively), indicating that it is necessary to account for the impact of the periodic roughness 444 

as also shown in Fig. 8. However, this only happened at L-band, demonstrating that use of P-445 

band can reduce the impact of periodic roughness. Although the quadrants with periodic 446 

surfaces also had larger random roughness than the flat quadrant, e.g., 1.1-cm rms height for 447 

quadrants 3 and 4 and 0.8-cm rms height for quadrant 2 (Table 1), this should not vitiate the 448 

stated conclusion because the 0.3-cm difference could be ignored compared to the substantial 449 

periodic roughness influence, as shown in Fig. 8. 450 

In terms of the retrieval performance (Tables 2 and 3) and the retrieved roughness 451 

parameters (Table 4), quadrant 1 (sinusoidal bench and perpendicularly oriented) was found to 452 

behave similarly to quadrant 3 (sinusoidal and perpendicularly oriented). Importantly, the 453 

orientation of the row structure mattered; while the retrieval performance was not substantially 454 

different between quadrants 3 and 4 (Table 3), the parallel row structure in quadrant 4 led to a 455 

larger 𝐻𝐻𝑅𝑅 value and lower absolute value of 𝑁𝑁𝑅𝑅𝑃𝑃 (Table 4), in spite of the same row spacing 456 
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and height. It should be noted that, although it fits with intuition that parallel row structures 457 

impose less roughness impact than perpendicular row structures, this is not the case according 458 

to either this research or the literature (Wang et al., 1980; Ulaby et al., 2014). 459 

Although there have been a few models for simulating surfaces with multi-scale roughness 460 

(Wang et al., 1980; Ulaby et al., 2014), it is still impractical to use them in global soil moisture 461 

retrieval. Reasons include, 1) these models rely heavily on accurate roughness measurements 462 

including period, amplitude, and azimuth of the row structures which are difficult to obtain 463 

globally; and 2) the model accuracy was not always satisfactory (e.g., Fig. 8) even though the 464 

roughness measurements were carefully sampled in the field. This finding is supported by 465 

Promes et al. (1988) who evaluated the model from Wang et al. (1980) using ground-based 466 

observations and found this model tended to overestimate the influence of the row structure. A 467 

potential reason to explain this is that these models were developed based on some assumptions, 468 

e.g., the radiometer footprint contains many spatial periods, which may not be fulfilled when 469 

the footprint extends across only a few meters in ground-based experiments. 470 

The current SMOS and SMAP algorithm does not specifically consider any correction of 471 

this periodic roughness effect. Reasons in addition to the difficulties noted earlier include that 472 

a mixture of flat soil and/or periodic soil structures with different orientations are often present 473 

in a large footprint, potentially averaging those effects. Nonetheless, this paper has 474 

demonstrated that P-band can achieve a higher retrieval accuracy than L-band when utilizing 475 

the current SMOS and SMAP algorithm over periodic surfaces. 476 
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5.3 Depolarization effects 477 

The depolarization is due to the fact that roughness impacts amplify H-pol emissivity to a 478 

greater degree compared to V-pol emissivity (Shi et al., 2002; Mialon et al., 2012), in line with 479 

Figs. 6 and 7. This results in a reduced difference between H- and V-pol observations. In the 480 

mono-angular retrieval of this paper, 𝑁𝑁𝑅𝑅𝑃𝑃  can be seen as a coefficient of 𝐻𝐻𝑅𝑅  that 481 

characterizes the intensity of roughness. A larger 𝑁𝑁𝑅𝑅𝑃𝑃 value makes the roughness coefficient, 482 

i.e., exp[−𝐻𝐻𝑅𝑅cos𝑁𝑁𝑅𝑅𝑅𝑅(𝜃𝜃)] in Eq. 12, closer to one, indicating a reduced roughness impact. 483 

Accordingly, ∆𝑁𝑁𝑅𝑅, i.e., ∆𝑁𝑁𝑅𝑅 = 𝑁𝑁𝑅𝑅𝐻𝐻 − 𝑁𝑁𝑅𝑅𝑉𝑉, is able to characterize the depolarization effect. 484 

Although 𝑁𝑁𝑅𝑅𝐻𝐻 and 𝑁𝑁𝑅𝑅𝑉𝑉 values differ from case to case, non-negative ∆𝑁𝑁𝑅𝑅 values have 485 

been often reported in the literature (Mialon et al., 2012; Lawrence et al., 2013) and used in the 486 

SMOS and SMAP retrieval algorithms (O'Neill et al., 2015; Kerr et al., 2017). However, in 487 

Table 4 negative ∆𝑁𝑁𝑅𝑅  values were obtained, possibly due to a substantial depolarization 488 

induced by the large roughness impact, particularly in quadrants 1, 3, 4 and 3r. Moreover, the 489 

different retrieval configuration adopted in this paper could be another explanation. The multi-490 

angular configuration adopted by Mialon et al. (2012) possibly imposed more constraints on 491 

𝑁𝑁𝑅𝑅𝑃𝑃, leading to a different result. However, a negative relation of ∆𝑁𝑁𝑅𝑅 and roughness was 492 

established by Mialon et al. (2012) and Lawrence et al. (2013), suggesting that ∆𝑁𝑁𝑅𝑅 could 493 

also become negative as roughness increases. Accordingly, negative ∆𝑁𝑁𝑅𝑅 was also seen by a 494 

few studies (Montpetit et al., 2015; Peng et al., 2017), in accordance with the current 495 

investigation. 496 
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Depolarization could adversely impact soil moisture retrieval. Konings et al. (2015) 497 

pointed out that a robust retrieval can only be guaranteed if the degree of information (DoI) of 498 

a set of observations is larger than the number of the retrieved parameters. Accordingly, this 499 

depolarization reduces the independence of the observations at H- and V-pol and thus the DoI. 500 

It can be noticed from Fig. 9 that ∆Γ is more likely to be non-positive, in line with literature 501 

observations that roughness-induced depolarization was often seen (Newton and Rouse, 1980; 502 

Wang et al., 1983; Mialon et al., 2012). A positive ∆Γ value is scarce to observe over bare 503 

soil because it indicates that roughness enlarges the difference between the reflectivity at both 504 

polarizations. This phenomenon can only be observed at low incidence angles (e.g., less than 505 

20°) over periodic soil surfaces (Wang et al., 1980; Zheng et al., 2012). Consequently, 𝑁𝑁𝑅𝑅𝑃𝑃 506 

values should be used with caution when ∆𝑁𝑁𝑅𝑅 is larger than 5, as indicated by the red area in 507 

Fig. 9. 508 

5.4 Uncertainties 509 

Although all results lend support to concluding that P-band is less sensitive to random and 510 

periodic roughness than L-band for the typical soil roughness landscapes tested in this paper, 511 

it should be noted that the difference in RMSE between P- and L-band could also be attributed 512 

to the potential error from using a mismatched moisture retrieval depth. The compromise of 513 

the evaluation in this paper is using the 5-cm moisture observation to evaluate the retrieved soil 514 

moisture of around 0-4/5 cm at P-band and 0-2/3 cm at L-band, due to the difficulty in 515 

measuring the soil moisture evolution of the top few centimeters. While it is possible to model 516 
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the soil moisture at these depths, reliance on model estimates will bring further uncertainties 517 

and make the results somewhat unreliable. 518 

To mitigate this issue, ubRMSE was also calculated since it removes the systematic error 519 

induced from the mismatched moisture depth. However, there may also be random errors 520 

imposed on the RMSE that cannot be removed by calculating ubRMSE. Accordingly, the 521 

reduced roughness impact of P-band was demonstrated in this paper by comparing the statistics 522 

in rough surfaces to those in flat surfaces instead of directly comparing the statistics of P- and 523 

L-band. 524 

While L-band was found in some cases to have shallower moisture retrieval depth than 525 

the widely accepted 5 cm (Escorihuela et al., 2010; Zheng et al., 2019; Shen et al., 2021), most 526 

studies are still using the soil moisture observations at around 5 cm to validate soil moisture 527 

products (Zeng et al., 2015) and calibrate the HQN model parameters (Mialon et al., 2012). 528 

This potentially leads to a dependence of the calibrated roughness parameters on soil moisture, 529 

which has been found to be reduced by using the soil moisture at a shallower moisture retrieval 530 

depth (Escorihuela et al., 2010). From this perspective, the retrieval error caused by the 531 

mismatched moisture depth in this paper can be taken as the “effective” roughness impact if a 532 

5-cm moisture retrieval depth is assumed at both P- and L-band. 533 

The Fraunhofer criterion and the I2EM also have limitations that might lead to some 534 

uncertainties in the results. The Fraunhofer criterion considers only the vertical roughness (i.e., 535 

rms height) by assuming a considerably larger period of the soil structures than the observation 536 
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wavelength. In addition, the isotropic roughness properties assumed by the I2EM may 537 

sometimes be invalid in practice. 538 

6 Conclusion 539 

This paper compared random and periodic roughness impacts on P- and L-band passive 540 

microwave brightness temperature to demonstrate the potential improvement in soil moisture 541 

retrieval from using the longer wavelength P-band observations rather than the shorter L-band 542 

observations over smooth to relatively rough soil. P-band was found to be less impacted by 543 

random and periodic roughness than L-band, evidenced by more comparable statistics across 544 

different roughness conditions. An important result is that the roughness impact for smooth flat 545 

surfaces (e.g., quadrant 2 with 0.8-cm rms height and 11.1-cm correlation length) can be 546 

ignored, and still provide a satisfactory retrieval performance at both P- and L-band. However, 547 

the impact of roughness became important when the rms height reached 1.6 cm with a 548 

correlation length of 6.8 cm (quadrant 3r) at both P- and L-band, with P-band observations 549 

showing less impact than L-band. 550 

Periodic roughness was seen to degrade the retrieval performance from flat surfaces and 551 

could not be fully accounted for using the SMOS and SMAP default roughness parameters. 552 

However, when retrieving roughness parameters along with soil moisture, the ubRMSE at P-553 

band over periodic soil surfaces was improved to a similar level (0.01-0.02 m3/m3) of that for 554 

a flat soil (0.01 m3/m3), while L-band showed a higher ubRMSE over periodic soil surfaces 555 
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(0.03-0.04 m3/m3) than that over flat soil surfaces (0.01 m3/m3). This indicates reduced periodic 556 

surface roughness effects at P- compared to L-band. 557 
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