

A Strategy to Optimize Local Phase Transformation Strengthening for Next Generation Superalloys

T.M. Smith¹, T.P. Gabb¹, N.A. Zarkevich², M.N. Mendelev², V.V. Borovikov³, J. Stuckner¹, A.J. Egan⁴, J.W. Lawson², M.J. Mills⁴

¹NASA Glenn Research Center, Cleveland, OH 44135, USA
²NASA Ames Research Center, Mountain View, CA 94043, USA
³Wyle Laboratory, Anaheim, CA, 92806
⁴Center for Electron Microscopy and Analysis, The Ohio State University, Columbus OH 43212, USA

Support provided by NASA's Aeronautics Research Mission Directorate (ARMD) – Transformational Tools and Technologies (TTT) Project and NASA's Advanced Air Transport Technology (AATT) Project Office (ARMD) and NSF DMREF Program

Center for Electron Microscopy and Analysis

1

Motivation for Mechanistic Studies

(°C)

- Material advancements are required to accommodate the higher compressor exit temperatures in jet turbine engines (>700°C near the rotor rim) for improved efficiency and pollution reduction.

- New deformation mechanisms will become dominant at these higher operating temperatures along with a need for improved creep properties in these disk alloys.

- New understanding and materials will be needed for future advancements

Segregation along Stacking Faults

ation

Segregation along superlattice stacking faults has been observed in numerous Ni and **Co-based** superalloys.

Phase Transformation Strengthening

S202

New insight into alloy effects:

• Segregation of γ formers in ME3 promotes microtwinning

 Formation of η phase at faults in ME501 inhibits microtwinning and improves creep strength

Material Preparation

ME3 Average Grain Diameter = $59.2 \mu m$ LSHR Average Grain Diameter = $59.9 \mu m$

Alloy	Secondary γ' VF	Tertiary γ' VF	Total γ' VF	Average Secondary γ' Size	Average Tertiary γ' Size
ME3	43.97 ± .6	2.65 ± .4	46.61 ± 1.0	135 nm	15.4 nm
LSHR	43.52 ± 1.7	2.27 ± .1	45.80 ± 1.8	154 nm	15.9 nm

The two alloys are microstructurally comparable!

Smith, et al. Acta Materialia, 2019

Creep Performance of ME3 and LSHR

- Creep tests were performed at 760°C under a stress of 552MPa
- LSHR has consistently performed better in creep compared to ME3 in this temperature regime. Why?

Phase Transformation Softening – γ Phase

γ phase formation along SISF promotes stacking fault ribbon shear

SISF = Superlattice Intrinsic stacking Fault

Phase Transformation Strengthening – χ Phase

χ phase formation along SISF inhibits stacking fault ribbon shear

SISF = Superlattice Intrinsic stacking Fault

Phase Transformation Strengthened Superalloys

Can the η and χ phase transformation strengthening mechanisms be combined into a single alloy without precipitating bulk topologically close packed (TCP) phases?

Development of Transformation Strengthened NASA Alloys (TSNA)

Alloy	Cr	Со	AI	Ti	Nb	Мо	Та	W	Hf	В	С	Ni
LSHR	12.5	20.4	3.5	3.5	1.5	2.7	1.5	4.3	0	0.03	0.045	Bal
ME3	13	21	3.4	3.8	0.8	3.7	2.4	2.1	0	0.02	0.05	Bal
TSNA-1	10.9	19	2.9	3	1.4	2.6	5.0	4.5	0.37	0.025	0.05	Bal

Avg. Grain Size: 60um Avg. Grain Size:

Avg. Grain Size: 19.2um Avg. Grain Size: 19.8um

Alloy	Secondary γ' VF	Tertiary γ' VF	Total γ' VF	Average Secondary γ' Size	Average Tertiary γ' Size
ME3	44.8 ± 0.5 %	2.6 ± 0.2 %	47.4 ± 0.6 %	234 nm	36.4 nm
LSHR	45.4 ± 1.8 %	3.4 ± 0.4 %	48.7 ± 1.3 %	243 nm	39.8 nm
TSNA-1	54.0 ± 0.2 %	0.6 ± 0.2 %	54.5 ± 0.3 %	311 nm	38.5 nm

By not forging the TSNA-1 alloy, grain sizes remained fine in comparison to LSHR. A fine grain LSHR was produced for a better comparison.

Creep Properties

TSNA-1 presents significantly better creep properties over current state of the art alloys through possible phase transformation strengthening

Creep Properties

TSNA-1 presents significantly better creep properties over current state of the art alloys through possible phase transformation strengthening

Creep Deformation in TSNA-1

Deformation was dominated by isolated faulting in the γ' precipitates and dislocations gliding in the matrix.

TMS 2022 150TH ANNUAL MEETING & EXHIBITION www.tms.org/TMS2022 • #TMSAnnualMeeting

14

Ordered segregation observed in HAADF images of both fault types

5202

Phase Transformations in TSNA-1 - SISF

γ' to χ phase transformation confirmed along SISFs

Phase Transformations in TSNA-1 - SESF

γ' to η phase transformation confirmed along SESFs

Density Functional Theory Calculations

Binary $L1_2$, $D0_{19}$, and $D0_{24}$ cells were produced for energy calculations

Density Functional Theory Calculations

National Aeronautics And Space Administration

Future Work: Molecular Dynamic Models – Nb Segregation along SISFs

T = 1000 K

Ni and Al atoms not shown

Substituted 10% AI in precipitate with Nb

National Aeronautics And Space Administration

Future Work: Molecular Dynamic Models - χ Phase Effect on Dislocation Motion

sxz = 400 MPa syz = 693 MPa stot = 800 MPa T = 1000 K

Ni atoms not shown

0% Nb

sxz = 400 MPa syz = 693 MPa stot = 800 MPa T = 1000 K

Ni atoms not shown

7.5% Nb

Why Phase Transformations?

D0₂₄

Local crystal structure + composition + observed Z contrast ordering = Local phase transformation along faults

Future Work

Forged TSNA-1

ELEBRATI

Conclusions

- The creep performance of TSNA-1 is significantly better compared to LSHR and ME3 despite testing conducted on an overall similar, though not yet optimized, microstructure.
- The creep deformation at 760°C/552MPa in TSNA-1 is dominated by dislocation glide in the γ channels and isolated faulting in the γ ' precipitates.
- High resolution STEM analysis reveals the formation of χ phase along SISFs and η phase along SESFs for TSNA-1.
- The formation of these phases along the faults may explain the superior creep properties exhibited by TSNA-1, as the grain and γ' microstructure fail to do so.
- The strengthening η and χ phase transformations can be combined in future Ni-base disk alloy compositions for improved creep properties

Acknowledgements

Rick Rogers

• Alex Leary