Friction Stir Welded Aluminum-Lithium (Al-Li) 2050 Blanks for Spin Forming

Mike Eller, Joe Murphy & Marissa LaCoursiere - Lockheed Martin Space Systems, New Orleans, LA 70129 Greg Jerman - NASA Marshall Space Flight Center, Huntsville, AL 35808 Marcia Domack, Wes Tayon & Stephen Hales – NASA Langley Research Center, Hampton, VA 23681 Michael Niedzinski – Constellium, Hoffman Estates, IL 60192 Ryan Cullan & Paul Bartelt- Standex, North Billerica, MA 01862

AeroMat 2022 March 15, 2022 Pasadena, CA

Image credit Lockheed Martin unless otherwise indicated

FSW + Spin Forming Background

Benefits of FSW + Spin Forming vs. Traditional Gore Construction:

- Improved safety & mission success & lower cost from reduced material quantities, tooling, and production labor
- Reduced part and weld count (Orion study of single-piece CM shell estimated <u>elimination of over 1,200 inches of welds</u>)
- Mass savings from elimination of weld lands (Orion study estimated elimination of weld lands alone saves 10% mass)

Adoption limited by Abnormal Grain Growth (AGG) in FSW zone after post-spin heat treatment

> Applicable to:

Domes

Crew Vehicle Bulkheads

Orbiting & Surface Habitats

Image Credit: Chen & Russell, NASA-MSFC, 2012

2050 Aluminum Lithium Background

Benefits of 2050 AI-Li vs. Incumbent Alloys

- 2050 plate produced up to a maximum of 6.5" thick per AMS (available up to 8.5" thick)
 - Compared to 2.25" thick for 2195 AI-Li
- 2050 has 5% lower density than 2219
- 2050-T84 has 27% higher Yield Strength and 17% higher ductility than 2219-T87
 - For 1.5-2.0" thick plate per MMPDS

Material	LT Ftu (ksi)	LT Fty (ksi)	LT e (%)	ST Ftu (ksi)	ST Fty (ksi)	E (msi)	Density (lb/in³)
Al 2219-T87 1.5-2" Plate	64	51	6	59	51	10.5	0.103
Al 2050-T84 1.5-2" Plate	73	65	7	71	61	10.9	0.098
Al 2050/Al 2219	1.14	1.27	1.17	1.20	1.20	1.04	0.95

Advanced forming of 2050 Al-Li plate

- 2-3" thick 2050-T34 plates successfully bump formed and roll formed into cylindrical shapes
- 6" thick 2050-T34 plate successfully bump formed into Orion Cone Panel A-F demo article

Spin Forming of 2050 Al-Li Had Not Been Attempted Prior to This Work

2050 FSW and Post-Weld Heat Treatment (PWHT) Development

Material	Gauge	Weld Schedule Information	Post Weld Anneal Parameters	UTS	YS	Forming Range	Total Strain	Reference
				(ksi)	(ksi)	(UTS-YS)	(%)	
2050-0	0.320"	А	750°F/3h + air cool	32.6	15.8	16.9	13.2	2020 LM Space IRAD
2050-O	0.320"	А	750°F/3h + air cool	32.7	15.4	17.3	14.2	2020 LM Space IRAD
2050-0	0.320"	В	750°F/3h + air cool	32.4	15.5	16.9	11.2	2020 LM Space IRAD
2050-0	0.320"	В	750°F/3h + air cool	32	15.6	16.4	14.2	2020 LM Space IRAD
2050-0	0.320"	n/a	775°F/1h + air cool (annealed from -T84)	34.2	15.9	18.3	20	2020 LM Space IRAD
2195-0	0.320"	MSFC	750°F/3h + air cool	16.6	11.5	5.1	n/a	Chen & Russell, 2012
2195-0	0.320"	MSFC	Novel parameters developed by NASA	18	9.3	8.7	n/a	Chen & Russell, 2012
2195-0	0.320"	MT Aero	Unknown parameters from MT Aero	22	17.7	4.2	n/a	Chen & Russell, 2012
2195-0	0.320"	MT Aero	Novel parameters developed by NASA	20	11.5	8.6	n/a	Chen & Russell, 2012

Note: 2050-O coupons tensile tested at 20°C where 2195-O coupons were tested at 200°C

Highlighted parameters selected for implementation on three 48" x 48" x 0.320" subscale blanks

- Improved forming range over 0.320" 2195-O Marshall Space Flight Center (MSFC) weld using identical post weld anneal schedule
- Improved forming range over highest achieved with novel MSFC parameters
- LM "A" schedule performed slightly better than "B" schedule

0.320" 2050-O FSW Subscale Blanks

FSW blank with run on/off tabs

Weld setup and tooling Completed FSW blank after sanding, UT inspection, and removing run on/off tabs

50801

1.5" 2050-T34 Full Scale Blank

2050 FSW Subscale Blank Spin Forming

Superficial oxidation caused by long Intermediate Annealing Treatment (IAT) is readily removed by machining

2050 FSW Full Scale Blanks Spin Forming

Post-Spin Forming Heat Treating

NASA Langley Research Center (LaRC) leveraged lessons learned from prior spin forming efforts with FSW 2195 blanks to recommend the following:

- Spin forming temperature of 455°F
- Novel Intermediate Annealing Treatment (IAT) developed by NASA; US Patent 9,090,950 (2015)
- Solution Heat Treat (SHT) temperature of 932°F @ 1 hour hold time

LM Space performed internal tensile tests to recommend the following:

- Spin forming temperature of 455°F
- Post Weld Annealing (PWA) of 700°F@ 2 hour hold time

Constellium performed internal tensile testing and fracture toughness of 2050 aged to -T62 to recommend the following:

• Final artificial aging of 320°F @ 24 hour hold time

Processing Sequence of Spin Formed Parts

	2050		2:	195
	Temp	Time	Temp	Time
Spin Forming	<u>≥</u> 455°F		<u>≥</u> 482°F	
PWA	700°F	2 hrs	720°F	2 hrs
IAT	855°F	patented	875°F	patented
SHT	932°F	1 hr	950°F	1 hr
Aging to T62	320°F	24 hrs	340°F	32 hrs*

*Experimental multi-step aging of subscale domes at Spincraft

- Processing temperatures strongly influenced by Cu content
 2195 – 4% Cu
 - 2050 3.5% Cu

2050 FSW Spin Form Subscale Cones vs. 2195 FSW SF Dome Prior Effort

2014 NASA Report on 0.75" thick 2195 FSW SF Dome

Image Credit: Curreri, et al. NASA-TP-2011-216462

Current Work 0.32" thick 2050 FSW SF Dome (60° Strain)

2050 FSW Spin Form Subscale Cones vs. 2195 FSW SF Dome Prior Effort

2014 NASA Report on 0.75" thick 2195 FSW SF Dome

Image Credit: Curreri, et al. NASA-TP-2011-216462

2050 FSW Spin Form Subscale Cones vs. 2195 FSW SF Dome Prior Effort

2014 NASA Report on 0.75" thick 2195 FSW SF Dome

Image Credit: Curreri, et al. NASA-TP-2011-216462

Current Work 0.32" thick 2050 FSW SF Dome (30° Strain)

2050 vs. 2195 Subscale FSW Spin Formed Articles

2014 NASA Work 0.75" thick 2195-O FSW Blank

Average of 3 Long Transverse (LT) tensile specimens across the FSW:

SF Dome	UTS (ksi)	YS (ksi)	el. %
2195-T6 FSW	70.0	n/a	<mark>0.65</mark>

Current Work 0.32" thick 2050-O FSW Blanks (30°, 45°, 60° strain)

FSW Center Strip (Side A) FSW Center Strip (Side B)

Average of 4 LT tensile specimens (for each strain level) across the FSW:

SF Cones	UTS (ksi)	YS (ksi)	el. %
2050-T6 FSW 60°	63.7	52.5	<mark>5.1</mark>
2050-T6 FSW 45°	64.4	52.9	<mark>5.9</mark>
2050-T6 FSW 30°	64.1	53.2	<mark>7.0</mark>

Image Credit: Curreri, et al. NASA-TP-2011-216462

8-10X Improvement in Ductility with ≤9% Lower Strength vs. 2195 Prior Work

2050 vs. 2219 Full Scale Spin Formed Dome

Prior 2015 NASA Work 2" thick 2219-F Blank

Image Credit: Hoffman, *et al.* NASA/TP-2015-218674.

- Spin forming of Orion Aft Bulkhead Dome
- Annealed from –F temper before spinning
- Solution heat treated, quenched, and aged to -T62
- This blank was <u>not</u> friction stir welded

Current Work 1.5" thick 2050-T34 FSW Blank

- Spin forming of Dome
- Post-weld annealed from -T34 temper before spinning
- Solution heat treated, quenched, and aged to -T62
- Utilized *different* spinning mandrel as 2015 Orion Aft Bulkhead

2050 Full Scale Spin Formed Dome Coupon Locations

2050 vs. 2219 Full Scale Spin Formed Dome – Parent Material Comparison

Longitudinal	Min. 2219-T6 2" thick Parent Material	Min. 2050-T6 1.5" thick Parent Material	% Change
Uts (ksi)	53.4	73.5	38% Increase
Yts (ksi)	36.5	62.6	72% Increase
Elongation (%)	9.3	10	Comparable

Long	Min. 2219-T6 2" thick	Min. 2050-T6 1.5"	% Change
Transverse	Parent Material	thick Parent Material	
Uts (ksi)	53.8	70.5	<mark>31% Increase</mark>
Yts (ksi)	36.3	60.8	<mark>67% Increase</mark>
Elongation (%)	7.9	10	<mark>Comparable</mark>

2050 vs. 2219 Full Scale Spin Formed Dome – Parent Material Comparison

Short Transverse	Min. 2219-T6 2" thick	Min. 2050-T6 1.5"	% Change
	Parent Material	thick Parent Material	
Uts (ksi)	56.2	69.2	23% Increase
Yts (ksi)	36.5	57.2	<mark>57% Increase</mark>
Elongation (%)	3.3	3.9	Comparable

Longitudinal-45°- Short Transverse	Min. 2219-T6 2" thick Parent Material	Min. 2050-T6 1.5" thick Parent Material	% Change
Uts (ksi)	49.3	58.8	19% Increase
Yts (ksi)	36.0	51.4	43% Increase
Elongation (%)	2.6	1	Comparable

2050 vs. 2219 Full Scale Spin Formed Cone – Parent Material

Comparison

Prior 2014 NASA Work 1.5" thick 2219-T34 FSW Blank

Image Credit: Domack, et al. NASA-TM-2014-218163

- Article included Forward Bulkhead, Cone, and Barrel (132" max diameter)
- Post-weld annealed before spinning
- Solution heat treated, quenched, and aged to -T6

Current Work 1.5" thick 2050-T34 FSW Blank

- Article included just Forward Bulkhead and Partial Cone Segment (112" max diameter)
- Post-weld annealed before spinning
- IAT before solution heat treat, quench, and age to -T6
- Utilized *same* spinning mandrel as 2014 FPVBH article

2050 Full Scale Spin Formed Cone Coupon Locations

2050 vs. 2219 Full Scale Macrographs

2219-T6 FSW SF Cone

- AGG still present in 2050 FSW SF cone article
- Reflected by low ductility values recorded
- Spin roller experienced a bump and was heard acoustically as it moved over 2219 FPVBH FSW
- Bumping was not witnessing in spin forming of 2050 articles and behaved as a singular plate

2050 vs. 2219 Full Scale Spin Formed Cone – FSW Comparison

Longitudinal	Min. 2219-T6 1.5" thick FSW	Min. 2050-T6 1.5" thick FSW	% Change
Uts (ksi)	49.8	57.2	15% Increase
Yts (ksi)	38.4	55.3	<mark>44% Increase</mark>
Elongation (%)	3	2	Comparable

Long Transverse	Min. 2219-T6 1.5" thick FSW	Min. 2050-T6 1.5" thick FSW	% Change
Uts (ksi)	50.7	58.8	16% Increase
Yts (ksi)	39.8	54.3	<mark>36% Increase</mark>
Elongation (%)	3.6	3	<mark>Comparable</mark>

2050 vs. 2219 Full Scale Spin Formed Cone – FSW Comparison

> 2050 subscale cones exhibited <u>8-10X improvement</u> in FSW ductility over 2195 prior art

- Significant reduction in AGG formation, improving with larger strain input
- Subscale cones witnessed same PWA, IAT, SHT, quench, and age as full-scale articles
- Near elimination of AGG attributed to FSW methods and/or attributed to thinner gauge w/higher strain input

> 2050 full scale cone and dome exhibited <u>36-72% improvement</u> in Yield Strength over 2219 prior art

- Ductility values were comparable in parent material and FSW
- > 2050 spin formed components present mass savings opportunity over 2219 for crew vehicles/structures

Future work required for qualification of large FSW blanks for flight

- > Determine impact of IAT on AGG and other potential heat treatment improvements
- Target higher spin forming strains and/or subsequent deformation processing to mitigate AGG formation
- Apply novel FSW methods used in subscale to full scale articles in future FSW blanks for spin forming

Questions?

