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Prognostics (keR

= Safety and Decision Making
* Reconfiguring the system to avoid using the component before it fails
* Prolonging component life by modifying how the component is used
* Optimally plan or replan a mission
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= System operations can be optimized in a variety of ways :
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Results tend to be intuitive

Models can be reused

If incorporated early enough
in the design process, can
drive sensor requirements
Computationally efficient to
implement

a thorough understanding of

the system
High-fidelity models can be

c Arnmaniitatinanalhs imktAanrnanhia

« Easy and Fast to implement

» May identify relationships
that were not previously
considered

even un-)intuitive
Can be computationally
intensive, both for analysis

and im




Model-based prognostics

« State vector includes dynamics of normal and

degradation process
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« EOL defined at time in which performance
variable cross failure threshold
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Model-based prognostics

Tracking of health state based on
measurements

Forecasting of health state until failure
threshold is crossed

Compute RUL as function of EOL
defined at time failure threshold is
crossed
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End Of Life

—— prediction @ dtection
- prediction @ 3750
g0 H — - prediction @ 4250
——— prediction @ 50
—— -prediction @ 5250
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Hybrid Approach

Pressure Coefficient
High Low

nderlying physics parameters
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Hybrid Approaches : Prior Work Gmr

— System Model
i Feature
System Model Residuals e Y ,
+ il Degradation k o
i > Data-Model Fusion —>
System Kalman Filter System Model )
Input Input
Real Process » Real Process
Overall architecture of the residual-based (Hanachi et al., 2017)

hybrid diagnostics (Rausch et al., 2005).



Approach 1 : Deep Learning + Physics Model Calibration

Real Process

Model Calibration
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Overall architecture of the hybrid prognostics framework fusing Calibration Policy
physics-based and deep learning models.

+ Chao, Manuel A.; Kulkarni, Chetan; Goebel, Kai; Fink, Olga, “Fusing Physics-based and Deep Learning Models for Prognostics”, Reliability Engineering & System Safety, Volume 217, 2022
+ Chao, Manuel A.; Kulkarni, Chetan; Goebel, Kai; Fink, Olga. 2021. "Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics" Data 6, no. 1: 5.
+ https:/fi.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan-2



Approach 2 : Physics + RNN

KPhysics-informed RNN

f System model 1

v

System input —

'L (physics/empirical) J l

_

AU i )

—>[ Real Process ]7

Overall architecture of the physics-informed
recurrent neural network

g2(ht)

MLP model
for Vintp
MLP model
for Vinen
~e
g1 (ue, 1)
h; > > h;
> Vo — Va
|40 Ry %ﬂ }—)
o |
l: Butler-' Volmer eq. \_F:l }—/

(B j j 77777 Vo = Vin
/ Butler-' Volmer eq. p= j
-------- q ( . ) Agyp
. L»\ q< Gy —»[ Db (—dpep) At }—J
Unknown (physical) || Jj%
(dssp +3 -

parameters

u | — Input current

{ ‘Pu,--« d Data-dri Model parameter : SI!

Physics-informed neural network framework for
Li-ion Battery SOC estimation

+ Nascimento, R.G. & Viana, F. A. & Corbetta, M. & Kulkarni, C. S. , "Usage-based Lifing of Lithium-lon Battery with Hybrid Physics-Informed Neural Networks," AIAA Aviation 2021.
+ Nascimento, R.G. & Viana, F. A. & Corbetta, M. & Kulkarni, C. S, “Hybrid Physics-Informed Neural Networks for Lithium-lon Battery Modeling and Prognosis Journal of Power Sources 2021



Approach 2 : Physics + RNN
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ext Steps : Looking Ahead




Next Steps : Looking Ahead

+ High Model Granularity
+ Onboard/DM

« Computational cost

* Real time

ML/Data Driven

+ System Complexity
* Available Data

Physics Based




Next Steps : Looking Ahead

e System Complexity
¢ Low Model Granularity

ML/Data Driven

¢ Data Spectrum availability
¢ Offline/Online
e Computational cost
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Concluding Remarks Gimr

= Prognostics helps enable
« Systems safe and efficient

« Decision making

= Hybrid Approaches
« Physics based methods can be combined with machine learning to determine and evaluate models for complex physical
systems.

- High Fidelity simulation
- Field and Tests
» These models enable in verification and validation for autonomy in shorter period of time than current state of the art.

- Computational tools are two slow for online applications
« With availability of test and field data, machine learning able to blend the digital data fabric for model update

» Uncertainty Quantification

* Requirements for autonomous systems

= Framework still in early stages and needs maturation



Thank You

https://ti.arc.nasa.qov/tech/dash/groups/pcoe/



https://ti.arc.nasa.gov/tech/dash/groups/pcoe/

