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§ Safety and Decision Making
• Reconfiguring the system to avoid using the component before it fails
• Prolonging component life by modifying how the component is used
• Optimally plan or replan a mission

§ Adopting condition-based maintenance strategies, instead of 
time-based maintenance 

• scheduling maintenance
• planning for spare components

§ System operations can be optimized in a variety of ways

Prognostics
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State of the Art

• Results tend to be intuitive
• Models can be reused
• If incorporated early enough 

in the design process, can 
drive sensor requirements 
Computationally efficient to 
implement

• Model development requires 
a thorough understanding of 
the system

• High-fidelity models can be 
computationally intensive

• Easy and Fast to implement
• May identify relationships 

that were not previously 
considered

• Requires lots of data and a 
“balanced” approach”

• Results may be counter(or 
even un-)intuitive

• Can be computationally 
intensive, both for analysis 
and implementation

• Paris-Erdogan Crack Growth 
Model

• Taylor tool wear model
• Corrosion model
• Abrasion model

• Regression analysis
• Neural Networks (NN)
• Bayesian updates
• Relevance vector machines 

(RVM)
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Model-based prognostics
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• EOL defined at time in which performance 
variable cross failure threshold

R(tp) = tEOL � tp
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• Tracking of health state based on 
measurements

• Forecasting of health state until failure 
threshold is crossed

• Compute RUL as function of EOL 
defined at time failure threshold is 
crossed

Model-based prognostics
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Hybrid Approach

Machine-Learning underlying physics parameters

Understanding and Learning underlying  Physics  
for Complex Systems

Advanced Composites

Tiltrotor Test Rig 
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Hybrid Approaches : Prior Work 

Overall architecture of the residual-based 
hybrid diagnostics (Rausch et al., 2005). 

(Hanachi et al., 2017). 
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Approach 1 : Deep Learning + Physics Model Calibration

Overall architecture of the hybrid prognostics framework fusing 
physics-based and deep learning models. 

Calibration Policy

• Chao, Manuel A.; Kulkarni, Chetan; Goebel, Kai; Fink, Olga, “Fusing Physics-based and Deep Learning Models for Prognostics”, Reliability Engineering & System Safety, Volume 217, 2022
• Chao, Manuel A.; Kulkarni, Chetan; Goebel, Kai; Fink, Olga. 2021. "Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics" Data 6, no. 1: 5.
• https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan-2
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Physics-informed RNN

Approach 2 : Physics + RNN

Overall architecture of the physics-informed 
recurrent neural network

• Nascimento, R.G. & Viana, F. A. & Corbetta, M. & Kulkarni, C. S. , "Usage-based Lifing of Lithium-Ion Battery with Hybrid Physics-Informed Neural Networks," AIAA Aviation 2021.
• Nascimento, R.G. & Viana, F. A. & Corbetta, M. & Kulkarni, C. S, “Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery Modeling and Prognosis Journal of Power Sources 2021

Physics-informed neural network framework for
Li-ion Battery SOC estimation

System model 
(physics/empirical)

Data-driven model(s)

System input

Real Process

MLP model 
for 𝑉!"#,%

MLP model 
for 𝑉!"#,"

Unknown (physical) 
parameters

Input current
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Approach 2 : Physics + RNN

PCOE - Diagnostics and Prognostics Group 16
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Next Steps : Looking Ahead

Credit: www.nasa.gov
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Next Steps : Looking Ahead

• High Model Granularity
• Onboard/DM
• Computational cost
• Real time

• System Complexity
• Available Data
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Next Steps : Looking Ahead

• System Complexity
• Low Model Granularity

• Data Spectrum availability
• Offline/Online
• Computational cost
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§ Prognostics helps enable 
• Systems safe and efficient 
• Decision making

§ Hybrid Approaches 
• Physics based  methods  can be combined with machine learning to determine and evaluate models for complex physical 

systems.
- High Fidelity simulation 
- Field and Tests 

• These models enable in verification and validation for autonomy in shorter period of time than current state of the art. 
- Computational tools are two slow for online applications

• With availability of test and field data, machine learning able to blend the digital data fabric for model update
• Uncertainty Quantification

§ Requirements for autonomous systems

§ Framework still in early stages and needs maturation

Concluding Remarks

20
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Thank You

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/

