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1. Abstract
Tropospheric ozone (O3) is formed by anthropogenic pollutants interacting with 
sunlight and is considered harmful to human health in high concentrations. In the 
summer of 2018, the Oklahoma Department of Environmental Quality (DEQ) 
measured unexpected spikes in O3 in Seiling, Oklahoma, with concentrations 
exceeding those measured in bustling Oklahoma City and Tulsa. The DEQ tracks 
air quality using ground monitors and does not utilize Earth observation data in its 
monitoring or analysis. This project used remotely sensed data to investigate these
2018 air quality anomalies, identifying possible causes. We analyzed atmospheric 
data from Terra and Aqua Moderate Resolution Imaging Spectroradiometer 
(MODIS), and Sentinel-5P Tropospheric Ozone Monitoring Instrument (TROPOMI) 
in conjunction with ground-based measurements of tropospheric ozone (O3), 
nitrogen dioxide (NO2), methane (CH4), carbon monoxide (CO), formaldehyde 
(HCHO) and aerosol optical depth (AOD). We compared Hybrid Single-Particle 
Lagrangian Integrated Trajectory (HYSPLIT) model simulations and Earth 
observation visualizations to pinpoint ozone spike causes. We also generated 
models to identify contributing factors to variations in ground ozone 
concentrations in our study area. The results point to a variety of ozone spike 
causes, primarily from outside of the state, and support the placement of additional
NO2, O3, and CO monitors to the southeast of Seiling. These analyses can help 
guide the placement of future monitors in the ground monitoring network and 
inform air quality regulations in Oklahoma. 

Key Terms
HYSPLIT, MODIS, TROPOMI, back-trajectory analysis, emissions transport, 
atmospheric pollutants

2. Introduction 
2.1 Background Information  
Tropospheric ozone (O3) is a greenhouse gas that is formed near Earth’s surface 
when pollutants react with sunlight. These pollutants are emitted by cars, power 
plants, industrial boilers, chemical plants and other sources, and are referred to as
ozone precursors (Butcher, 2020).  Ozone in the troposphere is considered harmful
to human health in concentrations above 0.07 parts per million (ppm). At these 
concentrations, it is associated with increased rates of lung cancer, asthma, and 
other lung-related diseases, as well as impaired cognitive function (American Lung 
Association, 2021).  These adverse effects are a growing concern in states like 
Oklahoma, where uncharacteristic ozone spikes are being observed.  

In 2011, Oklahoma suffered from some of the worst air quality in the country 
largely due to high ozone levels (American Lung Association, 2021), with multiple 
days surpassing the Environmental Protection Agency (EPA) limit for healthy air. 
The Oklahoma Department of Environmental Quality (DEQ) identified widespread 
drought as the likely main contributor to worsened air quality. By 2016 air quality 
improved, reaching a record 83% of days considered “good” according to EPA 
standards (Brown, 2019). However, in the summer of 2018 the DEQ noticed 
unexpected spikes in O3 at a ground-monitoring station in Seiling, Oklahoma 
(Figure 1). While ozone spikes are expected in urban areas like Oklahoma City and 
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Tulsa, high levels in the rural town of Seiling were surprising, and prompted 
further investigation, especially given that the air quality monitor in Seiling was 
created to record background air quality measurements for the state. Unlike the 
event in 2011, this event was not preceded by a drought and the specific causes of 
the spikes were unclear. Since the spikes, Oklahoma’s poor air quality has 
persisted, and in certain locations fails to meet the EPA’s standard for particulate 
matter. According to reports by the Oklahoma DEQ and the American Lung 
Association (2021), in 2019 ozone levels peaked near the EPA’s standard of 0.0705 
ppm (DEQ, 2019). 

Figure 1. Average monthly ozone 
concentrations measured from ground 
stations in Seiling, Oklahoma. Ozone 
peaked in 2011 following a drought. 
Ozone levels declined over several 
years before spiking again in 2018.

To better understand Oklahoma’s air quality anomalies, Earth observations (EO) of
atmospheric data recorded by satellite-based instruments can be used to 
supplement ground-based measurement, providing insight into possible emission 
transportation scenarios. The satellite-based instruments Moderate Resolution 
Imaging Spectroradiometer (MODIS) and Tropospheric Monitoring Instrument 
(TROPOMI) have been tested against ground-based monitors globally (Ialongo et 
al., 2020).  Additionally, algorithms for processing and validating data have been 
developed for linking ground and EO atmospheric data from these 
instruments (Garane et al., 2019). According to literature, the instruments perform
well and are highly correlated with ground-based measurements, even at higher 
latitudes (Ialongo et al., 2020).

Although research suggests that some EO products are highly correlated with 
ground-based measurements, often more information is needed to predict surface 
O3. Ozone precursors like nitrogen dioxide (NO2), methane (CH4), carbon monoxide 
(CO), formaldehyde (HCHO), and fine particulate matter (PM2.5) are often utilized 
in investigations of ozone (EPA, 2021). Furthermore, many research studies utilize 
meteorological, in-situ, and land-use variables. For example, Random Forest (RF) 
regression models have been used to predict ground-level ozone from satellite-
derived and in-situ variables with a strong agreement between predictions and 
observations (Wang et al., 2022). These models shed light on the emissions and 
weather scenarios that lead to surface ozone formation.
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Emission transport models are also important tools for air quality regulation and 
are necessary for identifying potential emission source locations for air pollutants. 
Since air pollutants can travel long distances, to track their source, researchers 
have developed publicly available models, including the National Oceanic and 
Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated 
Trajectory model (HYSPLIT). This model provides forward and back trajectories, 
generating statistically likely paths of particles at specific times and locations 
(Crosman, 2021; Stein et al., 2015). HYSPLIT modeling, together with the 
qualitative EO data analysis and ground level ozone spike modeling from other 
data sources, can identify potential sources of particles. (Stein et al., 2015).

2.1.1. Study Area
This study encompassed Oklahoma and seven surrounding states: Texas, New 
Mexico, Colorado, Kansas, Missouri, Arkansas, and Louisiana (Figure 2). The study
period was May 2018 through August 2018, covering the recorded ozone spike 
dates, as identified by the DEQ (May 26, May 30, June 5, July 17-19, July 22, July 
28, and August 2-3, 2018), and allowing for the investigation of the days leading up
to spike dates.

Figure 2. The study area encompassed Oklahoma and the bordering states, shaded
in green. Seiling is a small, rural town located in Northwest Oklahoma. 

2.2 Project Partners & Objectives 
Our team partnered with the Oklahoma DEQ to investigate the sources of ozone 
and its precursors in Oklahoma and surrounding states. The DEQ tracks air quality
measurements using ground-based stations and does not utilize NASA or other EO 
data in their monitoring or analysis of air quality.  The objective of this analysis 
was to investigate the 2018 air quality anomalies and to better identify emission 
scenarios that might have contributed to these spikes. The work conducted during 
the term aided the DEQ in filling gaps in their ground monitoring network and can 
be used to guide future regulatory and monitoring policies.   

3. Methodology
3.1 Data Acquisition
Our team at JPL downloaded all EO data products (Table 1) throughout the study 
range, May 10 to August 10, 2018. We acquired the products through the NASA 

3



Earth data portal and Google Earth Engine. We then clipped all EO data products 
to a rectangle encompassing the study area shown in Figure 2. 

3.1.1. Earth Observation Data
The TROPOMI and MODIS instruments utilize a passive imaging spectrometer to 
measure chemical species in the atmosphere with a spatial sampling resolution of 
7km and 10km, respectively.  Prior to downloading and analysis, we time-ordered, 
geolocated, and radiometrically corrected the data. We then included NO2, aerosol 
optical depth (AOD), CO, HCHO, and O3 column concentrations in this 
investigation, given that they are relevant in the ozone formation process, and 
serve as indicators of anthropogenic activity. Next, we team selected tropospheric 
column concentrations when available, as the troposphere exhibits similarities to 
ground pollutant concentrations. Where tropospheric column concentrations were 
not available, we selected total column concentrations. 

Global Land Data Assimilation System (GLDAS) uses models to assimilate 
satellite and in-situ data to produce global datasets at 1km resolution. Our team 
derived air temperature, humidity, wind speed, and dew point temperature from 
GLDAS (Rodell et. al., 2004). Then we derived multispectral data from Sentinel-2 
and the Landsat EOS from passive sensors which collect reflectance data across 
the light spectrum and store data in bands according to wavelength. Dominant 
land cover type from the National Land Cover Database (NLCD, 2016) and the 
normalized difference vegetation index (NDVI) from the Multispectral Instrument 
(MSI) onboard Sentinel-2 were also utilized. Additionally, we utilized the products 
of the Shuttle Radar Topography Mission (SRTM), an active sensor which utilizes 
microwave emissions to collect backscatter at a defined wavelength in order to 
map surface features for elevation.

Table 1
Earth observations, data products and source overview  

Platform &
Sensor Products Download

Source

Sentinel-5P 
TROPOMI

Carbon Monoxide CO Column 1-Orbit L2 7km x 7km 
V1
Tropospheric NO2 1-Orbit L2 7km x 3.5km V1
Total Ozone Column 1-Orbit L2 3.5km x 3.5km V1
Tropospheric Formaldehyde Column 1-Orbit L2 7km x
3.5km V1

Methane CH4 1-Orbit L2 7km x 7 km V1

NASA 
Earth Data
Portal

Terra + Aqua 
MODIS

Terra Aerosol 5-Min L2 Swath 10km

Aqua Aerosol 5-Min L2 Swath 10km

Burned Area Monthly L3 Global 500m SIN Grid 
V0006

NASA 
Earth Data
Portal
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GLDAS 
Noah Land Surface Model L4 3 Hourly 0.25 x 0.25 
degree: Air Temperature, Humidity, Wind Speed, Dew
Point Temperature

NASA 
Earth Data
Portal

Landsat Earth 
Observing 
System (EOS)

National Land Cover Database (NLCD) Google 
Earth 
Engine

Sentinel 2 
Multispectral 
Instrument 
(MSI) 

Normalized Difference Vegetation Index (NDVI) 

(Near Infrared Band - Red band) / (Near Infrared 
Band + Red Band)

Google 
Earth 
Engine

Shuttle Radar 
Topography 
Mission (SRTM) Elevation

Google 
Earth 
Engine

3.1.2. Ancillary Data
Our team downloaded datasets of in-situ ozone, PM 2.5, CO, and NO2 from the EPA
Air Quality System (AQS) for May 10 through August 2018.  These are 
measurements recorded by EPA ground monitors. We also downloaded datasets 
providing the locations of natural gas processing plants, power plants, and 
petroleum refineries from the U.S. Energy Information Administration (EIA) 
(United States, 2010). All data was subset by the noted study area.  

3.2 Data Processing
The EO data were cloud masked prior to downloading, resulting in several missing 
values. Each TROPOMI dataset contains an array of quality flags for each pixel.  
We clipped all EO data to the study area and collocated with ground sensors. Then 
we averaged daily EO pollutant levels across pixels within an 11 km x 11 km box 
around each ground sensor (Figure 3). These average values were joined with 
ground values to create datasets for the ozone prediction models. We clipped land 
cover and elevation data sets by a 1km buffer around each ozone ground monitor 
prior to downloading and used a 20km buffer for average NDVI, which was only 
used in the Seiling model to capture seasonal vegetation changes.  To match the 
study area, our team also filtered the EPA AQS and EIA point source data.
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Figure 3. Sampling design to collocate EO and in-situ data for ground ozone
formation modeling.

3.3 Data Analysis
3.3.1 Data Exploration 
Our team began by exploring and visualizing in-situ data at various spatial and 
temporal scales within the study area on spike and baseline ozone dates. Next, we 
visualized EO data by pollutant across the time frame of interest. From static daily 
plots of EO data, we created animations to explore pollutant distributions. 
Subsequently, we used these plots in the qualitative analysis alongside HYSPLIT 
emissions transport model results.

3.3.2 Correlation and Time Lag Analysis 
We investigated the correlation of EO data products with in-situ ozone readings to 
understand how EO data can be leveraged as a predictor of surface level ozone. 
The time period July – August 10, 2018, was selected to investigate the correlation 
and time lag between daily ground ozone distribution in Seiling versus nearby 
TROPOMI EO concentrations. Our team implemented this to exclude any seasonal 
variations within our study range and to focus on the time period with the most 
spike days. To obtain the correlation coefficient we collocated total ozone column 
(TOC) and tropospheric NO2 EO time series data and regressed it onto ground time
series data for June, July, and August. Then, using stationary correlation analysis, 
we performed time lagged cross correlation analysis to identify the time lag that 
maximized the correlation coefficient. While setting up the analysis we limited the 
maximum potential lag to 10 days due to the meteorological movements impacting 
the ground and EO data alignment.

3.3.3 HYSPLIT Back Trajectory Analysis
To further investigate the ozone spikes in Seiling, our team used the HYSPLIT 
(v5.1) model to analyze the backwards trajectory of particles in Seiling under the 
meteorological conditions in which the spikes occurred. We then computed simple 
particle trajectories, concentration plots, as well as dispersion and deposition 
simulations (Draxler et al., 2020). In this analysis, we initialized a fixed number of 
initial particles and subsequently calculated the backwards particle motion 
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through an autocorrelation function based on Lagrangian time scale and computer-
generated random numbers. 

The HYSPLIT model used gridded atmospheric data from NOAA’s Air Resource 
Laboratory to calculate the probable location of the backwards dispersion of 1000 
particles over 4 days prior to an ozone spike date. Our team set start dates to 
match a subset of the observed ozone spike dates in 2018 (May 26, June 5, July 19, 
July 28, August 3), and the location was set to the latitude and longitude of the 
Seiling sensor (36.14, -98.92). We then set the particles’ start height at 100 meters
above the ground, and set the top of the model to 1000m, assuming that the 
ground monitor measured the general ozone in the surrounding area. Our team 
ran both trajectory and concentration models to better understand the movement 
path of the ozone particles. 

3.3.4 Qualitative cross-validation: HYSPLIT and EO data
Our team qualitatively assessed EO pollutant data with HYSPLIT trajectories by 
overlaying the two resulting visualizations using QGIS (version 3.16). HYSPLIT 
simulates particle movements twice per day, therefore, we selected both trajectory
polygons for a given day of EO data. We then mapped the identified spike days 
with 4 preceding days of TOC data and one preceding day of NO2 data to capture 
the likelihood of pollutant transport based on relative species lifetimes following 
emission. Our team repeated this process for four randomly selected non-spike 
days to explore potential differences with baseline levels. For the baseline days, we
used days with low to medium ground ozone levels reported in Seiling, where daily
maximum levels did not exceed 0.055ppm. Dates fitting these criteria were chosen 
at random.

3.3.5 Ground-level ozone prediction model 
In order to further investigate contributing factors to ground ozone formation 
within the study area, we utilized EO pollutant data, meteorological data, land 
cover data, burned area data, and metrics representing oil and gas activity as 
model predictors. It is known that temperature, pressure, humidity, solar radiation,
and wind speed have significant effects on ground ozone levels (Jeong et al., 2020).
Our team spatially and temporally collocated gridded meteorological weather data 
from GLDAS with ground monitors (Figure 3). Since ozone is a secondary 
pollutant, formed as a result of chemical reactions, we added in other pollutant 
species as model predictors. The full set of pollutant predictors EO data included 
the following column densities: Total O3, Tropospheric NO2, Total CO, and 
Tropospheric HCHO, along with AOD. According to the literature, ground ozone 
levels can vary by day of week due to automobile traffic. Therefore, we 
incorporated indicator variables into the model to capture weekdays versus 
weekends. We averaged in-situ time of day variations by using the daily maximum 
ozone values as the response variable. While variation in hourly air pollution is lost
using daily aggregation, this aggregation reflects the daily temporal availability of 
the EO datasets in question. 

The goals of ground level ozone modeling are to identify the most significant 
predictors for ground level ozone and quantify their impacts on influencing ozone 
variance, as well as to accurately predict ground ozone levels given weather and 
pollutant scenarios. With these goals in mind, our team created one set of 
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interpretable statistical models for the number of ozone particles and one set of 
models using machine learning techniques. For the statistical investigation, we 
utilized Python (ver. 3.9.7) and selected Multiple Linear Regression, Poisson 
Regression, Negative Binomial Regression, and Robust Linear Regression. For the 
machine learning investigation, we used Random Forest and XGBoost to accurately
predict ground ozone. Our team selected forest and boosted machine learning 
techniques to capture the complex interactions between the explanatory variables 
used to predict ground ozone. 

We created a separate model to predict ground level ozone in Seiling to further 
understand the contributing factors to Seiling specific ozone spikes. Here, we 
excluded features that change only with location, namely: land cover and proximity
to oil and gas activity. Instead, we included NDVI to capture seasonal changes. We 
then applied the foregoing models to predict ozone and understand the interaction 
of various predictors.

To train and assess the performance of the models, our team split the dataset of 
response and explanatory variables into a training set with 70% of the data and a 
test set with the remaining 30% of the data. We compared these models using their
corresponding mean square errors (MSE), r-squared, and mean absolute error 
(MAE) statistics to understand their ability to explain the variability in the dataset. 
Additionally, we assessed feature importance and the statistical significance of 
predictors to understand which explanatory variables most contributed to 
variance. Finally, our team compared the results of the study area model and the 
Seiling specific models to understand the effect of location on ground ozone 
predictability and the specific features which are the most important in predicting 
Seiling’s ground ozone.

4. Results & Discussion
4.1 Data Exploration Results
The in-situ graphical visualizations showed spikes in summertime hourly ground 
ozone in Seiling (Dewey County) as compared to monitors in metropolitan counties 
(Oklahoma and Tulsa) in 2018 (Appendix D). When aggregated into monthly 
averages, 2018 was a spike year as compared to preceding and subsequent years 
(Figure 1). Visualizations of EO data showed hotspots of pollutants across the 
study area (Figure 4). 

(a) (b)
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Figure 4. Visualizations of TOC data (a) and NO2 data (b) showed pollutant
hotspots across the study area. Red represents the highest concentrations while

blue represents the lowest concentrations, in moles/m2.

4.2 Correlation and time lag results
The outputs of the analysis for the 45-day period from July 1 to August 15 show for 
ground Ozone (Figure 5a) and NO2 (Figure 5b), the ideal lag is 2 days with the EO 
NO2 values leading. This lag resulted in a correlation coefficient of .16 between the
ground Ozone and NO2. For TOC Ozone and ground Ozone the maximum 
correlation coefficient was .39 and was maximized at a delay of 7 days with ground
Ozone leading total column Ozone. These results show that time delays between 
EO data and ground data can influence the desired predictive levels. This 
exploration informed the HYSPLIT models, statistical models, and machine 
learning models. Ultimately, to utilize this time lag information more work is 
necessary.

(a) (b)

Figure 5. Comparison of ground ozone levels from the Seiling monitor and
TROPOMI tropospheric O3 data in areas surrounding this sensor (a), and

TROPOMI NO2 data (b).

4.3 HYSPLIT back trajectory results
4.3.1 Baseline dates
A random sample of four HYSPLIT back-trajectories preceding low-medium ozone 
days in Seiling showed consistent patterns among particle movement. However, 
slight variations exist as particles traveled from south or southeast of Seiling, 
avoiding Oklahoma City, Dallas, and the Texas panhandle. These are areas of 
consistent NO2 hotspots regionally (Figure 6a-d). The trajectory results suggest 
that particles originated from southern Texas and the Gulf of Mexico (Appendix A).

(a) (b) 
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(c) 

 

(d) 

  

 

Figure 6. Baseline sample NO2 data for 
May 13, 2018 (a), June 10, 2018 (b), 
July 1, 2018 (c), and June 5, 2019 (d), 
overlaid with HYSPLIT particle 
trajectories one day prior to low ozone 
measurements in Seiling.

4.3.2 Spike dates
Below, the HYSPLIT trajectories (Appendix B) are presented overlaid with EO 
pollutant maps for NO2 and TOC on days preceding spike days where potential 
interactions occurred. In general, we observed that HYSPLIT trajectories passed 
through regions of elevated NO2 on the day prior to a spike day. There was no 
distinct pattern with TOC concentrations. On May 25, particles traveled through a 
region of high TOC values south and west of Dallas, while particles did not appear 
to travel directly through an area of high NO2 concentration (Fig.7a, b). On June 4 
particles moved from north to south across the midwestern states. The maps 
suggest interaction of high TOC and NO2 values on June 4 in Oklahoma one day 
prior to spike day (Fig.7c, d). On July 17, the visualizations suggest an interaction 
of high TOC values in a region west of Dallas two days prior to spike day, while 
particles passed through a region of high NO2 values on July 18, one day prior to a 
spike day (Fig.7e, f). Preceding the July 28 spike, visualizations suggest no clear 
interaction of particles with high TOC values along the trajectory, while on July 26,
the particle trajectory passes an area of high NO2 values northeast of Oklahoma 
(Fig.7g, h). Preceding the August 3 spike, visualizations suggest an interaction of 
particles and high TOC values along the trajectory with exception to the day prior 
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to the spike date, while particles pass through high levels of NO2 in the Dallas area
one day before a spike (Fig.7i, j). It is worth noting that spike date trajectories 
passing through Dallas (Fig 7b, d, j) had the highest daily maximum in-situ ozone 
levels in Seiling. 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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Figure 7. Potential interactions of TOC and NO2 pollutants and concentrations of
atmospheric particles depicted as polygons generated by the HYSPLIT software

(a-j).

Given these comparisons and cross validation between daily NO2 concentrations 
and hypothetical HYSPLIT trajectories, it is possible that some spikes in Seiling in 
2018 could arise from weather patterns bringing NO2 in from Kansas City, 
Amarillo, and Dallas and days where NO2 is high in these areas. On days where 
wind patterns travel from the Gulf of Mexico, up through southern Texas and 
between Amarillo and Dallas, ground ozone levels in the summer of 2018 in Seiling
were much lower. It is unclear where exactly ozone formation is occurring, and to 
what degree extremely hot and dry weather events could be affecting these 
scenarios.

4.3.3. Statistical and Machine Learning Model Results
Both the statistical and machine learning models for the study area had high 
accuracy with the lowest Mean Squared Error (MSE) coming from the random 
forest model at 0.36 (Table C1) and the lowest MSE from the statistical models 
coming from the robust linear regression model, 0.82 (Table C1). The ability of the 
random forest to learn complex non-linear relationships results in higher 
performance compared to the linear and general linear models. 

The machine learning models identified humidity as the most important feature. 
This feature importance was determined by the amount of variation explained by 
the inclusion of the different predictor variables. Through this method of feature 
importance identification, humidity was the most important variable according to 
both the random forest and XGBoost models. Longitude and date were identified as
the next two most important variables by both the random forest and XGBoost 
models. The earth observation values had mid-level feature importance falling from
0.0214 to 0.0625 (Figure C1). These features were also modeled qualitatively with 
the HYSPLIT model which displayed instances where particles aligned with the 
earth observations. 

Regarding the statistical significance of variables, our team used the robust 
regression which had the lowest MSE to identify the key predictors of ground 
ozone. The robust regression model identified Latitude, Average TOC Ozone, 
Ground Temperature, Air Temperature, pressure, humidity, precipitation, and 
mean elevation as having been statistically significant at the 5% level (Table C4). 
Interestingly, the robust linear regression model did not identify date, windspeed, 
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or latitude which were in the top five most important features according to the 
machine learning models. 

For the Seiling model, the linear statistical model was highly accurate with a R-
squared of 74.8% (Table C2) which surpassed the r-squared values of the robust 
linear model for the study area. In the Seiling linear model, the most statistically 
significant terms were average carbon dioxide, precipitation, and wind speed 
(Table C5). The high comparative r-squared of the linear model points to the 
impact of location on ozone formation. Also, the r-squared of the random forest 
model was not above that of the linear model, yet the random forest had a lower 
mean square error of 0.5724 (Table C2) compared to the mean square error 
of .6811(Table C2) in the linear model.  In conclusion, the high predictive power of 
the linear model indicates more straightforward interactions between pollutants 
and a high influence of location and regional properties on ozone formation

4.3.4. Feature Importance Evaluation
Of our six models, the most accurate was the random forest model, meanwhile the 
most accurate statistical model was the robust regression. It should be noted that 
across all the statistical models, predictors: air temperature, ground temperature, 
humidity, and the interaction between total column Ozone and humidity, explained 
the most variance in ground ozone, with p values of .005, .001, .020, .028, 
respectively. Predictors for fire intensity: fire event, weekend, and the number of 
power producers within 15 km of the monitor, showed limited to no contribution to
changes in ground ozone.

4.4 Future Work
Our ozone model identified variables most likely to predict current ozone levels but
did not capture ozone formation dynamics. While it can tell us how influential a 
given factor is on ozone concentrations in a certain area, it cannot tell us where 
and when that ozone was formed. In general, more statistical models could be 
developed to track how emission of primary pollutants, like methane, in one 
location could account for the variation of ground level ozone in another location.

One possible direction would be to develop a model that captures the 
spatiotemporal dynamics of ozone formation to further explore the influence of 
climate change. Our analyses indicate that ozone levels are highly correlated with 
humidity and energy sector activity. As summers become drier and warmer due to 
climate change, ozone formation dynamics may also shift, regardless of successful 
efforts to marginally curb emissions. Therefore, one line of inquiry would be to 
explore whether marginal decreases in precursor pollution levels in hotspot areas 
will be enough to reduce ozone levels, or does the influence of meteorological 
factors suggest that these efforts will be outweighed by increasing severity of 
weather? By developing a forecasting model to address this we could help predict 
where and when ozone spikes will occur. 

Another element that could be further explored in future DEVELOP projects is 
developing a higher resolution temporal analysis. This could involve leveraging the
temporal resolution of various reanalysis products or building downscaling models 
that can predict EO pollutant data at the hourly level, instead of the daily level. 
Since air quality fluctuates so rapidly, reinvestigating the questions set forward by 
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this paper would allow community and policy partners to gain a better 
understanding of emission transport and the duration of air quality spikes.

Finally, additional quantitative analysis could be applied to our qualitative analysis 
of HYSPLIT trajectories in conjunction with EO data measurements. This could be 
done by using the HYSPLIT polygons as input features to join EO measurements 
spatially. This design could aid in future modeling scenarios.

5. Conclusions
The work conducted throughout this term has showed novel insights into ground 
level ozone, its sources, and its causes. This study shed light on where Seiling’s 
ground ozone could have originated from, meteorological and other EO product 
predictors of ground ozone, and the differences between modeling ground ozone in
Seiling and the larger study area. This study also raised questions about the 
impact of climate change on future ozone spikes and methods to improve ground 
ozone models including temporal lag and spatial elements.

Through exploratory data analysis, our team determined general directions of 
precursors and total ozone column plumes corresponding to ozone spikes in 
Seiling. We were also able to identify emission sources and weather patterns that 
might be leading to anomalous ozone levels in Seiling, by using HYSPLIT back 
trajectories, and overlaying concentration plot outputs onto NO2 and TOC column 
densities. This process was conducted for multiple baseline days where daily 
maximum ozone levels reported from the Seiling monitor did not exceed 0.055ppm.
These baselines served as a comparison for patterns exhibited on spike dates. 
Through this comparison, our team was able to identify that wind patterns moving 
through Amarillo and the western panhandle, Dallas, as Kansas City 1-2 days prior 
to spikes, could have potentially brought high NO2 concentrations towards Seiling 
leading to ground ozone formation. Our model indicated that extreme hot and dry 
weather are also strong pieces of the story.

Of the six models utilized for the study area pollutant regression analysis, the most
accurate was the random forest model. Equated to the other models, the mean 
squared error (MSE) is 0.36, compared with the linear model, with an MSE of 0.82 
respectively. It should be noted that across all three models, predictors of 
humidity, latitude, and distance to petroleum explain the most variance in ground 
ozone. These values are statistically significant with p values of < 0.00001, 0.002, 
and < 0.00001 respectively (Table C4). Such analysis assists in identifying which 
pollutants have the greatest impact on the creation and transport of ozone and 
should be traced accordingly. It is worth noting, that due to availability of 
TROPOMI data, pollutant concentrations used as model predictors varied in 
atmospheric column. While HCHO and NO2 were tropospheric column densities, 
CO and O3 were total column densities. 

This work will assist the Oklahoma DEQ guide the placement of new air quality 
monitors throughout the state, regulate large emitters, strategize more effective 
emissions reduction programs in the future and, if needed, adopt guidelines that 
will reduce air pollutants.  Given the results of integrated HYSPLIT and EO 
analysis, our team recommends that NO2 and CO sensors be placed to the 
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Southeast of Seiling, in order to detect high precursor concentration levels coming 
from Dallas and western panhandle of Texas.
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7. Glossary
AOD - aerosol optical depth
AQS – air quality sensor
Chemical reanalysis - technique that combines observational information from 
multiple satellite sensors and provides comprehensive information on tropospheric 
composition variations
Earth observations – satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time
In situ observations- observations made at the point where the measuring 
instrument is located
MERRA - Modern-Era Retrospective analysis for Research and Applications
MODIS – Moderate resolution Imaging Spectroradiometer
OMI – Ozone monitoring instrument
Remote sensing – science of obtaining information about objects or areas from a 
distance, typically from aircraft or satellites
Temporal resolution – denotes how frequently data of the same area is collected;
Is typically referred to as the Revisit Time
TOC – total ozone column
Troposphere - the lowest region of the atmosphere, extending from the earth's 
surface to a height of about 3.7–6.2 miles, or 6–10 km, which is the lower boundary
of the stratosphere
VOC - volatile organic compound
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9. Appendices
Appendix A

 Panels a – b depict baseline 4-Day HYSPLIT Trajectories

(a)

Simulation Start Date: July 2, 2018

Daily Max Ozone in Seiling: 0.054ppm

(b)

Simulation Start Date: June 11, 2018

Ground Ozone in Seiling: 0.046ppm

(c)

S
imulation Start Date: June 6, 2019

Daily Max Ozone in Seiling: 0.034ppm

(d)

Simulation Start Date: May 14, 2018

Daily Max Ozone in Seiling: 0.037ppm
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Appendix B

Panels a – e depict spike Date 4-Day HYSPLIT Trajectories

(a)

Simulation Start Date: May 26th, 2018

Daily Max Ozone in Seiling: 0.073ppm

(b)

Simulation Start Date: June 5th, 2018

Ground Ozone in Seiling: 0.074ppm

(c)

Simulation Start Date: July 18th, 2018

Ground Ozone in Seiling: 0.070ppm   

  (e)        

(d)

Simulation Start Date: July 28, 2018

Ground Ozone in Seiling: 0.070ppm
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Simulation Start Date: August 3rd, 2018, Ground Ozone in Seiling: 0.075ppm

Appendix C

Table C1
Key evaluation metrics from the model outputs from the best performing models 
from the study area.  (left) Results for random forest. (right) Results for robust 
regression.

Study area results for random 
Forest 

Model Evaluation 
Metric

Scor
e

Mean Square Error 
(MSE)

0.36

R-squared for Linear
Model

71.7
2

Mean Absolute Error 0.44

                     

 Study area results for robust regression 

Model Evaluation 
Metric

Scor
e

Mean Square Error 
(MSE)

0.82

R-squared for Linear
Model

36.8
7

Mean Absolute Error 0.64

Table C2
Key evaluation metrics from the model outputs from the best performing models 
from the Seiling. (left) Results for random forest. (right) Results for robust 
regression.

Seiling Model results for 
random forest 

Model Evaluation 
Metric

Sco
re

Mean Square Error 0.57

 Seiling Model results for robust regression 

Model Evaluation 
Metric

Sco
re
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(MSE)

R-squared for 
Linear Model

65.8
4

Mean Absolute 
Error 

0.59

Mean Square Error 
(MSE)

0.68

R-squared for 
Linear Model

74.8

Mean Absolute 
Error 

0.62

(a)                                                                        (b)

Figure C1. Feature Importance for Random Forest for Study Area (a) and Seiling
(b)

The tables below are the key values from the statistical model outputs. The 
variables below are “coef” representing the coefficient value of the explanatory 
variable in the given regression, “std err” representing the standard error of the 
given explanatory variable, “Z” representing the Z-value of the coefficient of the 
given explanatory variable, and “P>|Z|” representing the P-value of the given Z-
value for the explanatory variable. 

Table C3
Study area linear regression output of all statistically significant variables at 
the .05 significance level.
variable coef std err z P>|z|
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name

Intercept -44670 14600 -3.052 0.002

Latitude 0.0988 0.021 4.808 0

Longitude -0.1099 0.028 -3.972 0

Date 0.0022 0.001 3.052 0.002

Avg. AOD 0.0028 0.001 2.979 0.003

Air 
temperature

-0.2374 0.041 -5.739 0

Temperature 0.1734 0.061 2.85 0.005

Pressure 1.00E-04 2.40E-
05

4.841 0

Humidity -1129.23 356.14
6

-3.171 0.002

Precipitation 5746.81
5

1190.1
66

4.829 0

Elevation 
mean

7.00E-04 0 4.156 0

Avg. O3: 
humidity

7947.54
9

2612.3
63

3.042 0.002

Avg. AOD: 
humidity

-0.2122 0.068 -3.112 0.002

Dist. to 
natural gas

1.54E-06 6.87E-
07

2.248 0.025

Dist. to 
petroleum

-2.95E-
06

6.17E-
07

-4.774 0

Power in 
15km Radius

0.0819 0.027 3.002 0.003

Table C4
Study area robust regression model full output
variable name coef std err z P>|z|
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Intercept -19680 13100 -1.504 0.133

Latitude 0.09 0.016 5.734 0

Longitude -
0.0185

0.018 -1.002 0.316

date 0.001 0.001 1.503 0.133

Avg AOD 2.00E-
04

0 0.825 0.41

Avg CO -
4.8465

8.974 -0.54 0.589

Fire event -
3.8098

6.56 -0.581 0.561

Fire intensity 0.0745 0.085 0.878 0.38

Avg NO2 -
24470

0

18500
0

-1.326 0.185

Avg O3 -
79.516

4

39.55 -2.011 0.044

Air 
temperature

-
0.3059

0.036 -8.61 0

Ground 
temperature

0.3353 0.034 9.748 0

pressure 6.54E-
05

2.03E-
05

3.223 0.001

humidity -
1669.1

5

261.48
6

-6.383 0

precipitation 7285.4
93

1255.7
71

5.802 0

windspeed 0.0251 0.032 0.785 0.433

mean elevation 5.00E- 0 3.493 0
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04

Land cover 7.00E-
04

0.001 0.446 0.655

weekend -
0.3466

0.073 -4.741 0

Fire event: 
humidity

69.052
3

106.36 0.649 0.516

Latitude: 
fire_event

0.0849 0.156 0.544 0.586

Avg NO2: Avg 
O3

18530
00

13500
00

1.369 0.171

AvgO3: 
humidity

11510 1902.2
2

6.049 0

Table C5
Seiling linear regression model full output

variable name coef std err z P>|z|

Intercept 19.855
3

11.625 1.708 0.091

date -
0.0013

0.001 -1.711 0.09

avgCO 47.169
6

23.66 1.994 0.049

fire_event 6.00E-
04

0.001 1.127 0.262

fire_intensity 7.00E-
04

0.001 1.209 0.23

avgNO2 -
16330

0

13400
0

-1.22 0.225

avgO3 -
31.948

27.696 -1.154 0.251
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8

air_temp -0.025 0.102 -0.246 0.807

temp 0.1215 0.102 1.186 0.238

pressure 8.15E-
05

0 0.489 0.626

humidity -
443.00

7

258.73
2

-1.712 0.09

precip 3365.6
89

1652.1
47

2.037 0.044

windspeed -
0.1509

0.039 -3.833 0

weekend -
0.2637

0.149 -1.771 0.08

fire_event: 
humidity

9.29E-
06

7.98E-
06

1.164 0.247

Latitude 717.92
55

420.34 1.708 0.091

Latitude:fire_ev
ent

0.0238 0.021 1.152 0.252

avgNO2: avgO3 12790
00

10400
00

1.235 0.22

avgO3: 
humidity

2395.2
77

2007.7
7

1.193 0.236
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Appendix D

The graph below shows hourly ozone levels recorded by monitors at Seiling 
(Dewey County), Oklahoma City, Tulsa, and McAlester (Pittsburg County). The 
McAlester monitor was used as a baseline in this initial exploration, given that it is 
similarly unpopulated and rural to Seiling. The graph exhibits how ozone levels in 
Seiling were elevated compared to urban Oklahoma City and Tulsa, where such 
levels are to be expected. 
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