1	Asymmetric Warming/Cooling Response to O_2
2	Increase/Decrease Mainly Due to Non-Logarithmic
3	Forcing, not Feedbacks
4	Ivan Mitevski ¹ , Lorenzo M. Polvani ^{1,2} , Clara Orbe ^{1,3}
5	¹ Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
6	$^{2}\mathrm{Lamont}\text{-}\mathrm{Doherty}$ Earth Observatory, Columbia University, Palisades, NY
7	$^3\mathrm{NASA}$ Goddard Institute for Space Studies, New York, NY
8	Key Points:
9	• The global surface temperature responds asymmetrically to increased and decreased
10	CO_2 levels, in both abrupt and transient cases
11	• Effective climate sensitivity is higher with warming $(2\times, 4\times, 8\times CO_2)$ than with

- cooling (1/2×, 1/4×, 1/8×CO₂), in two different coupled models
 The non-logarithmic nature of the CO₂ forcing is primarily responsible for the asym-
- ¹⁴ metry, not the radiative feedbacks

 $Corresponding \ author: \ Ivan \ Mitevski, \ \texttt{im2527@columbia.edu}$

15 Abstract

We explore the CO_2 dependence of effective climate sensitivity (S_G) with symmet-16 ric abrupt and transient CO₂ forcing, spanning the range $\frac{1}{8}\times$, $\frac{1}{4}\times$, $\frac{1}{2}\times$, $2\times$, $4\times$, and 17 $8{\times}\mathrm{CO}_2,$ using two state-of-the-art fully coupled atmosphere-ocean-sea-ice-land models. In 18 both models, under abrupt CO_2 forcing, we find an asymmetric response in surface tem-19 perature and $S_{\rm G}$. The surface global warming at $8 \times {\rm CO}_2$ is more than one third larger 20 than the corresponding cooling at $1/8 \times CO_2$, and S_G is CO_2 dependent, increasing non-21 monotonically from $1/8 \times CO_2$ to $8 \times CO_2$. We find similar CO_2 dependence in the transient 22 runs, forced with -1%yr⁻¹CO₂ and +1%yr⁻¹CO₂ up to 1/8×CO₂ and 8×CO₂, respectively. 23 The non-logarithmic radiative forcing – not the changing feedbacks – primarily explains the 24 dependence of $S_{\rm G}$ on CO₂, particularly at low CO₂ levels. The changing feedbacks, however, 25 explain $S_{\rm G}$'s non-monotonic behavior. 26

27 Plain Language Summary

Equilibrium climate sensitivity (ECS) is the global mean warming after doubling CO_2 28 concentrations from those of the year 1850. Since CO_2 levels will likely surpass a doubling, 29 it is crucial to know whether the amount of warming per CO_2 doubling (which we refer to 30 as the effective climate sensitivity, $S_{\rm G}$) is constant with each CO₂ doubling or whether it 31 changes. Necessary conditions for constant $S_{\rm G}$ are 1) the radiative forcing introduced to the 32 climate system from each CO_2 doubling is constant and 2) the net radiative feedback does 33 not change with CO_2 levels. Current literature shows that S_G will increase in a warmer 34 world because the radiative feedback will change. We here investigate $S_{\rm G}$ in both warmer 35 and colder worlds, and confirm that $S_{\rm G}$ increases at higher ${\rm CO}_2$ concentrations. However, 36 we show that changes in the radiative forcing with each CO₂ doubling are mainly responsible 37 for $S_{\rm G}$ increase with ${\rm CO}_2$, not feedback changes. 38

39 1 Introduction

Equilibrium climate sensitivity (ECS) is the global mean surface temperature change 40 after the doubling of CO_2 concentrations from pre-industrial (PI) levels. ECS is perhaps 41 the most important metric in climate science, and it has been extensively investigated in 42 the literature (Sherwood et al., 2020). An important question is whether the amount of 43 warming for each CO_2 doubling (which we refer to as the effective climate sensitivity, S_G) 44 is constant or not (i.e., whether it is CO_2 dependent). Necessary conditions for a constant 45 $S_{\rm G}$ are 1) that the radiative forcing of the climate system for each CO₂ doubling is constant 46 and 2) that the net radiative feedback does not change with CO_2 levels. This question has 47 been investigated in many modeling studies (Meraner et al., 2013; Mauritsen et al., 2019; 48 Sherwood et al., 2020; Bloch-Johnson et al., 2021), which have reported that $S_{\rm G}$ is indeed 49 CO_2 dependent. Most of these studies find that S_G increases at higher CO_2 levels and that 50 the change in feedbacks, not the change in CO₂ radiative forcing, is the primary driver of 51 $S_{\rm G}$ CO₂ dependence. 52

An alternative approach to using climate models to investigate the dependency of $S_{\rm G}$ on 53 CO_2 is to seek observational constraints from reconstructions of past climates. In particular, 54 most studies conclude that $S_{\rm G}$ inferred from paleoclimate records does depend on $\rm CO_2$ 55 (Caballero & Huber, 2013; Anagnostou et al., 2016; Shaffer et al., 2016; Friedrich et al., 56 2016; Farnsworth et al., 2019; Zhu et al., 2019; Anagnostou et al., 2020), although a few 57 studies disagree (e.g., Martínez-Botí et al. (2015)). An ideal period to study the $S_{\rm G}$ from 58 past climate is the Last Glacial Maximum (LGM), approximately 21 kyr ago, when the 59 Earth was roughly 6K colder than PI conditions (Tierney et al., 2020). The LGM period 60 is of particular interest because the climate system was in a quasi-equilibrium state, the 61 climate forcings were large, and the surface temperature reconstructions are relatively well-62 constrained (Zhu & Poulsen, 2021). However, when considering the LGM and other periods 63 in Earth's past, one needs to account for how the feedbacks in those past climate states differ 64

from the feedbacks operating in the modern state: hence the challenge in using paleoclimatebased estimates to constrain $S_{\rm G}$.

While modeling and paleoclimatic evidence suggest that $S_{\rm G}$ depends on CO₂, a system-67 atic exploration of the symmetry over a wide range of CO_2 forcing has yet to be performed. 68 69 The question thus remains: is the climate system response symmetric across a broad range of positive (warm) and negative (cold) CO₂ forcings? The question of symmetry was examined 70 recently by Chalmers et al. (2022), who compared $1/2 \times$ and $2 \times CO_2$ simulations performed 71 with the CESM1-CAM5 model, and found that global surface temperatures warm 20% more 72 than they cool. Roughly 50% of this asymmetry was shown to derive from an asymmetry 73 in CO₂ radiative forcing; the rest was associated with differences in feedbacks which, inter-74 estingly, were found not to be related to clouds. Whether this result holds over a broader 75 range of CO₂ forcing, and whether it is model dependent remains an open question. 76

We here address these questions using a much broader range of both abrupt and tran-77 sient CO₂ forcings, and do so with two different climate models. Specifically, CO₂ is varied 78 from $1/8 \times$ to $8 \times PI$ values, to test the CO₂ symmetry of the climate system response to 79 comparable increased and decreased CO_2 . While we are not the first ones to perform such 80 symmetric CO₂ runs (Hansen et al., 2005; Colman & McAvaney, 2009; Russell et al., 2013; 81 Chalmers et al., 2022), here we explore 1) a larger CO_2 range than previously considered, 82 2) we do so using two different fully coupled climate models and, most importantly, 3) we 83 perform the experiments with both abrupt and transient CO_2 runs. 84

⁸⁵ Overall we confirm the asymmetric response in surface temperature: the climate system ⁸⁶ warms *more* with consecutive CO₂ doublings (2×, 4×, and 8×CO₂) than it cools with ⁸⁷ consecutive CO₂ halvings ($1/2 \times$, $1/4 \times$, and $1/8 \times CO_2$). This asymmetry is also reflected in S_G , ⁸⁸ which *increases* at higher CO₂ concentrations, consistent with previous studies. Surprisingly, ⁸⁹ we find that the non-logarithmic dependence of CO₂ radiative forcing (i.e., the fact that CO₂ ⁹⁰ radiative forcing increases more rapidly than the log of the CO₂ concentration) is primarily ⁹¹ responsible for this asymmetric response, and not the changes in radiative feedbacks.

92 2 Methods

93 2.1 Models Used

We use two fully coupled atmosphere-ocean-sea-ice-land models: the large ensemble version of the Community Earth System Model (CESM-LE) and the NASA Goddard Insti-95 tute for Space Studies Model E2.1-G (GISS-E2.1-G). CESM-LE comprises the Community 96 Atmosphere Model version 5 (CAM5, 30 vertical levels), and parallel ocean program version 97 2 (POP2, 60 vertical levels) with approximately 1° horizontal resolution in all model com-98 ponents (Kay et al., 2015). GISS-E2.1-G is a 40-level atmospheric model with a resolution 99 of $2^{\circ} \times 2.5^{\circ}$ latitude/longitude, coupled to a 1° horizontal resolution 40-level GISS Ocean 100 v1 (GO1) (Kelley et al., 2020). This configuration of the GISS model contributed to the 101 CMIP6 project under the label "GISS-E2-1-G". We show CESM-LE results in the main text, 102 and some GISS-E2.1-G results in supplementary information (SI) to corroborate CESM-LE 103 findings. 104

105

2.2 Abrupt $n \times CO_2$ Experiments

We perform a series of abrupt CO_2 forcing runs using both models, subject to $1/8\times$, $1/4\times$, $1/2\times$, $2\times$, $4\times$, and $8\times CO_2$ forcings, with all other trace gases, ozone concentrations, aerosols, and other forcings fixed at PI values. Following CMIP6 protocol for $4\times CO_2$ runs, we integrate all runs to 150 years starting from PI conditions. We contrast these to a PI control run to calculate the response.

For each model, we estimate the effective radiative forcing (ERF) with a companion series of CO₂ experiments, as per Forster et al. (2016), with prescribed PI sea surface temperatures (SSTs) and sea-ice concentrations (SICs). These experiments are 30-yearlong. We calculate ERF as the difference between the global mean net top of the atmosphere (TOA) flux between PI and $n \times CO_2$ in these prescribed SSTs and SICs experiments. We do not here adjust for land warming simply because, in our ERF calculations, the surface temperature response in the fixed SSTs and SICs simulations is minimal (Smith et al., 2020),

- ¹¹⁸ but we have verified that the adjustment does not change our results (see Figure S3).
- 119

2.3 Transient Experiments

In addition to the abrupt CO_2 runs, we also perform transient CO_2 runs with the 120 CESM-LE model. We start from PI conditions (same as in the abrupt CO_2 forcing), and 121 we increase CO_2 at +1%yr⁻¹ for the "warm" case for 215 years (slightly above $8\times CO_2$) and 122 -1%yr⁻¹ for the "cold" case for 215 years (slightly below $1/8 \times CO_2$). We estimate transient 123 effective radiative forcing as in the abrupt experiments, by running companion simulations 124 with specified SSTs and SICs set to PI values (Forster et al., 2016), while ramping up CO₂ 125 at rates of +1%yr⁻¹ and -1%yr⁻¹. We contrast all variables to PI values to compute the 126 response. 127

128

2.4 Climate Sensitivity & Feedbacks

We define effective climate sensitivity $S_{\rm G}$ as the x-intercept of the Gregory regression (Gregory et al., 2004) for each abrupt $n \times {\rm CO}_2$ run using the following equation:

$$S_{\rm G} = \left| \frac{F_{\rm y-int}(n \times {\rm CO}_2)}{\lambda(n \times {\rm CO}_2) \cdot \log_2 n} \right| \tag{1}$$

We find the radiative forcing F_{y-int} as the y-intercept and the net feedback parameter λ 129 as the slope from the Gregory regression (see Figure S1) where we regress the net TOA 130 radiative imbalance against the global mean surface temperature response for years 1-150. 131 In order to compare $S_{\rm G}$ for different CO₂ doubling / halving, we divide by $\log_2 n$ (assuming a 132 logarithmic CO_2 forcing) and take the absolute value in Equation 1. Note that our definition 133 of the effective climate sensitivity $S_{\rm G}$ is a generalization of the more common definition of 134 effective climate sensitivity (which is typically defined as per Equation 1 but with n = 2). 135 To check for the possibility that λ and $S_{\rm G}$ may be strongly affected by the "pattern effect", 136 we have repeated the calculations by regressing years 21-150 only, and our main results were 137 not changed. 138

To calculate the individual feedbacks λ_i , we use radiative kernels (K_x) from both 139 Pendergrass et al. (2018) and Huang et al. (2017) to quantify the sensitivity of TOA radia-140 tion imbalance (ΔR) to changes in surface and atmospheric temperature (T), water vapor 141 (q), and surface albedo (α) (Soden et al., 2008; Shell et al., 2008). For each year of the 150-142 year experiment, we multiply the spatially-resolved kernels by the climate field anomalies 143 $(R_x = K_x \cdot \Delta x, \text{ where } x \text{ is } T, q, \alpha), \text{ and then vertically integrate (for atmospheric temper-$ 144 ature and water vapor) up to the tropopause. We define the tropopause as 100 hPa at the 145 equator, 300 hPa at the poles, and in between, it varies by the cosine of the latitude (Soden 146 & Held, 2006). Lastly, we regress these quantities on the surface temperature response to 147 find the radiative feedbacks as the regression slope. The cloud feedbacks are computed via 148 the residual method (Soden & Held, 2006) as follows. First, we subtract effective radiative 149 forcing and the temperature, water vapor, and surface albedo radiative fluxes from the TOA 150 net radiative flux, resulting in $\Delta R_{\text{cloud}} = \Delta R - \text{ERF} - \sum \Delta R_x$. Then, we regress ΔR_{cloud} 151 onto ΔT_s anomalies and define the corresponding slope as the cloud feedback. Lastly, we 152 find shortwave (SW) and longwave (LW) components of the cloud feedback by considering 153 the radiative changes in LW and SW components separately. 154

In the transient runs, we estimate the net feedback parameter λ_{tr} following Rugenstein and Armour (2021) (see $\lambda_{eff1pct}$ in their Figure 1d) with the expression:

$$\lambda_{\rm tr} = -\frac{{\rm ERF}(t) - \Delta R(t)}{\Delta T_s(t)} \tag{2}$$

 $\Delta R(t)$ is the net TOA radiative imbalance, and $\Delta T_s(t)$ is the global mean surface temperature response in the transient runs at year t. $\Delta R(t)$ and $\Delta T_s(t)$ are 30-year moving averages of the respective terms. Note that we use different definitions for the feedback parameter in the abrupt and transient simulations.

159 **3 Results**

160

3.1 Abrupt CO₂ Experiments

We start by examining the global mean surface temperature response $(|\Delta T_s|)$ timeseries 161 for the abrupt CO_2 runs (Figure 1). We contrast – in panels a, b, and c – the timeseries 162 of each corresponding "warm" $(2\times, 4\times, \text{ and } 8\times \text{CO}_2)$ and "cold" simulation $(1/2\times, 1/4\times, 1/4\times$ 163 and $1/8 \times CO_2$ by taking the absolute value of the response from PI: note that the $|\Delta T_s|$ 164 in the "warm" case is always stronger than the "cold" case. In particular, we find 20%165 more warming at 2× than cooling at $1/2 \times CO_2$ (Figure 1a), 15% more at 4× than $1/4 \times CO_2$ 166 (Figure 1b), and 41% more at $8 \times \text{than } \frac{1}{8} \times \text{CO}_2$ (Figure 1c). The asymmetry in $|\Delta T_s|$ is 167 amplified at higher CO₂ forcing, and largest in the $1/8 \times CO_2$ vs. $8 \times CO_2$ case (Figure 1c). 168 The asymmetry is reduced at $4 \times CO_2$ vs. $\frac{1}{4} \times CO_2$ due to changes in ocean heat transport 169 which result in a formation of the North Atlantic Warming Hole in this model at $4 \times CO_2$ 170 (see more details in Mitevski et al. (2021)). 171

To quantify the timescale of the asymmetry in $|\Delta T_s|$ between "warm" and "cold" cases, we define the asymmetry between "warm" and "cold" cases as

$$\Delta_a X = |\Delta X(\text{warm})| - |\Delta X(\text{cold})| \tag{3}$$

where X is any climate variable (e.g., T_s), and subscript *a* refers to "asymmetry" (Figure 1d). In particular, we find that the asymmetry emerges rapidly in the first ten years (e.g., 90% at 8×CO₂). Relative to the (slower) response associated with SST-driven feedbacks, the asymmetry appears quickly, suggesting that it might be due to radiative changes.

¹⁷⁶ Next, we calculate effective climate sensitivity $S_{\rm G}$ from the Gregory regression (Equa-¹⁷⁷tion 1), and plot it as percentage change from 2×CO₂ (black line, Figure 2a). $S_{\rm G}$ is CO₂ ¹⁷⁸dependent and increases with CO₂ concentration: at 1/8×CO₂, it is more than 20% *lower* ¹⁷⁹than 2×CO₂ values, and at 8×CO₂, it is around 5% *higher* than at 2×CO₂. CO₂ dependent ¹⁸⁰ $S_{\rm G}$ is possible if either the effective radiative forcing (ERF) or the net feedback parameter (λ) change with CO₂. To individually test the relative importance of ERF and λ , we calculate the climate sensitivity in two different ways.

First, to examine the dependence of climate sensitivity on ERF, we calculate climate sensitivity as $S_{\rm F}$ using the expression:

$$S_{\rm F} = \left| \frac{{\rm ERF}(n \times {\rm CO}_2)}{\lambda(2 \times {\rm CO}_2) \cdot \log_2 n} \right| \tag{4}$$

where ERF is derived from the $n \times CO_2$ fixed SSTs and SICs runs, and λ (slope from Gregory Regression) is held constant at the $2 \times CO_2$ value. As seen in Figure 2a, we find that S_F (blue line) changes in tandem with S_G (black line), which reinforces the fact that changes in ERF explain the changes in S_G .

Second, to assess whether changes in feedback strength also contribute to $S_{\rm G}$, we calculate climate sensitivity as S_{λ} :

$$S_{\lambda} = \left| \frac{\text{ERF}(2 \times \text{CO}_2)}{\lambda(n \times \text{CO}_2)} \right|$$
(5)

where λ is calculated at each $n \times CO_2$ and ERF is held constant at $2 \times CO_2$ value. As seen in 187 Figure 2a, S_{λ} (red) changes in the opposite direction than $S_{\rm G}$ (black) for CO₂ values lower 188 than $2 \times CO_2$. This suggests that changes in λ are not the main driver of the S_G dependence 189 on CO₂. However, it is important to note that for CO₂ values higher than $2 \times CO_2$, we 190 find λ non-monotonically increasing to $8 \times CO_2$, which can be linked to the corresponding 191 non-monotonic behavior of $S_{\rm G}$. We find qualitatively similar results using the GISS-E2.1-G 192 model (Figure S2a), confirming that ERF is the primary driver of the dependence of $S_{\rm G}$ on 193 CO_2 . 194

¹⁹⁵ Next, we correlate $S_{\rm G}$ with $1/\lambda$ (Figure 2c) and ERF (Figure 2d) across all abrupt CO₂ ¹⁹⁶ experiments from $1/8 \times$ to $8 \times {\rm CO}_2$ to examine whether feedbacks or forcing better correlate ¹⁹⁷ with changes in $S_{\rm G}$. Overall, we find little correlation between $S_{\rm G}$ and $1/\lambda$ (r=-0.44) and ¹⁹⁸ a very strong correlation between $S_{\rm G}$ and ERF (r=0.91). Similarly, a high correlation ¹⁹⁹ between $S_{\rm G}$ and ERF is found in the GISS-E2.1-G model (Figure S2d). This strengthens our ²⁰⁰ conclusions from Figure 2a that the changes in ERF are driving the $S_{\rm G}$ increase. However, ²⁰¹ if one considers warm cases, one sees a strong correlation between $S_{\rm G}$ and $1/\lambda$, as indicated ²⁰² earlier. This is in agreement with previous studies (Meraner et al., 2013; Bloch-Johnson et ²⁰³ al., 2021), which reported that feedback changes are important for the dependence of $S_{\rm G}$ ²⁰⁴ on CO₂. However, over a broad range of CO₂ forcing, including colder climates, that is not ²⁰⁵ the case: changes in ERF are more important than feedback changes.

Given the aforementioned importance of ERF in driving the changes in $S_{\rm G}$, we next 206 look in more detail at ERF, calculated from fixed SSTs and SICs runs, following Forster et 207 al. (2016), from $1/8 \times$ to $8 \times CO_2$ (dark blue bars, Figure 2b). If ERF were scaled simply 208 with the logarithm of CO_2 concentration, then the dark blue bars would be identical for 209 all CO_2 values. However, we see that ERF grows more than logarithmically with CO_2 . We 210 find a similar but weaker non-logarithmic behavior in the instantaneous radiative forcing 211 (IRF) reported in Byrne and Goldblatt (2014), which we obtain by linearly interpolating 212 their line-by-line radiative calculations (SI file "text03.txt" in Byrne and Goldblatt (2014)) 213 and plot with light blue bars in Figure 2b. We also compare our ERF calculations with 214 the proposed stratospherically adjusted radiative forcing fit in Etminan et al. (2016) for the 215 warming case only (since it is not valid for low CO_2 values), and it appears both are in 216 agreement. 217

A limitation to our ERF calculation approach is that we only fix the SSTs and SICs 218 in the simulation, but not the land temperatures. Fixing the land temperatures has been 219 shown to increase ERF in warmer climates even more than when only SSTs and SICs are 220 fixed (Andrews et al., 2021). To account for this, we removed the land and sea-ice warming 221 effects in our ERF calculations, following Equation 1 in Hansen et al. (2005) as shown in 222 Figure S3, and found that the correction (dashed blue lines) leads, if anything, to a stronger 223 non-logarithmic ERF. Hence, incorporating fixed land temperatures leads to ERF increasing 224 even more rapidly than the log of CO_2 concentration; this strengthens our argument that 225 the $S_{\rm G}$ dependence on ${\rm CO}_2$ is due to non-logarithmic ${\rm CO}_2$ radiative forcing. 226

Next, we perform a standard decomposition of λ into individual radiative feedbacks λ_i . 227 The summation of individual feedbacks $(\sum \lambda_i)$ is shown in Figure 3a (blue). $\sum \lambda_i$ follows 228 closely the net feedback calculated from the Gregory regression (black). We perform the 229 decomposition using two radiative kernels from Pendergrass et al. (2018) and Huang et al. 230 (2017), and we find minimal sensitivity to the choice of kernel (Figure S4). The individual 231 feedbacks, plotted as differences from $2 \times CO_2$ values, from the Pendergrass et al. (2018) 232 kernels are shown in Figure 3b. We see a clear signal in the lapse rate feedback, which 233 weakens the net feedback in the "cold" case and strengthens it in the "warm" case. The 234 longwave cloud feedback has clear global surface temperature dependence, increasing with 235 CO_2 monotonically for all CO_2 values. However, in general, we find no clear pattern in the 236 changes in individual feedbacks that would sufficiently explain the overall feedbacks CO_2 237 dependence. In addition, the changes in feedbacks in the GISS-E2.1-G model (Figure S5) 238 are qualitatively different from those in the CESM-LE model (Figure 3). Since our models 239 do not agree on the changes in individual feedbacks across the CO_2 range, and since we 240 showed that feedback changes are strongly not correlated with changes in $S_{\rm G}$ (Figure 2c), 241 we do not explore further the mechanisms driving feedback changes in the individual models. 242

243

3.2 Transient CO₂ runs

The abrupt CO_2 forcing runs show that the effective climate sensitivity increases with 244 CO₂, and that the non-logarithmic nature of the ERF is largely responsible for this behavior. 245 Now we seek to determine whether the same behavior is also seen in runs with transient 246 CO_2 forcing, which are much more realistic. Our transient runs are forced, starting from 247 PI, with CO₂ concentrations increasing at the rate of $1\% yr^{-1}$ and decreasing at $1\% yr^{-1}$. As 248 seen in Figure 4a, the surface temperature response $|\Delta T_s|$ is stronger in the warming (red) 249 than in the cooling (blue) case. Note that the responses computed from the last 50 years 250 of the abrupt simulations at the corresponding CO_2 value (dots) are a good predictor of 251 the response in the transient runs, demonstrating that the results of the abrupt runs carry 252

over to the transient runs. Together with the surface temperature, ERF also changes more
 rapidly in the warming than the cooling experiments, as seen in Figure 4b.

Next, we explore how the transient feedbacks (λ_{tr} , see Equation 2) change in the "warm" 255 and "cold" cases (Figure 4c). The feedbacks timeseries are noisy at the beginning of the 256 simulation, but in the last thirty years, the warm case shows 10% weaker (more positive) 257 feedbacks compared to the cold case. The 10% difference indicates that $S_{\rm G}$ in the warming 258 case should be higher than in the colder case. However, a robust difference in feedbacks 259 only appears around year 130, whereas the $|\Delta T_s|$ asymmetry emerges much earlier, around 260 year 60. This difference in the temporal evolution of the feedbacks, relative to the evolution 261 of the forcing and $S_{\rm G}$, adds additional strong evidence that the feedbacks are not driving 262 the $|\Delta T_s|$ asymmetry. 263

Finally, as for the abrupt CO₂ runs, we correlate the asymmetry in global mean surface temperature response $\Delta_a T_s$ and effective radiative forcing $\Delta_a \text{ERF}$ (Figure 4d). We find a correlation of r=0.96, suggesting that the asymmetric changes in ERF drive the $|\Delta T_s|$ asymmetry between the "cold" and "warm" cases. As we can see in Figure 4c, the transient feedbacks are contributing to the $|\Delta T_s|$ asymmetry at the end of the run, but their impact is much smaller than the one from ERF.

²⁷⁰ 4 Summary and Discussion

We have explored the effective climate sensitivity $(S_{\rm G})$ dependence on CO₂ with abrupt and transient CO₂ experiments spanning the range $1/8 \times$ to $8 \times$ CO₂ using two distinct CMIPclass climate models. First, we have found a considerable asymmetry in surface temperature response, with the climate system warming more than cooling for identical factors used to increase and decrease the CO₂ concentration, starting from a pre-industrial climate. Second, we showed that the asymmetry is due to the non-logarithmic nature of CO₂ radiative forcing, not the feedback changes. Upon decomposing the total feedback into individual feedbacks, we found no simple explanation relating specific feedback changes to the changes in $S_{\rm G}$ across the $1/8 \times$ to $8 \times {\rm CO}_2$ forcing range examined in this study.

Most studies to date have focused on the role of feedbacks in explaining the dependency 280 of $S_{\rm G}$ on ${\rm CO}_2$, with relatively little attention placed on radiative forcing. Indeed, consistent 281 with these studies, we found that for warmer climates $(> 2 \times CO_2)$, feedbacks are important 282 for determining the changing behavior of $S_{\rm G}$ with CO₂. However, by considering a broader 283 range of CO_2 forcings, we have shown here that for cases in which CO_2 concentrations are 284 less than PI values, non-logarithmic ERF is the primary driver of $S_{\rm G}$ changes. Our goal 285 here has been to isolate the role of CO_2 alone, and we have set all other forcings to PI 286 values. Needless to say, we have ignored the "slow" feedbacks present in cold climates (e.g., 287 the LGM), such as the formation of land ice sheets. 288

The results with our abrupt runs have been shown to be robust with two climate 289 models for simulations up to 150 years. One may argue that our runs are not equilibrated, 290 and we agree with that caveat. However, we have found that the asymmetry and the key 291 role of ERF are also robustly seen in the transient runs. Because of this, we expect that 292 prolonging the abrupt simulation for more than 150 years will yield similar results. In 293 any case, it will be important to repeat similar experiments with longer simulations as in 294 LongRunMIP (Rugenstein et al., 2019) to confirm that this asymmetry is still present at 295 long times closer to equilibration. Finally, our findings indicate that future studies should 296 place more emphasis on accurately quantifying the changes in effective radiative forcing 297 when studying the effective climate sensitivity dependency on CO_2 . The feedbacks appear 298 unable to explain the cooling phase. 299

5 Open Research

The CESM-LE model data can be obtained at https://doi.org/10.5281/zenodo .5725084 and GISS-E2.1-G model data at https://doi.org/10.5281/zenodo.3901624.

303 Acknowledgments

We thank Jennifer Kay (University of Colorado Boulder) for helping with the feedback cal-304 culations, Ian Eisenman (UC San Diego) and Kyle Armour (University of Washington) for 305 suggesting the radiative forcing fit from Byrne and Goldblatt (2014), and two anonymous 306 reviewers for constructive comments that improved the paper. This work was supported 307 by NASA FINESST Grant 80NSSC20K1657. The work of LMP is supported, in part, by a 308 grant from the US National Science Foundation to Columbia University. We thank the high-309 performance computing resources provided by NASA's Advanced Supercomputing (NAS) 310 Division and the NASA Center for Climate Simulation (NCCS). Part of the computing and 311 data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), 312 were provided by the Computational and Information Systems Laboratory at National Cen-313 ter for Atmospheric Research (NCAR). 314

315 References

- Anagnostou, E., John, E. H., Babila, T. L., Sexton, P. F., Ridgwell, A., Lunt, D. J., ...
 Foster, G. L. (2020, Sep 07). Proxy evidence for state-dependence of climate sensitivity
 in the eocene greenhouse. *Nature Communications*, 11(1), 4436. doi: https://doi.org/
 10.1038/s41467-020-17887-x
- Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., ...
 Pearson, P. N. (2016, May 01). Changing atmospheric co2 concentration was the
 primary driver of early cenozoic climate. *Nature*, 533(7603), 380-384. doi: https://
 doi.org/10.1038/nature17423
- Andrews, T., Smith, C. J., Myhre, G., Forster, P. M., Chadwick, R., & Ackerley, D. (2021). Effective radiative forcing in a gcm with fixed surface temperatures. *Journal* of Geophysical Research: Atmospheres, 126(4), e2020JD033880. doi: https://doi.org/ 10.1029/2020JD033880
- Bloch-Johnson, J., Rugenstein, M., Stolpe, M. B., Rohrschneider, T., Zheng, Y., & Gregory,
- J. M. (2021). Climate sensitivity increases under higher co2 levels due to feedback

330	temperature dependence. Geophysical Research Letters, $48(4)$, e2020GL089074. doi:
331	https://doi.org/10.1029/2020GL089074
332	Byrne, B., & Goldblatt, C. (2014). Radiative forcing at high concentrations of well-mixed
333	greenhouse gases. Geophysical Research Letters, 41(1), 152-160. doi: https://doi.org/
334	10.1002/2013GL058456
335	Caballero, R., & Huber, M. (2013). State-dependent climate sensitivity in past warm
336	climates and its implications for future climate projections. Proceedings of the Na-
337	tional Academy of Sciences, $110(35)$, $14162-14167$. doi: https://doi.org/10.1073/
338	pnas.1303365110
339	Chalmers, J., Kay, J. E., Middlemas, E., Maroon, E., & DiNezio, P. (2022). Does disabling
340	cloud radiative feedbacks change spatial patterns of surface greenhouse warming and
341	cooling? Journal of Climate. doi: https://doi.org/10.1175/JCLI-D-21-0391.1
342	Colman, R., & McAvaney, B. (2009). Climate feedbacks under a very broad range of forcing.
343	Geophysical Research Letters, 36(1). doi: https://doi.org/10.1029/2008GL036268
344	Etminan, M., Myhre, G., Highwood, E. J., & Shine, K. P. (2016). Radiative forcing of
345	carbon dioxide, methane, and nitrous oxide: A significant revision of the methane
346	radiative forcing. Geophysical Research Letters, $43(24)$, 12,614-12,623. doi: https://
347	doi.org/10.1002/2016GL071930
348	Farnsworth, A., Lunt, D. J., O'Brien, C. L., Foster, G. L., Inglis, G. N., Markwick, P.,
349	Robinson, S. A. (2019). Climate sensitivity on geological timescales controlled
350	by nonlinear feedbacks and ocean circulation. Geophysical Research Letters, $46(16)$,
351	9880-9889. doi: https://doi.org/10.1029/2019GL083574
352	Forster, P., Richardson, T., Maycock, A. C., Smith, C. J., Samset, B. H., Myhre, G.,
353	Schulz, M. (2016). Recommendations for diagnosing effective radiative forcing from
354	climate models for cmip6. Journal of Geophysical Research: Atmospheres, $121(20)$,
355	12,460-12,475. doi: https://doi.org/10.1002/2016JD025320
356	Friedrich, T., Timmermann, A., Tigchelaar, M., Elison Timm, O., & Ganopolski, A. (2016).
357	Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci-

	manuscript submitted to Geophysical Research Letters
358	ence Advances, $2(11)$. doi: https://doi.org/10.1126/sciadv.1501923
359	Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B.,
360	Williams, K. D. (2004). A new method for diagnosing radiative forcing and
361	climate sensitivity. Geophysical Research Letters, 31(3). doi: https://doi.org/10.1029/
362	2003GL018747
363	Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Zhang, S.
364	(2005). Efficacy of climate forcings. Journal of Geophysical Research: Atmospheres,
365	110(D18). doi: https://doi.org/10.1029/2005JD005776
366	Huang, Y., Xia, Y., & Tan, X. (2017). On the pattern of co2 radiative forcing and poleward
367	energy transport. Journal of Geophysical Research: Atmospheres, 122(20), 10,578-
368	10,593. doi: https://doi.org/10.1002/2017JD027221
369	Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Vertenstein, M.
370	(2015, 09). The Community Earth System Model (CESM) Large Ensemble Project: A
371	Community Resource for Studying Climate Change in the Presence of Internal Climate
372	Variability. Bulletin of the American Meteorological Society, $96(8)$, 1333-1349. doi:
373	https://doi.org/10.1175/BAMS-D-13-00255.1
374	Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L.,
375	Yao, MS. (2020). Giss-e2.1: Configurations and climatology. Journal of Advances
376	in Modeling Earth Systems, $12(8)$, e2019MS002025. doi: https://doi.org/10.1029/
377	2019 MS002025
378	Martínez-Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt,

379 380

381

nt, D. J., ... Schmidt, D. N. (2015). Plio-pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature, 518(7537), 49-54. doi: https://doi.org/10.1038/ nature14145

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., ... Roeckner, 382 E. (2019). Developments in the mpi-m earth system model version 1.2 (mpi-esm1.2) 383 and its response to increasing co2. Journal of Advances in Modeling Earth Systems, 384 11(4), 998-1038. doi: https://doi.org/10.1029/2018MS001400 385

-16-

386	Meraner, K., Mauritsen, T., & Voigt, A. (2013). robust increase in equilibrium climate
387	sensitivity under global warming. geophysical research letters, $40(22)$, 5944-5948. doi:
388	https://doi.org/10.1002/2013 gl058118
389	Mitevski, I., Orbe, C., Chemke, R., Nazarenko, L., & Polvani, L. M. (2021). Non-monotonic
390	response of the climate system to abrupt co2 forcing. Geophysical Research Letters,
391	48(6), e2020GL090861. doi: https://doi.org/10.1029/2020GL090861
392	Pendergrass, A. G., Conley, A., & Vitt, F. M. (2018). Surface and top-of-atmosphere
393	radiative feedback kernels for cesm-cam 5. Earth System Science Data, $10(1)$, 317–
394	324. doi: https://doi.org/10.5194/essd-10-317-2018
395	Rugenstein, M., & Armour, K. C. (2021). Three flavors of radiative feedbacks and their im-
396	plications for estimating equilibrium climate sensitivity. $Geophysical Research Letters$,
397	48(15), e2021GL092983. doi: https://doi.org/10.1029/2021GL092983
398	Rugenstein, M., Bloch-Johnson, J., Abe-Ouchi, A., Andrews, T., Beyerle, U., Cao, L.,
399	\ldots Yang, S. (2019). Longrunmip: Motivation and design for a large collection of
400	millennial-length aogcm simulations. Bulletin of the American Meteorological Society,
401	100(12), 2551 - 2570. doi: https://doi.org/10.1175/BAMS-D-19-0068.1
402	Russell, G. L., Lacis, A. A., Rind, D. H., Colose, C., & Opstbaum, R. F. (2013). Fast
403	atmosphere-ocean model runs with large changes in co2. Geophysical Research Letters,
404	40(21),5787-5792.doi: https://doi.org/10.1002/2013GL056755
405	Shaffer, G., Huber, M., Rondanelli, R., & Pepke Pedersen, J. O. (2016). Deep time evidence
406	for climate sensitivity increase with warming. Geophysical Research Letters, $43(12)$,
407	6538-6545. doi: https://doi.org/10.1002/2016GL069243
408	Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008). Using the radiative kernel technique
409	to calculate climate feedbacks in near's community atmospheric model. Journal of
410	Climate, 21(10), 2269 - 2282. doi: https://doi.org/10.1175/2007JCLI2044.1
411	Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves,
412	J. C., Zelinka, M. D. (2020). An assessment of earth's climate sensitivity using
413	multiple lines of evidence. Reviews of Geophysics. doi: $https://doi.org/10.1029/$

414	2019RG000678

415	Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Forster,
416	P. M. (2020). Effective radiative forcing and adjustments in cmip6 models. At -
417	mospheric Chemistry and Physics, 20(16), 9591–9618. doi: https://doi.org/10.5194/
418	acp-20-9591-2020

- Soden, B. J., & Held, I. M. (2006). An assessment of climate feedbacks in coupled
 ocean-atmosphere models. *Journal of Climate*, 19(14), 3354 3360. doi: https://
 doi.org/10.1175/JCLI3799.1
- Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008).
 Quantifying climate feedbacks using radiative kernels. *Journal of Climate*, 21(14),
 3504 3520. doi: https://doi.org/10.1175/2007JCLI2110.1
- Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., & Poulsen, C. J. (2020,
 Aug 01). Glacial cooling and climate sensitivity revisited. *Nature*, 584(7822), 569-573.
 doi: https://doi.org/10.1038/s41586-020-2617-x
- Zhu, J., & Poulsen, C. J. (2021). Last glacial maximum (lgm) climate forcing and ocean
 dynamical feedback and their implications for estimating climate sensitivity. *Climate* of the Past, 17(1), 253-267. Retrieved from https://cp.copernicus.org/articles/
 17/253/2021/ doi: https://doi.org/10.5194/cp-17-253-2021
- Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019). Simulation of eocene extreme warmth
 and high climate sensitivity through cloud feedbacks. *Science Advances*, 5(9). doi:
 https://doi.org/10.1126/sciadv.aax1874

-18-

Figure 1. Timeseries of surface temperature response ($|\Delta T_s|$) for abrupt CO₂ runs with CESM-LE model. a) 2×CO₂ and $^{1}/_{2}$ ×CO₂, b) 4×CO₂ and $^{1}/_{4}$ ×CO₂, c) 8×CO₂ and $^{1}/_{8}$ ×CO₂ runs, and d) surface temperature asymmetry ($\Delta_a T_s$) between "warm" and "cold" cases.

Figure 2. Percent change (from $2 \times CO_2$) for abrupt CO_2 runs with CESM-LE model of: a) climate sensitivity as x-intercept of Gregory Regression (black, S_G), as a function of ERF (blue, S_F), and as a function of $1/\lambda$ (red, S_λ); b) effective radiative forcing (dark blue, ERF), instantaneous radiative forcing (IRF) fit from Byrne and Goldblatt (2014) (light blue), and stratospherically adjusted radiative forcing (RF) fit from Etminan et al. (2016) (cyan). c) Percent change of S_G vs. $1/\lambda$ (red) and d) S_G vs. ERF (black). r is the Pearson correlation coefficient.

Figure 3. Feedbacks for abrupt CO₂ runs with CESM-LE model are shown as a difference from to 2×CO₂. a) Total feedback calculated with Gregory Regression years 1-150 (black), Pendergrass et al. (2018) kernels for CESM1-CAM5 (blue solid), and Huang et al. (2017) kernels (blue dashed).
b) Individual feedbacks calculated with Pendergrass et al. (2018) kernels.

Figure 4. Transient runs annual timeseries with CESM-LE of a) the absolute value of surface temperature response ($|\Delta T_s|$), b) effective radiative forcing (|ERF|), c) net feedback (λ_{tr}), and d) correlation between asymmetries in $\Delta_a T_s$ and $\Delta_a \text{ERF}$. Responses from abrupt simulations are shown as dots.