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Traditional Manufacturing...Forging to final assembly
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A rocket combustion chamber case study for AM
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Manufacturing Approach

complete a final multi-alloy
chamber assembly

L-PBF GRCop-84 liner and EBW-
DED Inconel 625 jacket

Category Traditional Manufacturing Initial AM Development Evolving AM Development
Multiple forgings, Four-piece assembly using Three-piece assembly with AM
machining, slotting, and multiple AM processes; limited machine sizerestrictions
Designand joining operations to by AM machine size. Two-piece reduced and industrialized.

Multi-alloy processing; one-
piece L-PBF GRCop-42 liner and
Inconel 625 LP-DED jacket

Schedule (Reduction)

18 months

8 months (56%)

5 months (72%)

Cost (Reduction)

$310,000

$200,000 (35%)

$125,000 (60%)

As AM process technologies evolve using multi-materials and processes, additional design and

programmatic advantages are being discovered
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* Metal Additive Manufacturing (AM) provides
significant advantages for lead time and cost over

traditional manufacturing for rocket engines FEIL Challenging
* Lead times reduced by 2-10x Complexity Alloys
* Costreduced by more than 50%
 Complexityis inherent in liquid rocket engines Processing
and AM provides new design and performance Economics

opportunities

* Materials that are difficult to process using
traditional techniques, long-lead, or not
previously possible are now accessible using
metal additive manufacturing




Additive Manufacturing in use on NASA Space
Launch System (SLS)

EXPLOREMOONa\AR

Successful hot-fire testing of full-scale additive manufacturing (AM) Part to be flown on SLS RS-25
RS-25Pogo Z-Baffle — Used existing design with AMtoreduce complexity from 127 welds to 4 welds




EXPLOREMOONa\AR

AM Processes for various applications

Laser Powder DED Arc Wire DED

Electron Beam Wire DED Cold Spray Additive Friction Stir Deposition Ultrasonic Additive Manufacturing

A) Laser Powder Bed Fusion [https://doi.org/10.1016/j.actamat.2017.09.051], B) Electron Beam Powder Bed Fusion [Credit: Courtesy of Freemelt AB, Sweden], C)
Laser Powder DED [Credit: Formalloy], D) Laser Wire DED [Credit: Ramlab and Cavitar], E) Arc Wire DED [Credit: Institut Maupertuis and Cavitar], F) Electron Beam
DED [NASA], G) Cold spray [Credit: LLNL], H) Additive Friction Stir Deposition [NASA], I) Ultrasonic AM [Credit: Fabrisonic].

Reference: Gradl, P, Tinker, D., Park, A., Mireles, P., Garcia, M., Wilkerson, R., Mckinney, C. (2022). “Robust Metal Additive ManufacturingProcess Selection and
Developmentfor Aerospace Components”. Journal of Material Engineeringand Performance (JMEP). Article in Review.




Additive Manufacturing (AM) Development
at NASA for Liquid Rocket Engines
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Laser Powder Bed Fusion (L-PBF) L-PBF of complexcomponents, new
Copper Alloys combined with other i iti alloy developments for harsh
AIVI processes to proviae bimetallic environment
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Methodical AM Process Selection

Processing ()

AM Process Selection
for Aerospace

Parameters

What is the alloy required for the application?
What is the overall part size?

What is the feature resolution and internal
complexities?

Is it a single alloy or multiple?

What are programmatic requirements such as
cost, schedule, risk tolerance?

What are the end-use environments and
properties required?

What is the qualification/certification path for
the application/process?

Gradl, P, Tinker, D., Park, A., Mireles, P., Garcia, M., Wilkerson, R., Mckinney, C. (2021). “Robust Metal Additive

Manufacturing Process Selection and Development for Aerospace Components”. (Journal Article In Review)
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Feature Resolution
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Laser Powder Directed Energy Deposition (LP-DED)
Large Scale Nozzles
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95” (2.41m) diaand 111” (2.82 m) height

60” (1.52 m) diameterand 70” (1.78 m) ' , Z 7 Near Net Shape Forging Replacement
height with integral channels

90 day deposrtlon Reference: P.R. Gradl, T.W. Teasley, C.S. Protz, C. Katsarelis, P. Chen, Process Development and Hot -fire Testing of Additively Manufactured NASAHR-1 for Liquid
Rocket Engine Applications, in: AIAA Propuls. Energy 2021, 2021: pp. 1-23. https://doi.org/10.2514/6.2021-3236.



Additive Manufacturing Typical Process Flow

Process Parameters

Additive
Manufacturing Post-Processing Part in Service
Process
Part Design — Powder Removal —— Assembly
Analysis — Heat Treatments —— Validation / Testing
Model Check — Support Removal —— Qualified Metallurgy
Build Layout — Build Plate Removal — Part Production Plan
Support Generation — Inspections
Model Slicing Final Machining
Toolpath — Welding / Brazing
— Polishing
— Cleaning

> Qualification >

Proper AM process selection requires an integrated evaluation of all process lifecycle steps
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Microstructure of Various AM Processes
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Inconel 625

As-built microstructure of Inconel 625 => Reqwres proper post processmg heat treatments

owder Bed Fusion C) Laser Powder DED (1070 W)
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F) Ele ctron Beam ere DED G) CoId Spray” T H) Addltlve Frlctlen Stlr Deposmon I) Ultrasonic Additive Manufacturing

E) Arc Wire DED

Each AM process results in different grain structures, which ultimately influence properties

* Gradl, P., Tinker, D., Park, A., Mireles, P., Garcia, M., Wilkerson, R., Mckinney, C. (2021). “Robust Metal Additive Manufact uring Process Selection and Developmentfor Aerospace Components”. (JournalArticle In Review)
* Rivera, 0.G,, Allison, P. G., Jordon, J. B., Rodriguez, O. L., Brewer, L. N., McClelland, Z,, ... & Hardwick, N. (2017). Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Materials

Science and Engineering: A, 694, 1-9.



Emerging Areas of Development

 Maturing each of the AM processes and understanding of microstructure, properties, build
limitations, and methods for design and post-processing.

* Ongoing developmentfor large scale AM using DED and other processes.

e Continuous hot-fire and component testing to advance various combustion chambers,
injectors, nozzles, ignition systems, turbomachinery, valves, lines, ducts, in-space thrusters.

* Polishing (surface enhancements internally) and post-processing development.
 Combining various AM processes for multi-alloy solutions or additional design options.

* Advancement of commercial supply chain for unique alloys (GRCop-42, NASA HR-1, JBK-75).
* New alloy development (Refractory, Ox-rich environments, AM-specific alloys).

* Material databases of metal AM properties to allow for conceptual design — tensile, fatigue,
and thermophysical.

* Design complexity using lattices, topology optimization, generative design, and thin-wall
structures.

e Standards and certification of metal AM are evolving for human spaceflight.



EXPLOREMOONa\AR

L-PBF EBW-DED
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It’s all welding, so same physics apply.
Additive manufacturing is not a solve-all; consider trading with other manufacturing

technologies and use only when it makes sense.

Complete understanding of design process, build-process, and post-processing critical
to take full advantage of AM.
Various processes exist each with unique advantages and disadvantages.

Additive manufacturing takes practice!
Standards and certification of the AM processes are in-work.
 AM is evolving and there is a lot of work ahead.
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Various criteria for selecting AM techniques
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https://doi.org/10.1016/j.actaastro.2021.02.034
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.13140%2FRG.2.2.13113.93285?_sg%5B0%5D=_tictzQDZHQOiD741onNy9fOzwfdy707qt-YuCYdAmjENug9u3gfKTDpeA346V_3YMoirc77Nh1bXUNfjUQDLODb3A.krq1ZmQv6zQTFRP7niVdKEjJf_y7Qxr3MkHr5ERJNsK3ZnS3VaCh2He9pZMbhr4XrC76s1mpt4vtbe6gLlg5MA

ﬂf Various Metal AM Processes
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Many AM processes exists and must be traded (along with traditional techniques) to optimize
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