
1

A practical guide to writing a radiative transfer code
S. Korkina,b, A. M. Sayera,b, A. Ibrahimb and A. Lyapustinb

a Universities Space Research Association GESTAR, Columbia, MD, USA.
b NASA Goddard Space Flight Center, Greenbelt, MD, USA.

“You can't trust code that you did not totally create yourself. “

--Ken Thompson [1]

Contents
Abstract ... 2

Program summary... 2

Keywords ... 3

1. Introduction .. 3

2. Steps to solve the RTE ... 9

2.1. Definition of the RTE ... 9

2.2. Boundary conditions ... 12

2.3. Methods for integrating the RTE .. 12

2.3.1. Integration over the azimuth φ ... 13

2.3.2. Integration over the zenith cosine µ ... 14

2.3.3. Integration over the optical thickness τ .. 15

2.4. Choice of methods and general steps ... 15

3. RT code development ... 16

3.1. Gaussian nodes and weights ... 16

3.2. Basis functions in RT ... 18

3.2.1. Ordinary Legendre polynomials .. 18

3.2.2. Associated Legendre polynomials ... 20

3.3. Solution in the single scattering approximation ... 21

3.4. Expansion of the phase function in Legendre series, and addition theorem 24

3.5. TOA flux, scaling of the phase function and the bottom boundary condition 25

3.6. Numerical simulation of multiple scattering using Gauss-Seidel iteration 26

3.6.1. Multiple scattering solution at Gauss nodes and a given Fourier order m......................... 27

3.6.2. Multiple scattering solution at arbitrary direction ... 33

2

3.6.3. Main program: accumulation of the Fourier series .. 37

4. A Few Steps Forward .. 41

4.1. Mixing different types of scattering .. 41

4.2. Cases with variable vertical profiles.. 42

4.3. Computation and some properties of the expansion moments .. 42

4.4. BRDF .. 43

4.5. Suggestions for code efficiency and readability ... 44

5. Summary ... 47

Acknowledgements ... 48

References .. 50

Appendix: Benchmark Results for Section 3.6.3: Main Program .. 55

Abstract
Using our decades-long experience in radiative transfer (RT) code development for Earth science, we

endeavor to reduce the knowledge gap of bringing RT from theory to code quickly. Despite numerous

classic and recent literature, it is still hard to develop an RT code from scratch within a few weeks. It is

equally hard to understand, not to mention modify, an existing “monster” RT code, for which the

developer is either located remotely or has retired. Following the format of “Numerical Recipes” by

Press et al., we collocate in this paper small pieces of necessary theory with corresponding small pieces

of RT code. These are arranged in an order that is natural for code development, which is often opposite

of the natural order for laying out the theoretical basis. We focus on the transfer of unpolarized

monochromatic solar radiation in a plane-parallel atmosphere over a reflecting surface. Both the surface

and the atmosphere are homogeneous (uniform) at all directions. The multiple scattering is numerically

solved using the deterministic method of Gauss-Seidel iterations. Except for the presented Python-

Numba open-source RT code gsit, the paper does not report any new scientific results, but rather

serves as an academic demonstration. If development time is an issue or the reader is familiar with basic

concepts of RT theory, we recommend proceeding directly to Sec.3 “RT code development”.

Program summary
Program title: gsit (pronounced “jeezit”)

CPC Library link to program files: (to be added by Technical Editor)

Developer's repository link: https://github.com/korkins/gsit

Code Ocean capsule: (to be added by Technical Editor)

License: MIT

Programming language: Python 3

3

Nature of problem: We present a tutorial in Python code for deterministic (non-stochastic) numerical

simulation of multiple scattering of monochromatic solar light in a plane-parallel Earth atmosphere

bounded from below by a reflecting surface. The problem is solved in a simplified form (i.e., uniform

atmosphere, no polarization, uniform surface reflectance, etc.) to better explain numerical features,

rather than physics, of propagation of light in the atmosphere.

Solution method: The method of Gauss-Seidel iterations. It relies on the Fourier decomposition of the

Radiative Transfer Equation over azimuth, Gauss quadrature for numerical integration over the zenith

and iterative process for integration over height (optical depth) with analytical (hence known) single

scattering approximation being the starting point. The method is relatively simple to code and does not

require any external libraries.

Keywords
Multiple light scattering, Earth science, software development, Radiative transfer equation, Gauss-Seidel

iterations.

1. Introduction

Table 1: List and definition of acronyms used in this paper

Acronym Definition Type

6S
Second Simulation of the Satellite Signal in the Solar
Spectrum

RT code

(A)ATSR (Advanced) Along-Track Scanning Radiometer Space-borne instrument

AD Adding-Doubling RT technique

AERONET AErosol RObotic NETwork Sun photometer network

AI Artificial Intelligence
Branch of computer
science

ARM Atmospheric Radiation Measurement US climate research facility

ARTS Atmospheric Radiative Transfer Software RT code

BOA Bottom Of Atmosphere Physical term

BRDF Bidirectional Reflectance Distribution Function Physical term

CPU Central Processing Unit Computational term

DISORT DIScrete Ordinates Radiative Transfer RT code

DO Discrete Ordinates RT technique

FORTRAN FORmula TRANslation Programming language

GPU Graphics Processing Unit Computational term

GS Gauss-Seidel RT technique

GSIT Gauss-Seidel Iterations RT code (from this work)

4

IE Invariant Embedding RT technique

IPOL Intensity and POLarization RT code

libRadTran Library for Radiative Transfer RT code

LUT Look-Up Table Computational term

MAIAC Multi-Angle Implementation of Atmospheric Correction Retrieval algorithm

MC Monte-Carlo
Numerical technique
relying on random
(stochastic) sampling

MO Matrix Operator RT technique

MODTRAN MODerate resolution atmospheric TRANsmission RT code

MPI Message Passing Interface Computational term

OpenMP Open Multi-Processing Computational term

RT Radiative Transfer Physical term

RTE Radiative Transfer Equation Physical term

SASKTRAN Not explicit; derives from Saskatoon RT code

SBDART Santa Barbara DISORT Atmospheric Radiative Transfer RT code

SCIATRAN
Not explicit; derives from SCanning Imaging Absorption
SpectroMeter for Atmospheric CHartographY
(SCIAMACHY)

RT code

SH Spherical Harmonics RT technique

SHARM (3D) Spherical HARMonics (with 3D effects) RT code

SKIRT Stellar Kinematics Including Radiative Transfer RT code

SMART-G
Speed-Up Monte-Carlo Advanced Radiative Transfer
code with GPU

RT code

SO Successive Orders RT technique

SORD Successive ORDers RT code

TOA Top Of Atmosphere Physical term

TOMRAD
Total Ozone Mapping Spectrometer (TOMS) Radiative
Transfer Model

RT code

(V)LIDORT (Vector) Linearized Discrete Ordinate Radiative Transfer RT code

XRTM X Radiative Transfer Model RT code

Radiative transfer (RT) codes are scientific software that numerically simulate the propagation of

electromagnetic radiation through a medium. RT simulations are used in various disciplines including

astrophysics, planetary and Earth science, and remote sensing. RT codes are a fundamental component

in remote sensing retrieval algorithms of geophysical parameters from space- and air-borne

5

observations, as well as ground-based measurements of the Earth system. RT codes need to satisfy

three requirements: 1) accurately model the physical phenomena of radiative transfer, 2) be numerically

stable, and 3) be sufficiently fast. This is an acronym-heavy field: for convenience, all acronyms used in

this paper are defined in Table 1.

The transfer of radiation is governed by a fundamental equation that describes the variation of light

intensity in a medium characterized by its scattering, absorption, and emission. In the Earth system, RT

requires a set of boundary conditions such as the illumination by extraterrestrial light and surface

boundary, like reflectance from land or wind-ruffled ocean. Additionally, best software development

practices such as version control, unit testing, readability, and maintainability should be followed when

developing an RT code. Proper documentation is necessary for a non-developer user. In this paper we

focus on the software side of RT code development.

The term “RT code” can refer to programs with very different levels of complexity, dependent on what

exactly is included. Here, by “RT code” we mean only the part responsible for the numerical solution of

the RT equation (RTE). This part is often also called the “RT solver”. It deals only with the inherent

parameters of the RTE, and accuracy parameters of the numerical method chosen to solve the RTE. For

the RT solver to be used in applications, it must be equipped with plug-ins that compute RTE parameters

(e.g. single-scattering properties) for relevant quantities used in the application. The RT solver in

combination with auxiliary software compose a fully functional RT code (often called RT model or

library), for example, Fig.1 of libRadtran [2] or the MODTRAN1 and Ocean Optics Web Book2 websites. RT

libraries often combine different RTE solvers, lots of auxiliary software to compute parameters of the RT

models, and instrument parameters, such as satellite spectral response functions, and built-in interfaces

for interaction with other models and databases [2–4].

In what follows, we use the words “radiation” and “light” as synonyms. To be specific, we will be talking

about Earth science, and within the solar spectral domain. However, astrophysics, planetary science,

nuclear physics, and computer graphics, as well as Earth science applications in other spectral ranges,

deal with similar problems. We therefore hope our paper will be useful for readers beyond our domain.

The development of RT codes began more than half a century ago as access to computing power for

scientific purposes become more widespread. Some codes, developed by experts in their fields, have

remained in use for decades. For example, arguably the oldest RT code TOMRAD, developed in the

1960s [5], is still actively used to study atmospheric ozone [6,7], nitrogen [8,9], and volcanic sulfur

dioxide [9]. DISORT, the most cited RT code in Earth science3, was developed in the 1980s [10]. It is still

supported [11] and used worldwide [12]. Long lasting use of codes assures numerical accuracy and

stability, and most importantly broad validation. However, as computer and Earth science move

forward, limitations of heritage codes previously considered sufficient become more pressing, such as

missing physical effects (e.g., new atmospheric absorption data), or advancements in high performance

computing (e.g., parallel processing, GPUs, and accelerated software) since the time the code was

originally developed. The latter is severely underutilized in almost all widely-used RT codes, SMART-G

being an exception [13].

1 http://modtran.spectral.com/modtran_about
2 https://www.oceanopticsbook.info/view/radiative-transfer-theory/radiative-transfer-equations
3 https://www.osapublishing.org/ao/journal/ao/anniversary/50mostcited.cfm

http://modtran.spectral.com/modtran_about
https://www.oceanopticsbook.info/view/radiative-transfer-theory/radiative-transfer-equations
https://www.osapublishing.org/ao/journal/ao/anniversary/50mostcited.cfm

6

Note that the creation of a mature RT code suitable for real world applications (e.g. retrievals from

remote sensing) takes years of collaborative efforts. libRadtran “was initiated about 20 years ago and is

still under continuous development” [2]. ARTS has had a similar lifespan4: 19 years as of 2021. Other

fields such as astrophysics, show similar situations. The Monte Carlo (MC, a stochastic method) RT code

SKIRT5 was first published in 2003 [14]. After years of usage and development, in 2015, it was released

with a user- and application- friendly interface [15,16], MPI support in 2017 [17], and most recently

released as v.9 in 2020 [18] after refactoring.

Modifying current RT codes to include more advanced capabilities is a difficult and slow process. Most

importantly, legacy RT code developers are retiring and increasingly unavailable, rendering these legacy

codes as “black boxes”. This is typically due to insufficient documentation, lack of version control, and

obscure coding practice (whether due to personal style or old language conventions), combined with the

sophisticated mathematical formalism behind RT codes. This is a common problem in scientific software

development [19,20]. The current situation with RT code development is summarized in [21]: “Although

this may often not be the case, we will assume in what follows that direct modeling is performed

adequately … ”.

Over time, the need for detailed understanding of RT code structure to provide efficient support and, if

needed, complete refactoring, has increased. However, the existing literature does not offer a quick

solution. Numerous books and papers provide the theoretical background behind numerical methods in

RT. The most notable is “Radiative transfer in scattering and absorbing atmospheres: standard

computational procedures”[22], written by a group of world-leading RT code developers. The book

explains the idea and theoretical background for most, if not all, methods for RTE solution; advantages

and disadvantages for each; and provides benchmark results and a broad list of references available at

that time. Software aspects of RT code and mathematical formalism for polarization of light are not

considered, though the latter problem is discussed in [23] and [24]. Ideas behind different techniques

for numerical simulation of multiple light scattering are discussed in [23,25,26]. Classic volumes by

founders of the RT theory [27,28] and numerical methods [29] focus on physics and intensive math

however provide little guidance on RT code development.

Expanding beyond the mathematical foundation of RT theory, manuals or user guides available for some

RT solvers may provide an alternative approach to better understand the RT code development process,

however they prove to be insufficient. For example, Section 9, “Accurate Numerical Solutions of

Prototype Problems” in [30] is an updated DISORT manual. This manual focuses on the theoretical

background for the code and explains input and output, but not the code structure and implementation.

A detailed description of RT package SCIATRAN is available in [31]. In addition to acting as a manual, this

review explains the theoretical background for each SCIATRAN’s feature: multiple scattering, absorption,

surface models, effect of sphericity of the planetary atmospheres, built-in spectroscopy, etc. The RT

codes (V)LIDORT [32] and 6S [33], RT library libRadtran [2] among others come with extensive and user-

friendly manuals; ARTS6 and SASKTRAN7 and 6S8 are described on the web.

4 https://en.wikipedia.org/wiki/ARTS_(radiative_transfer_code)
5 https://skirt.ugent.be/
6 https://www.radiativetransfer.org/
7 https://arg.usask.ca/projects/sasktran/
8 http://6s.ltdri.org/

https://en.wikipedia.org/wiki/ARTS_(radiative_transfer_code)
https://skirt.ugent.be/
https://www.radiativetransfer.org/
https://arg.usask.ca/projects/sasktran/
http://6s.ltdri.org/

7

Unfortunately, without in-depth study of thousands of lines in corresponding codes, these manuals can’t

increase the reader’s knowledge from user to developer level alone. This level of understanding is

required when someone other than the developer faces the task of upgrading and/or debugging a

complex code, or even worse, the problem of developing of an in-house code from scratch.

Pieces of information on RT code development are rare and scattered across numerous literature

sources. Hansen & Pollack [34] report “shortcuts” for multiple scattering computations and estimate the

gain in runtime for each. Hansen & Travis [23] analyze several RT techniques and derive practical

suggestions for their implementation. Van de Hulst [35] indicates a flowchart on how to simulate

successive orders of scattering. Sections 2 and 5 in [36] discuss requirements for RT code and

optimization of computational parameters, respectively. Efremenko et al. [37] report on implementation

of multi-core CPU and GPU tools in RT codes, pseudo-codes for RT solver as used in retrieval algorithm,

the use of parallel computations in RT models, and GPU architecture – a rare example where the

software side of the RT code development dominates over theoretical background. Full code of Fortran

subroutines to be used in the methods of successive orders in atmospheres with arbitrary profiles of

optical parameters are reported in [38].

Using our decades-long experience in RT code development [39–43] and application in Earth science

[44,45,54,46–53], in this paper we endeavor to reduce the knowledge gap of bringing the RTE from

theory to code quickly. In Section 2 we describe the theoretical steps for RTE solution and concisely

outline a few widely-used numerical techniques. The section is intended to introduce our reader to the

problem and provide a general overview of the RTE solution algorithm. Then in Section 3 we focus on

the theory (i.e., equations) and corresponding Python function for each particular step. For faster

development, the reader can start directly from Section 3. We present the code co-located along with

corresponding equations. The format is inspired by the approach used in “Numerical recipes” book

series, starting from Pascal [55] and ending with object-oriented C++[56]. We chose Python as a popular

modern language, although it may not be as computationally efficient as some others. By doing that we

follow the “make it right – then make it fast” philosophy, placing clarity as our primary goal. Python is

frequently used in atmospheric science in general [57] and in RT code development in particular (e.g.

refer to websites of libRadtran9, SASKTRAN10, or XRTM11), but mostly as an interface or wrapper to an RT

solver traditionally developed in Fortran and/or C [58]. We have, however, accelerated our Python code

using a high-performance Python compiler, Numba12. As a result, Section 3 offers a fully working RT

code based on the method of Gauss-Seidel iterations with 2 benchmarks (in Appendices), as well as data

and suggestions for unit testing. Section 4 discuss some ideas for further development of the code

(vertical profiles, surface BRDF), numerical efficiency and structure. We conclude the paper with a

Summary.

Several RT tools have been developed with teaching in mind. For example , SBDART [59] has had an

online interface since the 1990s; libRadtran was used to model clouds during ARM training [60],

9 www.libradtran.org
10 https://arg.usask.ca/projects/sasktran/
11 https://reef.atmos.colostate.edu/~gregm/xrtm/
12 https://numba.pydata.org/

http://www.libradtran.org/
https://arg.usask.ca/projects/sasktran/
https://reef.atmos.colostate.edu/~gregm/xrtm/
https://numba.pydata.org/

8

HydroLight, an RT model for light scattering in ocean, comes with an extensive “Ocean Optics” web

book13, whose section “Radiative Transfer Theory” is directly related to this paper.

We approach this paper as an academic demonstration, and don’t expect our reader to have any

knowledge of numerical methods or coding experience other than those taught during undergraduate

degrees. That necessitates a simplification to RT theory by not accounting for some physical principles,

such as assuming the atmosphere to be plane-parallel (1-dimensional), non-emitting, and homogeneous

(i.e. one optical layer) irradiated from above by a monochromatic infinitely wide solar beam at an

arbitrary angle. We neglect polarization of light (scalar RT). The atmosphere is bounded from below by a

surface that reflects light evenly over angles (i.e. Lambertian reflection).

The dependence of atmospheric optical properties on height (profile), polarization of light, wave-

covered ocean, landscape shadows, and many other effects are important for atmospheric, oceanic, and

terrestrial applications but secondary in terms of goals of this paper. A “monster code” [61] that can do

all these things is never all-powerful, and is always hard to learn and debug.

Further in the paper we deal with deterministic methods to solve the RTE. These methods rely on

explicit analytical evaluations, such as decomposition in series (e.g., Fourier), linear algebra, numerical

and analytical integration, and other formalism. Analytical approaches are methods of choice for cases

with significant symmetry, such as 1D RT problem (horizontally homogeneous atmosphere). Given the

fairly low spatial resolution of many Earth science instruments (of order 1-10 km), the 1D approximation

has been widely used for applications. For retrievals, the deterministic methods yield analytical

linearization (computation of derivatives) [32,62]. For atmospheric correction, some deterministic

methods allow one to “split” atmosphere and surface signals. The latter is significant due to spatial and

temporal scales of variability: slow spatial and rapid temporal variations of atmosphere as opposed to

surface, which may vary significantly within a few meters, while staying unchanged for weeks during a

season. Therefore, it is efficient to precompute and store in a LUT the scattering and absorption

properties of the atmosphere itself and apply those for different top (Sun moving during the day) and

bottom (rapid spatial variations of surface) boundary conditions. An example of this is the combination

of 3D surface parameters with 1D atmosphere using the Green function formalism [43,63]. Another

example is SHDOM14: combination of analytical methods, SH and DO, to account for atmospheric 3D

effects such as cloud shape [64,65]. The plane-parallel approach is often generalized for 3D cases using

independent pixel approximation (unique 1D RT problem is solved within each pixel of satellite image,

horizontal energy flow is either ignored or approximated). Complex shapes of real water clouds or dust

plumes can be replaced with idealized “brick” shapes for efficient deterministic simulations; the

accuracy of this approximation can then be estimated by comparing with MC simulations.

As opposed to deterministic approaches, MC considers propagation of light along the path as a random

(stochastic) process. As a result, output from MC RT codes is an expectation (mean value) based on

many simulated photons, with an estimated standard deviation as an uncertainty bound. The statistics

of this random sampling, of course, depend uniquely on the optical properties of the scattering media,

light source, and reflecting surface. The method of MC converges as the number of the random

processes (light rays, or photons) increases. However, the convergence rate is inversely proportional to

13 https://oceanopticsbook.info/
14 https://nit.coloradolinux.com/shdom.html

https://oceanopticsbook.info/
https://nit.coloradolinux.com/shdom.html

9

the square root of the number of runs. Hence decreasing the random error by a factor of 10 requires

running the MC code 100 times more. Because of this, MC codes are considered slow compared to

analytical methods for problems that possess symmetry, such as plane-parallel atmosphere with no

horizontal variations of optical properties, illuminated by an infinitely wide unidirectional beam. But MC

RT codes becomes good (and sometimes the only feasible) option when the RT problem becomes less

symmetric, e.g., radiative transfer close to edge of clouds with a sophisticated shape. Note that

consideration of the polarization of light reduces symmetry of the problem even if the atmosphere and

surface remain optically uniform. Polarization significantly complicates mathematical apparatus for

deterministic polarized RT codes. That reason alone may be sufficient to go with faster development of

the 1D MC RT code and sacrifice runtime.

In what follows we do not discuss MC codes, but refer our reader to [66]. That paper discusses accuracy

of several state-of-the-art MC RT codes (in addition to non-MC) widely used by atmospheric community.

Beyond the scope of this paper we also leave the use of the artificial intelligence (AI) approach to solve

the RTE [67–69] and the role of the RT solvers in training of the AI-based retrieval algorithms [70]. Now

we proceed to a general description of the steps necessary to solve the RTE using deterministic

(analytical) approach for a plane-parallel horizontally homogeneous atmosphere over homogeneous

surface, illuminated by an infinitely wide ideally collimated source of light – the Sun.

2. Steps to solve the RTE

2.1. Definition of the RTE
The RTE describes the dependency of intensity of radiation, I, on location and direction of propagation

in a medium. The intensity is expressed in units of power (in Watts, W) per unit area (in meters squared,

m2) oriented perpendicular to the direction of propagation of light, per unit solid angle (in steradians,

sr), per unit band (in atmospheric optics: nanometers or microns in the wavelength domain, but

temporal and spatial frequencies are also used in atmospheric spectroscopy). In the plane-parallel

atmosphere, the location of interest is characterized by the vertical coordinate z (i.e. height) only.

A beam of light traversing through the atmosphere will be absorbed and/or scattered (i.e. redistribute

the energy in different directions). To describe the absorption and scattering properties of the

atmosphere we use a dimensionless optical depth τ measured from the top of the atmosphere (TOA) to

a point of interest along the coordinate z. The optical depth combines the inherent optical property of

the medium (extinction efficiency) with the physical distance the light travels. Zenith θ and azimuth ϕ

angles specify the direction (Fig.1: left). The optical length of a segment AB (Fig.1: right) in the

atmosphere is τ/µ, µ=-cos(θ), where the minus sign is a convention caused by opposite directions of the

z and τ axes. Solving the RTE means the ability to evaluate I(τ, µ, ϕ) at each value of the 3 coordinate

system for the given optical properties of the atmosphere with two boundary conditions: the intensity

of the incoming light at TOA, and reflection at the bottom of atmosphere (BOA).

10

Fig.1 Left: Zenith θ and azimuth ϕ angles in
Cartesian coordinate system. Forward
scattering corresponds to zero azimuth (e.g.,
as if a light sensor pointing in the plane of the
sun). Top: Optical path between points A and
B.

In this paper, we adhere to a common convention in RT theory and numerical simulations: exact

“forward” and “backward” scattering correspond to ϕ = 0o and ϕ = 180o, respectively (principal plane of

the Sun). Hereinafter, we refer to the term "scattering" in a physical sense, i.e. relative to the direction

of propagation of the light beam just before the moment of scattering – see Fig.2. “Forward scattering”

refers to all directions with the scattering angle from 0 to 90 degrees (hemisphere), the rest is

“backscattering”. Therefore, the aureole is in the forward scattering hemisphere (almost precise

forward scattering), when the observer is facing the Sun, while rainbow and glory are in the back (the

latter is at almost precise backscattering). Note, forward (backward) scattering directions may or may

not correspond to ϕ = 0o (180o) as Fig.2 shows.

Fig.2: Definition of forward and backward
scattering (hemispheres). Note, either may
contain directions with relative azimuth ϕ=0o
or 180o. The definition is similar for the surface
reflection, except for z > 0.

The situation is similar for surface reflection, except the z-component of the vector that represents the

light beam changes sign (light goes upward, instead of downward). According to the convention adopted

in this paper, mirror reflection is at relative azimuth ϕ = 0o precisely (but not necessarily in the forward

hemisphere), glint belongs to ϕ < 90o, hotspot belongs to ϕ > 90o. In satellite remote sensing, the

definition is often the opposite: glint is observed at azimuths exceeding 90o. This is sometimes known

colloquially as the “Gordon convention”, which we do not use in this paper. Fig.3 shows the difference

between the two conventions. We include the above discussion on this point because we have found it

a common stumbling block when atmospheric scientists begin to learn to use RT codes.

11

Fig.3 Relative azimuth convention for
theoretical evaluations (this paper) -
cases (a) and (c) vs. the one often used
in applications – cases (b) and (d).
Ocean glint is observed when the
detector D faces the Sun, S. In this
paper, we say the relative azimuth is
zero (a), while the application
convention says it is 180o (b). Same for
the hotspot – cases (c) and (d). For us,
the hotspot happens at relative
azimuth 180 o (c), while for
applications it could be 0 o (d).

In the scalar RTE, the optical properties of the atmosphere can be defined through three parameters:

the optical thickness τ, single scattering albedo ω0, and the phase function p(Θ). The single scattering

albedo is the ratio of the scattering to the total extinction (i.e. absorption + scattering). It is the

likelihood for light to survive a scattering event: ω0=0 means all interactions result in absorption, ω0=1

means all result in light scattering. The phase function p(Θ) is the scattering probability distribution

function, dependent on the scattering angle Θ (Fig.1: left). The scattering angle is the angle between

incident and scattered light directions. In a Cartesian system of coordinates, it can be expressed via

zeniths and azimuths of the incident and scattered light. The surface at BOA is characterized by a

bidirectional reflectance distribution function (BRDF), ρ. The BRDF acts like p(Θ), except the light gets

reflected (light changes direction from “down” to “up”), not scattered (light changes direction arbitrary

or not at all).

The change of the intensity of light as it travels in the atmosphere in the given direction is expressed by

a derivative with respect to τ (i.e. the rate of change in intensity w.r.t. change in optical depth) (Fig.1:

right) – left side in Eq.(1) below. Redirection of energy through absorption and scattering along the path

of travel reduces the intensity of the traveling light (hence minus sign in the first term in the right side of

Eq.(1)). Scattering accumulated (integrated) from all directions into the direction of propagation

increases the intensity (second and third terms in the right side of Eq.(1)). This yields the RTE in integro-

(over θ, ϕ) differential- (over τ) form:

 0
0 0 0

0

(, ,)
(, ,) (, , ,) exp (, ,)

4

I
I p I J

 = − + − +

 (1)

where

2 1

0

0 1

(, ,) (, , ,) (, ,)
4

J p I d d

−

 =

 (2)

is the scattering integral. The second term in the right side of Eq.(1) describes first scattering of the

direct solar beam. I0 is the TOA spectral irradiance (W/m2/nm). The solar geometry is defined by cosine

of the solar zenith, µ0=cos(θ0), and azimuth ϕ0. The latter is usually assumed zero, ϕ0 = 0, in the solar

(principal) plane.

12

Since Eq.(1) is linear, it is convenient to scale both sides by some factor. For example, if one scales both

sides by
0 0I

 (inversed units of intensity), the RTE will deal with unitless reflectance and transmittance

(both may exceed 1). Often for simplicity the TOA flux is assumed unity (without explicit definition of its

units), 0 1I = [40,71].

Setting (, ,) 0J = , Eq.(2), yields the RTE for the single scattering approximation, 1(, ,)I (note

subscript ‘1’). The single scattering approximation is often treated separately due to its analytical

simplicity and importance for understanding of the physics of scattering (influence of different optical

properties on solution), as well as for the acceleration of numerical simulations. In the case when the

medium is non-scattering (i.e. ω0=0), the second and third terms in the right part of Eq.(1) vanish,

reducing the RTE to a first order differential equation whose solution is the Bouguer-Lambert-Beer

(exponential) attenuation law.

2.2. Boundary conditions
As mentioned previously, the RTE solution requires two boundary conditions: incoming solar light at

TOA and surface reflectance at BOA. The first is an initial condition, independent of the RTE solution. It is

imposed on downward radiation at the top boundary, τ=0, in the forward hemisphere, 0+ = . Since

there is no scattered light coming from space, the TOA boundary condition is simply zero.

The second depends on both the reflective properties of the surface and the RTE solution at the surface,

which complicates the problem. Contrary to TOA, the bottom boundary condition is imposed on

reflected radiation, 0− = at the ground level τ0. Two effects contribute to the radiation reflected at

the bottom: reflection of the direct solar beam, and reflection of diffuse radiation coming down from

the atmosphere (including multiple bouncing of radiation between the atmosphere and surface). For

Lambertian surface reflection with surface albedo ρ, the bottom boundary condition is

2 1

0
0 0 0 0

0 0 0

(, ,) exp (, ,)I I I d d

−

 = − +

 (3)

Comparing Eq.(3) with Eqs.(1) and (2), one can see that reflection of the direct solar beam is an

equivalent of single scattering in the atmosphere, while multiple bouncing (i.e., diffused light) is like

multiple scattering. The total intensity integrated over all directions yields irradiance (W/m2/nm), while

scaling by inverse π (1/sr) gives intensity. The factor µ (µ0 for the direct solar beam) in the integral

accounts for the fact that the irradiance of oblique rays is smaller.

2.3. Methods for integrating the RTE
Eq.(1) is the RTE in integro-differential form. It is the starting point for methods based on replacing of

the RTE with a system of differential equations such as Spherical Harmonics (SH) and Discrete Ordinates

(DO). The methods of Gauss-Seidel (GS) and Successive Orders (SO) integrate over τ numerically. For

that, they use the “formal solution”: Eq.(1) explicitly integrated over τ. For numerical integration, the

variable τ in the formal solution is discretized with some step ∆τ. The τ-discretized RTE in integral form

is:

13

 1 1

1
(, ,) (, ,)exp (, ,) (, ,)expi i

t
I I I J t dt

 = +

 (4)

In Eq.(4), the terms have the following physical meaning (Fig.4): intensity at some level i (left hand side)

is the sum of the intensity at the neighboring level above i-1 (for descending light, µ+ > 0) or below i+1

(for ascending light, µ- < 0) the current level, plus single scattering I1 within the level ∆τ (solar beam

attenuated appropriately for embedded element layer ∆τ), plus multiple scattering within the element

layer ∆τ (last term in the right side with t indicating integration within ∆τ). Note the sign in exponential

functions is opposite to that of µ and corresponds to the one in the subscript, i+1 (for ascending

radiation) or i-1 (for descending radiation). The exponentials are responsible for the aforementioned

Bouguer-Lambert-Beer attenuation. Fig.4 indicates these components as (a), (b), and (c), respectively.

Fig.4: Illustration for Eq.(4),
downward radiation: (a) direct
contribution from the above layer, (b)
single scattering contribution from the
element layer ∆τ, (c1) and (c2) “re-
scattering” of scattered radiation
coming from above and below,
respectively.

Eqs.(2) and (4) indicate that one deals with three integrals in this order: over azimuth ϕ, over cosine of

the zenith angle µ, and over optical depth τ. Solving the RTE can be performed by numerical integration

over the three variables in its simplest form as for example in [72]. However, in plane-parallel

atmospheres, analytical integration over azimuth using Fourier expansion has become a standard

technique. In the next three subsections, we will briefly describe the method of integration over each

variable in the RTE.

2.3.1. Integration over the azimuth φ
Fourier expansion of the intensity

 0

1

(, ,) (,) 2 (,)cos()
M

m

m

I I I m
=

 = + (5)

and the phase function

 0

1

(, , ,) (,) 2 (,)cos(())
M

m

m

p p p m
=

 = + − (6)

τ
1τi−

τi

0μ

1 0exp(τ μ)i−−

μ

τ
exp

−

μ

1

1

τ
(τ , , φ)exp

(τ, ,μ φ)

1
exp,

μ
μ

(,)

i

t
t t

I

I

J d

−

−

−

+

+

t

()a

()b

2()c()a

()b

1 2(,)c c

1()c

14

decouples the general RTE for I(τ, µ, ϕ) into several independent RTEs for the Fourier m-moments, Im(τ,

µ) with no azimuthal dependence in each (note the superscript m; 1

1

mI = would mean 1st Fourier

harmonic for the first order of scattering). Because of the symmetry of the RTE solution I(τ, µ, ϕ) with

respect to the principal plane, Fig.5, and symmetry of the phase function with respect to the incident

light direction, only cos(mϕ) is used in Eqs.(5) and (6). It is only natural to convert the azimuth

integration into a summation of Fourier series to reduce the integration steps. Aside from Monte Carlo

methods, most modern RT codes for the plane-parallel atmosphere utilize azimuthal Fourier series

decomposition.

Fig.5: TOA intensity for a Rayleigh atmosphere over a
wind-ruffled ocean [71] illustrate symmetry with
respect to principal plane, ϕ=0o-180o . This explains
the use of cosines in Eqs.(5) & (6). The highest (dark
red) value corresponds to relative azimuths 0o (“mirror
reflection” or glint, SZA=45o). The image is plotted in
log-scale due to the peak of intensity at the glint
exceeds the average intensity by an order of
magnitude. VZA=0o corresponds to nadir observation
(dark blue – weak signal).

Two steps are required for the Fourier expansion of the phase function. First, expand the phase function

in Legendre polynomials as a function of scattering angle. Second, using the addition theorem for the

Legendre polynomials, substitute the dependence on scattering angle with Legendre functions of

incident and scattered zeniths and Fourier expansion over relative azimuth, which are native parameters

of the RTE. These aspects are detailed in Sections 3.2 and 3.4, respectively.

2.3.2. Integration over the zenith cosine µ
There are various techniques to perform the integration over the cosine of the zenith angle, µ. Iterative

techniques, like SO [5,73] and GS [72,74] , discretize the RTE and integrate over µ numerically to get the

solution at the current iteration from the previous one, starting from single scattering (which is known

analytically). Expansion of the phase function in Legendre polynomials favors the use of Gaussian

quadrature integration over µ, for which the nodes are zeros of the Legendre polynomials. The method

of Discrete Ordinates (DO) [10] also relies on Gaussian quadrature. However, intensities at the Gauss

nodes are unknown and obtained from a system of differential (over τ) equations. The method of

Spherical Harmonics (SH) [75,76] , in addition to Fourier series, expands the Fourier moments of

intensity Im(τ, θ) in series over Legendre polynomials (see Section 3.2), as for the phase function, and

uses orthogonal properties of the Legendre polynomials to get a system of equations for the Legendre k-

moments of the Fourier m-moments of intensity, ()m

kI . Note there is no angular dependence in the k-

moments. Once the k-moments are computed, the RTE solution becomes known at arbitrary set of the

solar-view geometry, which is convenient for the computation of results at many view angles such as

when generating lookup tables (LUTs) for use in satellite retrievals.

15

2.3.3. Integration over the optical thickness τ
Similar to integration over µ, integration over τ differs depending on the method. The methods of DO

and SH, whose systems of differential equations are mathematically identical, integrate over τ

analytically using eigenvalue decomposition of the system matrix [77]. Analytical integration yields high

accuracy and independence of the codes’ runtime on the optical thickness, an advantage when

simulating for example thick clouds. In both techniques it is possible to split the atmosphere from the

boundary conditions. However, the eigenvalue decomposition is time consuming and must be done for

each optical layer, hence the use of optimized libraries is preferable. If runtime is an issue, these

methods are advantageous for cases with a low (1-5) number of optical layers.

The iterative methods of SO and GS “know” the previous solution at some predetermined grid of τ-

values and integrate over it numerically. This approach is simple (does not require external libraries) and

efficient if the atmosphere is not very thick (τ ~ 1). Numerical τ -integration is the method of choice for

scenarios with complex vertical profiles (many optical layers) and/or smooth change of the solar-view

geometry over height in the pseudo-spherical RT codes [78]. In the simplest (and often fastest)

implementation, the SO and GS codes run anew for every solar zenith and surface condition simulated.

Iterations start from the single scattering approximation, which is known.

A common technique used when simulating optically thick atmosphere is the Adding-Doubling (AD)

method, which falls between numerical and analytical integration over τ. The method relies on the

assumption that reflectance (R) and transmittance (T) properties from any (Gauss) direction to another

(Gauss) direction is known. Hence, these properties of two neighboring layers combined can be

computed from the individual properties – layers “adding”. Starting from a very thin (τ ~ 2-10 ≈ 0.001)

element layer, one computes T and R for a layer of arbitrary thickness. This method is very sensitive to

the selection of the initial layer. However, in a uniform atmosphere two layers combined yield a layer of

twice the optical thickness, which in turn is then combined with the neighboring layer of the same –

doubled – thickness, and so on. The AD technique goes from TOA to BOA, includes all scattering orders,

and relies on multiple matrix multiplications and inversion (the latter is to be replaced with the solution

to the system of linear equations – hence optimized libraries are preferable). Invariant embedding (IE)

and matrix operator (MO) methods use similar formalism to connect layers. Later in this paper we

illustrate the main idea of the matrix operator technique (Section 3.6.2).

2.4. Choice of methods and general steps
The variety of techniques commonly employed to solve the RTE indicates that there is no one universal

best method. The theoretical and numerical complexity of the solution grows as the problem becomes

more complex for either atmosphere (e.g., many optical layers instead of one, 3D instead of 1D plane-

parallel atmosphere), or boundary conditions (e.g., off-nadir Sun, azimuthally non-symmetric or

inhomogeneous surface reflectance), or the radiation itself (e.g., polarization of light). It is for that

reason the first step in solving the RTE is to pick a method that best fits the problem. The best code is

not always the one that runs fastest: each problem also has its own accuracy requirements. One should

also consider weighting between using a slower but easier to code, debug, and support method against

a faster method that requires understanding of complicated mathematical background and needs

optimized libraries (which may limit the code distribution due to software or licensing issues).

Numerical implementation of these techniques starts with coding the low-level functions first: Legendre

polynomials, Gauss nodes and weights, and the single scattering approximation. The latter should be

16

done in two forms: first using single scattering without expansion in Fourier series over relative azimuth.

It is sufficient to create this code only for boundaries where the RTE is to be solved (e.g., only at TOA).

Second, one needs single scattering for a given Fourier order m at an arbitrary level in the atmosphere.

This will be used as an initial guess in GS and SO to compute corresponding Fourier moments of the

multiple scattering. Subtraction of the single scattering from the multiple scattering, once computed,

yields the RTE solution for second and higher scattering orders expanded in Fourier series. At the final

step, one accumulates the Fourier series, starting from the exact (not expanded) single scattering until

sufficient accuracy is achieved. In the next section we present, step by step, the theoretical basis and

show corresponding code for this algorithm using the method of GS iterations, which advantages are

described in Section 3.6 “Numerical simulation of multiple scattering using Gauss-Seidel iteration”.

3. RT code development
In this section we will describe the mathematical representation of each of the RTE solution steps along

with the associated Python implementation and routines.

3.1. Gaussian nodes and weights
Computation of Gaussian nodes, xj, and weights, wj, for numerical integration of a function f (x)

1 2

11

() ()
N

j j

j

f x dx w f x
=−

 (7)

is very common [79]. Source code is available e.g. in Fortran [80], C [81], or directly from publicly-

available RT codes (including gsit described in this paper). A built-in function is available e.g. in the

Python packages numpy.polynomial.legendre.leggauss. Fig.6 shows, without much

discussion, the implementation of computation of the Gauss nodes and weights that we use in this

paper.

17

Fig.6: Computation of n Gauss nodes within x1:x2 interval.

Note a few peculiarities of Eq.(7). First, in Eq.(7), 2N is the order of the Gaussian quadrature, where N is

the number of nodes (often called “streams” in RT) per hemisphere. Since nodes are located

symmetrically with respect to µ=0 (the horizon), it is common in RT to define N (half space), not 2N (full

space) as the input parameter.

Second, there are two types of Gaussian quadrature: single and double [82]. Suppose, µ1 and w1 are N

single-Gauss nodes, i.e. nodes computed in the [-1 : +1] (full-) interval, and µ2 and w2 are double Gauss

nodes computed within [0 : +1] (half-) interval. The two are related as follows

 1 1
2 2

1
0,

2 2

w
w+ + +

 = = . (8)

Fig.7 shows a full set of 2N double-Gauss nodes within [-1 : 1], defined using 2 2 2 20, w w− + − + = − = ,

and a corresponding set of 2N single-Gauss nodes for 2N=20. Note that at the horizontal plane (µ = 0),

weights of the double-Gauss nodes are smaller, so is the influence of discontinuity of intensity at the

boundaries (e.g., atmosphere-surface boundary, or two adjacent atmospheric layers with different

optical properties like cloud and clear sky). In contrast, single-Gauss quadrature seems preferable for

computations of the phase function expansion moments due to higher density of nodes at exact forward

(µ=+1) and backward (µ=-1) scattering directions.

1. import numpy as np

2. from numba import jit

3. @jit(nopython=True, cache=True)

4. def gauss_zeroes_weights(x1, x2, n):

5. const_yeps = 3.0e-14

6. x = np.zeros(n)

7. w = np.zeros(n)

8. m = int((n+1)/2)

9. yxm = 0.5*(x2 + x1)

10. yxl = 0.5*(x2 - x1)

11. for i in range(m):

12. yz = np.cos(np.pi*(i + 0.75)/(n + 0.5))

13. while True:

14. yp1 = 1.0

15. yp2 = 0.0

16. for j in range(n):

17. yp3 = yp2

18. yp2 = yp1

19. yp1 = ((2.0*j + 1.0)*yz*yp2 - j*yp3)/(j+1)

20. ypp = n*(yz*yp1 - yp2)/(yz*yz - 1.0)

21. yz1 = yz

22. yz = yz1 - yp1/ypp

23. if (np.abs(yz - yz1) < const_yeps):

24. break # exit while loop

25. x[i] = yxm - yz*yxl

26. x[n-1-i] = yxm + yxl*yz

27. w[i] = 2.0*yxl/((1.0 - yz*yz)*ypp*ypp)

28. w[n-1-i] = w[i]

29. return x, w

18

Fig.7: Single- (red) and double- (blue) Gaussian quadrature for 2N=20 nodes in the full interval

3.2. Basis functions in RT
Legendre polynomials are orthogonal polynomials and considered as the basis functions in RT numerical

simulations. Depending on the problem, either ordinary, or associated, or generalized (for polarization)

polynomials are used. Because they are orthogonal they can be added, replacing an integral with a

simpler summation, where the number of terms can be adjusted as required to balance numerical

accuracy with computational burden. In this section, we discuss computation of ordinary and associated

Legendre polynomials separately.

3.2.1. Ordinary Legendre polynomials

Ordinary Legendre polynomials ()kP x , where x=[-1 : 1] corresponds to cosine of the zenith angle,

possess only one degree of freedom – the polynomial order k = 0, 1, 2, … K. Hence, they are used to

compute solutions that depend on one angle only – zenith or scattering. Examples are computation of

fluxes and azimuthally independent intensity (when either solar or view directions, or both, coincide

with local normal), and expansion of the phase function. ()kP x are orthogonal

1

1

2
() ()

2 1
k l klP x P x dx

k
−

=
+ , (9)

where kl is the Kronecker delta. For k = 0 and 1, the Legendre polynomials are known: 0 () 1P x = ,

1()P x x= . For arbitrary k, one uses the recurrence relation

 1 1(1) () (2 1) () ()k k kk P x k x P x k P x+ −+ = + − . (10)

In RT codes, it is convenient to redefine indices, k → k -1, in Eq.(10), scale both sides by 1/k, and write

 1 2() (2 1 /) () (1 1 /) ()k k kP x k xP x k P x− −= − − − . (11)

19

Despite the simplicity of Eq.(11), it is a good idea to check it against explicit formula for low orders,

available e.g. in Wolfram15 (see Eqs.(4-8)) or Wikipedia16 or literature [83] or built-in functions in Python

(scipy.special.legendre), Matlab (legendreP) etc. Fig.8 shows our implementation in

Python.

Fig.8: Python function to compute ordinary Legendre polynomials for a given scalar value x and all orders k =

0, 1, 2 … kmax.

In our example kmax is defined with zero-offset for k = 0, 1, 2 … which gives the total of kmax+1 values

of k. The zero offset is convenient in e.g. C, Python, IDL, or other zero-based languages because

“theoretical” value of k coincides with index of an element in array pk. However, in Fortran one should

modify the above code as appropriate if a default unit offset for indices is used. The oscillatory nature of

the polynomials may hide the error at this stage, if not tested properly, and will manifest itself in highly

oscillating intensity or the phase function when computed as a function of angle.

Both the number of abscissae x and orders k may reach thousands for atmospheres with clouds, but a

few tens to hundreds are more common for atmospheric aerosol studies. Although computation of the

polynomials is never a bottleneck, the developer should decide on what parameter, k or x, will be in the

lead (fast) dimension if a 2d-array is used to precompute and store ()kP x . As we will see, summation

over k is used to simulate multiple scattering. Therefore, it is beneficial to store all k for a given x

consecutively in memory. The second option, sequence of x for a given k, is preferable for expansion of

the phase function in Legendre series using integration over x = µ for a given k.

15 http://mathworld.wolfram.com/LegendrePolynomial.html
16 https://en.wikipedia.org/wiki/Legendre_polynomials

1. import numpy as np

2. from numba import jit

3. @jit(nopython=True, cache=True)

4. def legendre_polynomial(x, kmax):

5. nk = kmax+1

6. pk = np.zeros(nk)

7. if kmax == 0:

8. pk[0] = 1.0

9. elif kmax == 1:

10. pk[0] = 1.0

11. pk[1] = x

12. else:

13. pk[0] = 1.0

14. pk[1] = x

15. for ik in range(2, nk):

16. pk[ik] = (2.0 - 1.0/ik)*x*pk[ik-1] – \

17. (1.0 - 1.0/ik)*pk[ik-2]

18. return pk

http://mathworld.wolfram.com/LegendrePolynomial.html
https://en.wikipedia.org/wiki/Legendre_polynomials

20

3.2.2. Associated Legendre polynomials

The associated Legendre polynomials17,18 ()m

kP x possess 2 degrees of freedom, k and m, for zenith and

azimuth expansions, respectively; m =0 reduces the associate polynomials to the ordinary ones. The

numerical strategy is similar: one uses recurrence relation (e.g., see Eq.(6.8.7) in [80,81])

 1 2() () (2 1) () (1) ()m m m

k k kk m P x k xP x k m P x− −− = − − + − (12)

provided expressions for lower degree k and given order m are known. For all m < k, () 0m

kP x = by

definition due to m-th derivative of the k -order ordinary Legendre polynomial ()kP x . The analytical

expression is known for k = m (e.g., see Eq.(6.8.8) in [80,81])

 2 /2() (1) (2 1)!!(1)m m m

mP x m x= − − − . (13)

Eq.(12) and explicit formulae for low-order polynomials (e.g., Eqs. (12)-(27) in Wolfram19 or in [83]) allow

one to start iterations and check the result. Source code for ()m

kP x is published in C [81] and Fortran

[80]. Built-in functions scipy.special.lpmn20 and legendre21 are available in Python and

Matlab, respectively.

In this paper, however, we use a slightly different form of the associated polynomials (Schmidt semi-

normalized polynomials22, see also [84])

()!

() (1) ()
()!

m m m

k k

k m
Q x P x

k m

−
= −

+
 (14)

for two reasons. First, the (-1)m factor removes the same factor from ()m

kP x (e.g. see Eq.(13)). Second,

the use of the square root factor simplifies the orthogonal property

1

1

2
() ()

2 1

m m

k l klQ x Q x
k

−

=
+ , (15)

where δkl is the Kronecker delta (compare e.g., with Eq.(5) in Wolfram16). Therefore, one must be careful

when comparing associated polynomials from different sources. Note that the Schmidt and associate

polynomials are direct substitution of each other in terms of the final result, but their orthogonal

properties differ by a scaling factor. In Table 2 we provide analytical expressions for a few low-order

associated polynomials as defined in Eq.(14); Fig.9 shows source code.

17 https://mathworld.wolfram.com/AssociatedLegendrePolynomial.html
18 https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
19 https://mathworld.wolfram.com/AssociatedLegendrePolynomial.html
20 https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpmn.html
21 https://www.mathworks.com/help/matlab/ref/legendre.html
22 https://en.wikipedia.org/wiki/Spherical_harmonics

https://mathworld.wolfram.com/AssociatedLegendrePolynomial.html
https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
https://mathworld.wolfram.com/AssociatedLegendrePolynomial.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpmn.html
https://www.mathworks.com/help/matlab/ref/legendre.html
https://en.wikipedia.org/wiki/Spherical_harmonics

21

Table 2: Explicit expressions for a few low-order associated polynomials ()m

kQ x , Eq.(14)

k m = 1 m = 2 m = 3

0 0 0 0

1 2(1) 2x− 0 0

2 23 (1) 6x x−
23(1) 24x− 0

3 2 23(5 1) (1) / 3 4x x− −
215 (1) 120x x− 2 3/215(1) 720x−

4 2 25 (3 7) (1) 4x x x− − −
2 215(7 1)(1) 1440x x− − 2 3/2105 (1) 5040x x−

Fig.9: Python function to compute Schmidt semi-normalized associated Legendre polynomials, Eq.(14), for a given

scalar value x, Fourier degree m > 0, and all orders k = 0, 1, 2 … kmax. Note for m < k, () 0m

kQ x = is returned.

3.3. Solution in the single scattering approximation
The single scattering approximation is a particular but very important solution to the RTE. Recall it is

derived from Eq.(1) omitting the (multiple) scattering integral (, ,)J , Eq.(2), to give

 01
1 0 0 0

0

(, ,)
(, ,) (, , ,) exp

4

I
I p I

 = − + −

, (16)

where subscript “1” means single scattering (as opposed to superscript denoting Fourier index m). Note,

Eq.(16) contains only path radiance because bouncing of (already scattered) light between atmosphere

and surface requires at least two scattering events (reflection is equivalent to scattering in that regard).

1. import numpy as np

2. from numba import jit

3. @jit(nopython=True, cache=True)

4. def schmidt_polynomial (m, x, kmax):

5. nk = kmax+1

6. qk = np.zeros(nk)

7. # k=m: Qmm(x)=c0*[sqrt(1-x2)]^m

8. c0 = 1.0

9. for ik in range(2, 2*m+1, 2):

10. c0 = c0 - c0/ik

11. qk[m] = np.sqrt(c0)*np.power(np.sqrt(1.0 - x*x), m)

12. # Q{k-1}m(x), Q{k-2}m(x) -> Qkm(x)

13. m1 = m*m - 1.0

14. m4 = m*m - 4.0

15. for ik in range(m+1, nk):

16. c1 = 2.0*ik - 1.0

17. c2 = np.sqrt((ik + 1.0)*(ik - 3.0) - m4)

18. c3 = 1.0/np.sqrt((ik + 1.0)*(ik - 1.0) - m1)

19. qk[ik] = (c1*x*qk[ik-1] - c2*qk[ik-2])*c3

20. return qk

22

The surface contributes to single scattering going upward only by reflecting the direct (not yet scattered)

solar beam

 1 1 1 1 0 0 0 0exp() exp()Atm Srf SrfI I I I I+

−= + = + − , (17)

Eq.(16) is an ordinary differential equation. The solution 1(, ,)I obeys two boundary conditions, at

TOA (descending diffuse radiation is zero) and BOA (ascending diffuse radiation is zero even if the

surface is not black). Because of that, the solution in single scattering looks different for ascending, µ <

0, and descending, µ > 0, radiation

0 0 0

0 0 0

0 0
1 1 0

0 0

0

0 0

exp exp , 0

(, ,) (,) () exp exp , 0,
4

exp , .

I I p

 −
− − −

 −

 = = − − −

 −

 − =

 (18)

The last equation analytically eliminates the 01/ () − singular point, which also can be avoided

numerically by slightly shifting µ.

Eq.(18) describes general features of the angular distribution of the scattered light, and can be used to

quickly compute derivatives over the parameters (e.g., optical thickness). Due to its simple analytical

representation, it is used to enhance the code’s performance as a routine known as single scattering

correction.

Eq.(18) is inconvenient if () (,)p p = . In this case one splits the atmosphere into homogeneous

layers Δτ, computes single scattering from each layer, assumed alone 11(,)I (τ0=Δτ and τ=0 or Δτ for

upward and downward solutions, respectively),

0

0 0

0 0
11 0

0 0

0

0 0

1 exp , 0

(,) () exp exp , 0,
4

exp ,

I p

− −

 −

 = − − −

 −

 − =

 (19)

and then computes the contribution from that layer to all other layers above and below the current one,

accounting for the exponential attenuation along the view direction as appropriate. The solar beam

must also be attenuated. Fig.10 illustrates the idea. By looping over all ∆τ-layers, one accumulates the

contribution from each and thus gets the single scattering solution at all levels in the atmosphere, which

we will use further for multiple scattering computations.

23

Fig.10 Single scattering from layer

4, (4)

1I see Eq.(19), irradiated by an

attenuated direct solar beam
contributes to each boundary
above and below the layer. The
contribution is also attenuated
after scattering depending on the
view cosine. Accumulated
contribution from all layers 1 to 6
yields single scattering at each
boundary of the layer.

For validation purposes, we recommend implementing two versions of the single scattering solution.

The one given by Eq.(18) is easier to implement: it does not loop over element layers, and attenuation

along the solar beam and the view direction are accounted for in the equation “automatically”. Eq.(19)

is practically convenient but requires more coding – hence the chance of making a mistake is higher.

Benchmark results are published [85] for single scattering of polarized light, which in the case of solar

light precisely agrees with the scalar approximation made here. Fig.11(a-b) shows our implementation

of Eq.(18) separately for upward (single_scattering_up) and downward

(single_scattering_down) radiation. Source code for Eq.(19) will be shown later.

Fig.11a: Python code for Eq.(18), ascending radiation: mu < 0; array of azimuths azr is in radians. Expansion

moments xk are scaled by half of the single scattering albedo – see Section 3.5 “TOA flux and scaling of the phase

function and moments”.

1. import numpy as np

2. from numba import jit

3. from def_legendre_polynomial import legendre_polynomial

4. @jit(nopython=True, cache=True)

5. def single_scattering_up(mu, mu0, azr, tau0, xk):

6. nk = len(xk)

7. smu = np.sqrt(1.0 - mu*mu)

8. smu0 = np.sqrt(1.0 - mu0*mu0)

9. nu = mu*mu0 + smu*smu0*np.cos(azr)

10. p = np.zeros_like(nu)

11. for inu, nui in enumerate(nu):

12. pk = legendre_polynomial(nui, nk-1)

13. p[inu] = np.dot(xk, pk)

14. mup = -mu

15. I1up = p*mu0/(mu0 + mup)*(1.0 - np.exp(-tau0/mup -tau0/mu0))

16. return I1up

24

Fig.11b: Same as Fig.11a except for descending radiation: mu > 0. Expansion moments xk are scaled by half of the

single scattering albedo – see Section 3.5 “TOA flux and scaling of the phase function and moments”.

In both functions single_scattering_up and single_scattering_down, the phase function

is represented using expansion moments, xk (scaled by half of single scattering albedo – see Section

3.5). Next section discusses this key step in RT numerical simulation.

3.4. Expansion of the phase function in Legendre series, and addition theorem
In both code samples for the upward and downward single scattering intensity, Fig.11ab, one finds

expansion of the phase function in Legendre series using dot product

import numpy as np

…

pk = legendre_polynomial(nu, nk-1)

p = np.dot(xk, pk)

for which the analytical formula is

0

() ()
K

k k

k

p x P
=

 = . (20)

This expansion can be omitted in the case of single scattering, but for multiple scattering it is a key step.

The reason for that is the cosine of the scattering angle ()

 cos = (21)

is not a direct variable of the RTE. However, it is indirectly related to the RTE variables through the

following:

 2 21 1 cos() = + − − − (22)

1. import numpy as np

2. from numba import jit

3. from def_legendre_polynomial import legendre_polynomial

4. @jit(nopython=True, cache=True)

5. def single_scattering_down(mu, mu0, azr, tau0, xk):

6. nk = len(xk)

7. tiny = 1.0e-8 # for 1/(mu-mu0) singular point

8. smu = np.sqrt(1.0 - mu*mu)

9. smu0 = np.sqrt(1.0 - mu0*mu0)

10. nu = mu*mu0 + smu*smu0*np.cos(azr)

11. p = np.zeros_like(nu)

12. for inu, nui in enumerate(nu):

13. pk = legendre_polynomial(nui, nk-1)

14. p[inu] = np.dot(xk, pk)

15. if np.abs(mu - mu0) < tiny:

16. I1dn = p*tau0*np.exp(-tau0/mu0)/mu0

17. else:

18. I1dn = p*mu0/(mu0 - mu)* \

19. (np.exp(-tau0/mu0) - np.exp(-tau0/mu))

20. return I1dn

25

In Eq.(22), the prime notation is used for radiation before scattering, which direction is arbitrary and

unknown, except for the incoming Solar beam: 0 0, 0 = = = .

The addition theorem for Legendre polynomials combines Eqs.(20) and (22) using ordinary and

associated Legendre polynomials:

0

1

() (, , ,) 2 cos(())
M

m

m

p p p p m
=

 = = + − =

 0 0

0 0

() () 2 () ()cos(())
K K M K

m m

k k k k k k

k k m k

x P P x P P m

= = =

 = + − (23)

Expansion Eq.(23) (in short form Eq.(6)) contains Fourier series, whose azimuthally averaged component

p0 we write as a separate term for convenience. Using the Fourier expansion of intensity, Eq.(5), and

orthogonal properties of the cosine function under the scattering integral, one gets the azimuthally-

independent (decoupled) equation for the m-th component of the scattered intensity (we use integral

form of the RTE as an example)

1

0 0
0 0

01

(,)
(,) (,) (,) (,)exp

2 4

m
m m m mI

I I p d I p
−

 + = + −

 (24)

The expansion moments of the phase function are a key input parameter for multiple scattering

simulations. At this step we assume them known and will briefly discuss their computation later in

Section 4.3. Before we proceed to Section 3.6 that shows sample code that solves Eq.(24) using the

method of GS iterations (the code is named gsit as a result), we need to define boundary conditions in

Section 3.5.

3.5. TOA flux, scaling of the phase function and the bottom boundary condition
In Section 2.1 we mentioned that the scaling of the RTE solution is in general arbitrary. For our code we

pick this value of the TOA flux:

 0 2I = (25)

which converts Eq.(24) to (note the single scattering term – last in the right side - has changed)

1

0 0
0

01

(,)
(,) (,) (,) (,)exp

2 2

m
m m m mI

I I p d p
−

 + = + −

 . (26)

Further, we note that the scattering event is always described by multiplication of the single scattering

albedo ω0 and the phase function (in single scattering) or moments (in the Fourier expanded single and

multiple scattering). To reduce the number of arguments in corresponding functions, we include ω0/2 as

a scaling factor in the phase function moments and deal with this equation (note ω0/2 is “dropped”)

1

0

01

(,)
(,) (,) (,) (,)exp

m
m m m mI

I I p d p
−

 + = + −

 , (27)

26

where the k = 0 expansion moment for the phase function becomes x0 = ω0/2, and other moments are

scaled by the same factor. It is for that reason the single scattering functions in Fig.11ab do not explicitly

take ω0 as an input parameter.

Definition of the TOA flux, Eq.(25), modifies the bottom boundary condition, Eq.(3), - the factor of 2 in

reflection of the direct solar beam (first term in the right side) appears

2 1

0
0 0 0

0 0 0

(, ,) 2 exp (, ,)I I d d

−

 = − +

 . (28)

The multiple bouncing (last) term in Eq.(28) contains doubled reflected intensity averaged over azimuth

(m=0 Fourier harmonic as the superscript in 0

0(,)I indicates)

2 2

0

0 0 0

0 0

1 2
(, ,) (, ,) 2 (,)

2
I d I d I

 = =
 (29)

Thus, the bottom boundary condition

1

0 00
0 0 0 0

0 0

(, ,) (,) 2 exp 2 (,)I I I d− −

 = = − +

 (30)

contains the factor of 2 at both terms, but for different reasons. In case of a Lambertian surface at BOA,

only m=0 Fourier harmonics for diffuse intensity survives after reflection. Using the bottom boundary

condition, Eq.(30), we now proceed to computation of multiple scattering.

3.6. Numerical simulation of multiple scattering using Gauss-Seidel iteration
The method of GS iterations is a simple yet powerful numerical technique to solve the RTE. Introduced

in RT in the 1960s for application in optical [72] and radio [86] bands, the method is actively used for

numerical simulation of scattered light and its derivatives in plane-parallel [36,62,87] and spherical

[74,88–93] atmospheres. We refer an interested reader to the above papers and references therein for

details of the method.

For our purposes, the GS method allows to illustrate the main steps of numerical implementation of the

RTE solution with arguably simplest possible non-Monte Carlo code. Thus, for instance, polarization of

light was included in the GS code from the very beginning; adding surface reflectance, including a rough

wind-ruffled ocean [94], is also straightforward. The code does not require external libraries or

understanding sophisticated eigenvalue decomposition formalism of the DO or SH methods.

Noteworthy, the methods of GS iterations and SO are conceptually identical and understanding of one

immediately leads to understanding of the other. Later in this section we will highlight a minor

peculiarity that distinguishes the two techniques.

Despite the general similarity of the GS and SO techniques, the former seems to have numerical

supremacy over the latter. Dave [95] showed that GS requires 40%-60% less iterations for computation

of downward fluxes (Fourier moment m=0 only) with four significant figures (~0.1% error). Azimuthal

dependence was not studied. In the same remarkable paper, Dave analyzed the influence of integration

step ∆τ = 0.005, 0.01, 0.02 on the final accuracy in Rayleigh and Mie-scattering scenarios. He concluded

[95] that the method of GS possess “more efficient iteration procedure” and found ∆τ ~ 0.01 meets the

27

0.1% error requirement for Rayleigh and Mie scattering, wide range of optical depths and solar angles,

while 0.02 “give fairly reliable numerical result” [95].

The idea of the method together with its strengths and weaknesses are narrated in [23] and [22]. One

splits the atmosphere into layers of equal (for efficiency) optical thickness ∆τ and solves the azimuthally

decoupled RTE, Eq.(24). First, solution at Gauss nodes is obtained iteratively starting from the single

scattering solution known at any point and direction in the atmosphere. Next the RTE is solved for

arbitrary line of sight using either dummy node technique or integration of the source function

technique (Section 3.6.2). The single scattering correction is applied to increase accuracy without

significantly increasing runtime (or equivalently: decrease the runtime for the same given accuracy). In

subsequent sections we provide details of the algorithm. For clarity, we split each function into pieces,

comment each piece separately, and refer to Fig.10 in support of our explanation.

3.6.1. Multiple scattering solution at Gauss nodes and a given Fourier order m
At this step, our goal is to compute the m-th Fourier moment of the diffuse light at Gauss nodes and at

all levels τi in the atmosphere, including TOA and BOA. The function

gauss_seidel_iterations_m() solves the problem using inputs m – Fourier moment: m = 0, 1, 2

… Kmax-1 (the function does not check the value of m); mu0 – cosine of the SZA; srfa – Lambertian

surface albedo (reflection coefficient); nit - number of iterations; ng1 – number of Gauss nodes per

hemisphere; nlr – number of layer elements; dtau – optical thickness of each layer element

(integration step over τ); as Section 3.5 explains, array xk contains the phase function expansion

moments scaled by single scattering albedo ω0/2 and (2k+1). The total optical thickness of the layer

(which, for this vertically-homogeneous case, is the whole atmosphere) is tau0=dtau*nlr. For

simplicity we define the total number of iterations nit manually (although this can be done

automatically). Variables m, nit, ng1, nlr are integers, other variables are floats. Function

gauss_seidel_iterations_m() uses the following dependences:

gauss_zeroes_weights() to compute Gauss zeros and weights, legendre_polynomial() to

compute ordinary Legendre polynomials, and schmidt_polynomial() to compute associated

(Schmidt semi-normalized) Legendre polynomials (Fig.12).

Fig.12a: Header for function gauss_seidel_iterations_m() to solve the m-th component of the RTE at

Gauss nodes and grid over τ.

We begin by defining some local parameters as indicated in Fig.12b.

1. import numpy as np

2. from numba import jit

3. from def_gauss_zeroes_weights import gauss_zeroes_weights

4. from def_legendre_polynomial import legendre_polynomial

5. from def_schmidt_polynomial import schmidt_polynomial

6. @jit(nopython=True, cache=True)

7. def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk)

28

Fig.12b: Local variable parameters in gauss_seidel_iterations_m(); tau is the equidistant grid of

levels.

We compute Gauss nodes µg and weights first per hemisphere and then extend them symmetrically for

the whole sphere. The first and second halves of each array correspond to ascending and descending

radiation, respectively.

Fig.12c: Double-Gauss nodes mug and weights wg.

Ordinary (for m = 0) or associated (for m > 0 – azimuthal dependence) Legendre polynomials and Fourier

moments of the phase function are then computed from expansion coefficients depending on the input

Fourier moment m. The same Fourier moment of the phase function is computed for scattering from the

solar direction to all Gauss quadrature directions to be used in single scattering.

Fig.12d: Computation of polynomials and the phase function for the given Fourier moment m.

One can now compute the m-th Fourier moment for single scattering at each boundary for subsequent

integration over optical depth, and at all Gauss directions for subsequent integration over the zenith.

The latter is the lead dimension, for which elements are in memory with unit stride, for efficient

integration over angle at each boundary.

We start computation of single scattering for descending radiation, the 2nd and 3rd parts of Eq.(19), by

first computing single scattering from an element layer ∆τ, accumulating contributions for all element

layers but considering the attenuation of the solar beam as it reaches each element layer and

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

8. tiny = 1.0e-8 # to compare floats

9. nb = nlr+1 # number of boundaries

10. nk = len(xk) # number of expansion moments

11. ng2 = ng1*2 # number of Gauss nodes per sphere

12. tau0 = nlr*dtau # total optical thickness

13. tau = np.linspace(0.0, tau0, nb) # embedding of boundaries (Fig.6)

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

14. mup, w = gauss_zeroes_weights(0.0, 1.0, ng1) # mup > 0

15. mug = np.concatenate((-mup, mup)) # up: -mup, down: +mup

16. wg = np.concatenate((w, w))

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

17. pk = np.zeros((ng2, nk)) # Legendre polynomials

18. p = np.zeros(ng2) # m-th moment of the phase function

19. if m == 0:

20. pk0 = legendre_polynomial(mu0, nk-1)

21. for ig in range(ng2):

22. pk[ig, :] = legendre_polynomial(mug[ig], nk-1)

23. p[ig] = np.dot(xk, pk[ig, :]*pk0)

24. else:

25. pk0 = schmidt_polynomial(m, mu0, nk-1)

26. for ig in range(ng2):

27. pk[ig, :] = schmidt_polynomial(m, mug[ig], nk-1)

28. p[ig] = np.dot(xk, pk[ig, :]*pk0)

29

attenuation along the line of sight. Recall, downward single scattering obeys the zero top boundary

condition, while the bottom boundary has no effect (because for downward light in single scattering, the

BOA has not yet been encountered). A numerical singularity is avoided by using Taylor series expansion

(last formula in Eq.(19)).

Fig.12e: Solution to RTE in the single scattering approximation at positive Gauss nodes (2nd – lead – dimension) and

all layer boundaries (first dimension).

Ascending single scattering is computed in a similar way, except for starting from BOA and going up. The

only difference is the contribution of surface reflection of the direct solar beam. We limited ourselves to

Lambertian surface with reflection that is azimuthally even – hence only the m=0 Fourier component is

present for that surface.

Fig.12f: Same Fig.12e except for negative (upward) Gauss directions. See Eq.[30] for scaling factor 2.0 in line 47.

We recommend checking this single scattering versus the one shown in Fig.11ab, at least for the

azimuthally independent scenario, because the single scattering in Fig.12(e-f) will now be used to start

iterations for multiple scattering.

Numerical simulation of multiple scattering involves the m-th Fourier moment of the phase function,

computed from expansion moments, that simulates scattering from all Gauss directions to all Gauss

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

29. I11dn = np.zeros(ng1) # single scattering from element layer

30. for ig in range(ng1):

31. mu = mup[ig]

32. if (np.abs(mu0 - mu) < tiny): # mu - mu0 -> 0 singularity

33. I11dn[ig] = p[ng1+ig]*dtau*np.exp(-dtau/mu0)/mu0

34. else:

35. I11dn[ig] = p[ng1+ig]*mu0/(mu0 - mu)* \

36. (np.exp(-dtau/mu0) - np.exp(-dtau/mu))

37. I1dn = np.zeros((nb, ng1)) # single scattering at all levels ib

38. I1dn[1, :] = I11dn

39. for ib in range(2, nb):

40. I1dn[ib, :] = \

41. I1dn[ib-1, :]*np.exp(-dtau/mup) + \ # from boundary above

42. I11dn*np.exp(-tau[ib-1]/mu0) # from the current layer

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

43. I11up = p[0:ng1]*mu0/(mu0 + mup)* # single scattering from one layer

44. (1.0 - np.exp(-dtau/mup -dtau/mu0))

45. I1up = np.zeros_like(I1dn) # single scattering at all boundaries

46. if m == 0 and srfa > tiny:

47. I1up[nb-1, :] = 2.0*srfa*mu0*np.exp(-tau0/mu0) # surface

48. I1up[nb-2, :] = I1up[nb-1, :]*np.exp(-dtau/mup) + \

49. I11up*np.exp(-tau[nb-2]/mu0)

50. else:

51. I1up[nb-2, :] = I11up*np.exp(-tau[nb-2]/mu0)

52. for ib in range(nb-3, -1, -1):

53. I1up[ib, :] = I1up[ib+1, :]*np.exp(-dtau/mup) + \

54. I11up*np.exp(-tau[ib]/mu0)

30

directions, Eq.(24). Basically, one deals with a square matrix that multiples a vector of intensities coming

from all the Gauss directions.

The RTE scattering integral is replaced with matrix vector multiplication

 =J W I (31)

where W is an ng2-by-ng2 matrix (wpij in Fig.12g), I is a vector of ng2 intensities coming from all

Gauss directions to the scattering point, and J is a vector of intensities scattered towards all Gauss

directions (not yet integrated over τ – hence we use notation J instead of I). Recall, upward directions

(mu < 0) come first, followed by downward directions. With that in mind, we rewrite Eq.(31) as follows

− − − −

− +− − − − + +

+ + + +

− ++ + − − + +

 +
= =

+

W WJ I W I W I

W WJ I W I W I
. (32)

In Eq.(32), all vectors and matrices are half the size, ng1=ng2/2, of those in Eq.(31), top and bottom

indices at W correspond to sign of µ along row and column, respectively.

Several important notes must be made about the square matrix wpij. First, Eq.(32) reveals the

meaning of each quarter of the scattering matrix W. Namely, −

−W describes how light that was traveling

upward (subscript “-”), −I , continues its path upward (superscript ”-”) after scattering. Hence, −

−W is

the diffuse upward transmittance, −T . −

+W describes how light that was traveling down, +I , gets

redirected up by scattering. Hence, −

+W is the diffuse upward reflectance, −R . Applying the same idea

to the two terms of +J leads one to rewrite Eq.(32) as

 − −− −

+ ++ +

=

T RJ I

R TJ I
. (33)

Second, for a homogeneous layer there is no “up” and “down” – its optical properties are the same:

− += =T T T and − += =R R R , so

 − −

+ +

=

T RJ I

R TJ I
. (34)

In terms of the piece of code in Fig.12g, one can say that scattering from Gauss direction i to j and

vice versa are equal and depend only on mutual “location” of the two ordinates. This is known as the

principal of reciprocity [27]. Hence, wpij must be symmetric.

Third, as Table 2 indicates, non-zero elements in summation over k start with m – not with 0 (line 58 in

Fig.12g). However, the gain of time is minor.

31

Fig.12g: Fourier moment m for the phase matrix p for scattering from Gauss node i to Gauss node j weighted

with wg for integration over all Gauss directions in the scattering integral - hence the name wpij.

Fourth and final, it can be shown [75] that upward and downward elements of matrix W = wpij

involve only odd and even orders k, respectively. Accounting for that would involve unnecessary

complication of the code and discussion of equations, without any significant advantage in performance.

We skip this step for now, but use symmetry of the matrix W, Eqs.(33)-(34), which are basic equation for

adding, AD, IE, and MO methods.

Fig.12h: Diffuse transmittance, T, and reflectance, R, matrices which elements are stored in row-major (C-style).

Since R and T will be used for numerical integration (summation) iteratively, it is crucial for efficiency to

make sure their elements are contiguous in memory. The diffuse reflectance and transmittance matrices

and single scattering solution allow us to iteratively compute multiple scattering at all boundaries and

Gauss directions. Recall, for simplicity, we define the number of iterations nit manually as an input

parameter.

Each scattering act is simulated using Eq.(24)

1

0

1

(,) (,) (,)
2

m m mJ p I d

+

−

 = . (35)

In Eq.(35), we don’t know intensity at arbitrary optical thickness τ, however we do know it at the nodes

of the τ-grid. Given that ∆τ is sufficiently small, it is fair to say the intensity does not change much from

one boundary to other and can be replaced with an average value

1

0 1

1

(,) (,)
(,) () (,)

2 2

m m
m m m i iI I

J J p d

+

−

 +
 = . (36)

This approximation has been widely used in GS and SO codes for dtau=0.01-0.02 [22,40,72]. Eq.(36)

yields in the integral over τ (see Eq.(4), last term in the right-hand side)

1

(,)exp () 1 expm mJ dt J

 + +

 − − −

 . (37)

Eq.(37) simulates “re-scattering” of the scattered radiation. To compute intensity at the given level, one

must add single scattering within ∆τ and diffuse radiation from the previous level that reaches the

current level without scattering. Fig.12i shows the corresponding piece of code for downward radiation.

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

55. wpij = np.zeros((ng2, ng2))

56. for ig in range(ng2):

57. for jg in range(ng2):

58. wpij[ig, jg] = wg[jg]*np.dot(xk, pk[ig, :]*pk[jg, :])

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

59. T = wpij[0:ng1, 0:ng1].copy() # T.flags.c_contiguous = True

60. R = wpij[0:ng1, ng1:ng2].copy() # R.flags.c_contiguous = True

32

Fig. 12i: Implementation of Eqs.(35) and (37) for iterative computation of multiple scattering for descending

radiation.

The array that describes downward radiation, Idn, is redefined in the ib-loop (Fig.12i: line 72). Once

the loop is complete for itr=0 (first iteration), Idn will contain single scattering (initializes iterations),

re-scattered again (Fig.12i, line 66) and integrated over tau (Fig.12i, loop in line 68) – this is the two

orders of scattering approximation.

To validate this intermediate result for two orders of scattering and catch possible errors at the first

iteration, one can use a reliable benchmark [85] with input defined in that paper. In the aforementioned

benchmark, the polarization is accounted for, and its influence on the total intensity is the strongest in

the second scattering. However, 1) the vector benchmark is defined for aerosol layer of total optical

thickness τ0=0.2, not Rayleigh scattering, where polarization gives ~10% difference at τ0~1.0 [96], and 2)

the vector benchmark is still useful for catching errors in array indexing, and typos like using mu instead

of mu0 etc., which can often lead to numerical errors exceeding 10%. In addition to that, using vector

successive orders RT code SORD [40] we have reproduced this benchmark with (vector mode) and

without polarization (scalar mode) and found that influence of polarization was at the level of numerical

error of SORD, ~0.1%.

Note Idn contains both scattering orders, not the second order only. In order to write a code based on

the SO method, one has to store the result of line 72 in an array separate from the one that accumulates

orders, instead of redefining Idn, and use only the second order (not the sum of the two) to compute

the third one. This is basically the only feature that distinguishes computational procedures of the two

algorithms, GS and SO.

The effect of array redefinition, as opposed to splitting by orders, can be seen in first iteration for

computation of the upward radiation – Fig.12j.

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

61. Iup = np.copy(I1up) # initialize iterations …

62. Idn = np.copy(I1dn) # … with single scattering

63. for itr in range(nit):

64. Iup05 = 0.5*(Iup[0, :] + Iup[1, :])

65. Idn05 = 0.5*(Idn[0, :] + Idn[1, :]) # TOA boundary: Idn[0, :]=0

66. J = np.dot(R, Iup05) + np.dot(T, Idn05)

67. Idn[1, :] = I11dn + (1.0 - np.exp(-dtau/mup))*J

68. for ib in range(2, nb):

69. Iup05 = 0.5*(Iup[ib-1, :] + Iup[ib, :])

70. Idn05 = 0.5*(Idn[ib-1, :] + Idn[ib, :])

71. J = np.dot(R, Iup05) + np.dot(T, Idn05)

72. Idn[ib, :] = Idn[ib-1, :]*np.exp(-dtau/mup) + \

73. I11dn*np.exp(-tau[ib-1]/mu0) + \

74. (1.0 - np.exp(-dtau/mup))*J

33

Fig.12j: Same as Fig.12i, except for upward integration over τ; see Eq.(30) for the factor of 2.0 in lines 76 and 77.

At itr=0, in line 78, the upward intensity Iup is equal to that of single scattering I1up because it has

not yet been redefined. However, in the next line 79, double scattering is used as computed by code in

Fig.12i. Thus, in line 80, the code uses a “hybrid” light field: two scattering orders down, but only one

up. This prevents one from using the mentioned benchmark [85] to check the upward direction unless

the developer implements the method of two orders of scattering before proceeding with GS iteration.

This strategy is highly recommended because it provides an opportunity to check the results against a

reliable benchmark, and at the same time learn the SO method, which does not deviate too much from

the presented GS iteration code framework.

Once the loop over all iterations is complete, one gets the solution at Gauss nodes and all levels in the

atmosphere for upward Iup and downward Idn multiple scattering. These arrays, along with Gauss

weights wg and nodes mug (to avoid recomputing them again) are returned from

gauss_seidel_iterations_m(). In the next section we will show how to compute m-th Fourier

component of intensity at arbitrary (user defined) direction using RTE solution at Gauss nodes and τ-

grid.

3.6.2. Multiple scattering solution at arbitrary direction

3.6.2.1. General comments

There are several ways to compute intensity at user-defined nodes once the solution at Gauss nodes has

been determined. Nearest neighbor or other interpolation may be sufficient if a high-order quadrature

is used. Inserting a dummy node [97], associated with zero weight, is the next easiest way to solve the

RTE at arbitrary view direction. It is convenient to “attach” the dummy nodes to positive or negative

Gauss nodes depending on the sign of the dummy node. This approach works sufficiently well for

remote sensing that uses one view zenith angle (e.g., AERONET). When one deals with only one view

direction and one or few dozens of ordinates, performance (which is linked to the number of nodes and

def gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, nlr, dtau, xk):

…

63. for itr in range(nit):

…

75. if m == 0 and srfa > tiny:

76. Iup[nb-1, :] = 2.0*srfa*np.dot(Idn[nb-1, :], mup*w) + \

77. 2.0*srfa*mu0*np.exp(-tau0/mu0)

78. Iup05 = 0.5*(Iup[nb-2, :] + Iup[nb-1, :]) # BOA: Iup[nb-1, :]=0

79. Idn05 = 0.5*(Idn[nb-2, :] + Idn[nb-1, :])

80. J = np.dot(T, Iup05) + np.dot(R, Idn05)

81. Iup[nb-2, :] = Iup[nb-1, :]*np.exp(-dtau/mup) + \

82. I11up*np.exp(-tau[nb-2]/mu0) + \

83. (1.0 - np.exp(-dtau/mup))*J

84. for ib in range(nb-3, -1, -1): # -1 to include TOA

85. Iup05 = 0.5*(Iup[ib, :] + Iup[ib+1, :])

86. Idn05 = 0.5*(Idn[ib, :] + Idn[ib+1, :])

87. J = np.dot(T, Iup05) + np.dot(R, Idn05)

88. Iup[ib, :] = Iup[ib+1, :]*np.exp(-dtau/mup) + \

89. I11up*np.exp(-tau[ib]/mu0) + \

90. (1.0 - np.exp(-dtau/mup))*J

91. return mug, wg, Iup[:, :], Idn[:, :]

34

ordinates) does not suffer. A symmetric dummy node is usually added into Eqs.(31)-(32), even if not

used, to keep the size of “upward” and “downward” arrays even.

However, when one needs to generate a LUT, the number of dummy nodes becomes comparable or

even exceeds the number of Gauss nodes. One can increase performance of integration over µ, simply

by skipping dummy nodes in the summation. In this case, corresponding matrices would be rectangular

to simulate scattering from all Gauss nodes (lead dimension e.g., row-major in C) to all Gauss nodes and

user-defined nodes (column-wise). This strategy does not help much: iterations will spend time to solve

RTE at dummy nodes which, because of their zero weight, contribute nothing back to the Gauss nodes.

Nevertheless, the development of a dummy node version of an RT code could be useful for any selected

numerical method of the RTE solution to check integration of the source function technique, described

next.

The integration of the source function is identical to solution of the RTE at Gauss nodes, except no

iterations are used. We know the RTE solution at Gauss nodes and all boundaries – hence we can

evaluate the scattering integral from all Gauss directions to the user-defined one at any boundary and

integrate it numerically, like we did for the Gauss nodes. The similarity between numerical integration

over τ at Gauss nodes (iteratively) and at user-defined node (no iterations) makes this approach very

convenient and easy to implement [98]. Integration of the source function is called in a loop over user-

defined nodes independently, with each user-defined µ as an RTE parameter. It is wise to create two

separate functions for upward and downward integration because they are a) slightly different due to

boundary conditions and b) only one is required for most applications (except for rare synergetic

retrievals of a scenes simultaneously observed from ground and space). The source function integration

yields the solution at arbitrary level of the τ grid. But in most cases, solution at TOA (satellites) or BOA

(ground-based sun photometers) is of interest. We now illustrate this technique for descending,

source_function_integrate_down(), and ascending,

source_function_integrate_up(), radiation.

3.6.2.2. Descending radiation: integration downward

Input for the downwards integration function contains Fourier moment m, the user’s desired output

downward direction mu > 0, solar angle mu0, number of layers nlr, step over tau dtau, the phase

function expansion moments xk, Gauss nodes mug and weights wg, and intensity at all Gauss nodes in

between each pair of boundaries, Ig05 (see lines 64, 65 and 78, 79 in

gauss_seidel_iterations_m()). Like downward single scattering, there is no surface

parameter. The surface contributes via multiple scattering intensity at Gauss nodes. A few local

parameters are defined like in gauss_seidel_iterations_m(), lines 8-13 in Fig.13a.

35

Fig.13a: First few lines for integration of the source function downwards.

The function will compute single scattering from solar to user-defined direction (phase function p), and

multiple scattering from Gauss directions to the user-defined one. Arrays with ordinary (m=0) or

associated Legendre polynomials at solar (pk0), and Gauss (pk) directions and all necessary orders k are

used for this purpose exactly like in gauss_seidel_iterations_m(), lines 17-18. A few new

lines of code compute Legendre polynomials (pku) at the user-defined node – see Fig.13b.

Fig.13b: Computation of the polynomials at solar (mu0), user (mu), and Gauss (mug) nodes.

One then computes single scattering from an element layer dtau alone (I11dn), and a full single

scattering solution (I1dn) at user-defined node only and nodes of the τ-grid – Fig.13c.

1. import numpy as np

2. from numba import jit

3. from def_legendre_polynomial import legendre_polynomial

4. from def_schmidt_polynomial import schmidt_polynomial

5. @jit(nopython=True, cache=True)

6. def source_function_integrate_down(m, mu, mu0, nlr, dtau, \

7. xk, mug, wg, Ig05):

8. tiny = 1.0e-8

9. ng2 = len(wg)

10. nk = len(xk)

11. nb = nlr+1

12. tau0 = nlr*dtau

13. tau = np.linspace(0.0, tau0, nb)

def source_function_integrate_down(m, mu, mu0, nlr, dtau, \

xk, mug, wg, Ig05):

...

14. pk = np.zeros((ng2, nk))

15. if m == 0:

16. pk0 = legendre_polynomial(mu0, nk-1)

17. pku = legendre_polynomial(mu, nk-1)

18. for ig in range(ng2):

19. pk[ig, :] = legendre_polynomial(mug[ig], nk-1)

20. else:

21. pk0 = schmidt_polynomial(m, mu0, nk-1)

22. pku = schmidt_polynomial(m, mu, nk-1)

23. for ig in range(ng2):

24. pk[ig, :] = schmidt_polynomial(m, mug[ig], nk-1)

25. p = np.dot(xk, pku*pk0)

36

Fig.13c: Single scattering at the user node and all levels of τ.

Unlike in gauss_seidel_iterations_m() lines 55-58, the scattering matrix wpij is a vector (as

mu is a single element rather than an array) that simulates scattering from all Gauss directions to the

user-defined one – Fig.13d.

Fig.13d: Scattering from all Gauss directions to a single user-defined direction.

As a final step, one accumulates the contribution from all element layers from TOA (zero boundary

condition) to BOA – Fig.13e.

Fig.13e: Integration over τ for user-defined descending radiation. Multiple (second and higher) scattering solution

is returned for the given Fourier component.

As a result, the array Idn contains all scattering orders’ contribution to the solution to m-th Fourier

component of the RTE at all boundaries and arbitrary downward direction. By subtracting the single

scattering solution for a subsequent single scattering correction (Section 3.6.3 ahead), the function

returns multiple (2+) scattering solution at BOA.

def source_function_integrate_down(m, mu, mu0, nlr, dtau, \

xk, mug, wg, Ig05):

...

26. if np.abs(mu - mu0) < tiny:

27. I11dn = p*dtau*np.exp(-dtau/mu0)/mu0

28. else:

29. I11dn = p*mu0/(mu0 - mu)* \

30. (np.exp(-dtau/mu0) - np.exp(-dtau/mu))

31. I1dn = np.zeros(nb)

32. I1dn[1] = I11dn

33. for ib in range(2, nb):

34. I1dn[ib] = I1dn[ib-1]*np.exp(-dtau/mu) + \

35. I11dn*np.exp(-tau[ib-1]/mu0)

def source_function_integrate_down(m, mu, mu0, nlr, dtau, \

xk, mug, wg, Ig05):

...

36. wpij = np.zeros(ng2) # sum{xk*pk(mu)*pk(muj)*wj, k=0:nk}

37. for jg in range(ng2):

38. wpij[jg] = wg[jg]*np.dot(xk, pku[:]*pk[jg, :])

def source_function_integrate_down(m, mu, mu0, nlr, dtau, \

xk, mug, wg, Ig05):

...

39. Idn = np.copy(I1dn) # boundary condition: Idn[0, :] = 0.0

40. J = np.dot(wpij, Ig05[0, :])

41. Idn[1] = I11dn + (1.0 - np.exp(-dtau/mu))*J

42. for ib in range(2, nb):

43. J = np.dot(wpij, Ig05[ib-1, :])

44. Idn[ib] = Idn[ib-1]*np.exp(-dtau/mu) + \

45. I11dn*np.exp(-tau[ib-1]/mu0) + \

46. (1.0 - np.exp(-dtau/mu))*J

47. return Idn[nb-1] - I1dn[nb-1]

37

3.6.2.3. Ascending radiation: integration upward

The upward integration is slightly more complicated because of the possible surface contribution. In

addition to those of source_function_integrate_down(),

source_function_integrate_up() uses the following input parameters: srfa – Lambertian

surface albedo, Igboa – intensity at Gauss nodes at BOA (output of

gauss_seidel_iterations_m()), and one parameter changes the sign: mu < 0 for upward

directions.

Local parameters, polynomials, the phase function, and multiple scattering vector of intensity at all

boundaries are computed exactly like in source_function_integrate_down() (lines 7-24, 35-

37), upward single scattering at user-defined node – as in gauss_seidel_iterations_m() (lines

43-53). So, we immediately proceed to integration of scattered radiation from BOA to TOA. This is

shown in Fig.14, where line number 39 is inherited from corresponding line in

source_function_integrate_down(), and positive mup = -mu > 0 for convenience.

Fig.14: Vertical integration at arbitrary line of sight. Note, mu < 0 is an input parameter, while mup = -mu > 0 is

defined within source_function_integrate_up() and used for convenience; see Eqs.(30) for the scaling

factor 2.0 in lines 41 and 42.

Like source_function_integrate_down(), source_function_integrate_up()

returns m-th Fourier component for multiple (2+) scattering within the atmosphere, and multiple

bouncing of light between the atmosphere and underlying reflecting surface, and only at TOA.

3.6.3. Main program: accumulation of the Fourier series
To combine and test these functions as a sample RT code, we consider two cases: Rayleigh scattering

over a black (non-reflecting) surface, and fine aerosol (no Rayleigh) over a reflecting surface. For aerosol

we used a volcanic Model 3 from [99]. Apart from the mentioned differences in the surface, the phase

function and the number of Fourier moments, all other parameters are the same for simplicity. We

validate the results against the DO RT code IPOL [41] in scalar (no polarization) mode and report

runtime. First, we define solar-view geometry, single scattering albedo, and accuracy parameters as

Fig.15a indicates.

def source_function_integrate_up(m, mu, mu0, srfa, nlr, dtau,

xk, mug, wg, Ig05, Igboa):

...

39. Iup = np.copy(I1up)

40. if m == 0 and srfa > 0.0:

41. Iup[nb-1] = 2.0*srfa*np.dot(Igboa, mug[ng1:ng2]*wg[ng1:ng2]) +\

42. + 2.0*srfa*mu0*np.exp(-tau0/mu0)

43. J = np.dot(wpij, Ig05[nb-2, :])

44. Iup[nb-2] = Iup[nb-1]*np.exp(-dtau/mup) + \

45. I11up*np.exp(-tau[nb-2]/mu0) + \

46. (1.0 - np.exp(-dtau/mup))*J

47. for ib in range(nb-3, -1, -1):

48. J = np.dot(wpij, Ig05[ib, :])

49. Iup[ib] = Iup[ib+1]*np.exp(-dtau/mup) + \

50. I11up*np.exp(-tau[ib]/mu0) + \

51. (1.0 - np.exp(-dtau/mup))*J

52. return Iup[nb-1] - I1up[nb-1]

38

Fig.15a: RT code gsit: main program.

At this step, the view zeniths are defined via cosines and for TOA only. Below we define symmetric

directions at BOA. Then comes the definition of the phase function expansion moments, desired number

of the Fourier moments to be computed, surface reflectance, and location of column with benchmark

results in the benchmark file. Note, the moments already contain the (2k+1) scaling factor. Hence, for

the aerosol case [99], average scattering cosine is xk[1]/(2*1+1)= 2.084911/3 ≈ 0.695 (Fig.15b).

Script: gsit.py

1. import time

2. import numpy as np

3. from def_gauss_seidel_iterations_m import gauss_seidel_iterations_m

4. from def_source_function_integrate_down import \

source_function_integrate_down

5. from source_function_integrate_up import \

source_function_integrate_up

6. from def_single_scattering_down import single_scattering_down

7. from def_single_scattering_up import single_scattering_up

8. #

9. prnt_scrn = True # print out intensities on the screen

10. fname_bmark = ‘test_gsit_R&A_srf.txt’ # file with benchmark data

11. phasefun = ‘a’ # ‘r’: rayleigh; aerosol otherwise (case sensitive)

12. nit = 10 # number of Gauss-Seidel iterations

13. ng1 = 8 # number of Gauss nodes per hemisphere

14. nlr = 100 # number of layer elements

15. dtau = 0.01 # integration step over tau

16. ssa = 0.99999999 # single scattering albedo

17. sza = 45.0 # solar zenith angle, degrees

18. mup = np.linspace(-0.2, -0.9, num=8) # cos(view zenith angle)

19. azd = np.array([0.0, 45.0, 90.0, 135.0, 180.0]) # relative azimuths

Script: gsit.py

...

20. if phasefun == 'r’:

21. print("Rayleigh:")

22. nm = 3

23. xk = np.array([1.0, 0.0, 0.5])

24. srfa = 0.0 # surface albedo

25. icol = 3

26. else:

27. print("Aerosol:")

28. nm = 10

29. xk = np.array([1.000000, 2.084911, 2.459134, 2.234752, \

30. 1.873098, 1.492956, 1.164725, 0.881976, \

31. 0.689172, 0.506016, 0.402247, 0.289742, \

32. 0.232980, 0.165427, 0.133290, 0.093127, \

33. 0.074444, 0.050682, 0.039800, 0.025983, \

34. 0.019929, 0.012274, 0.009257, 0.005312, \

35. 0.004015, 0.002120, 0.001638, 0.000764, \

36. 0.000602, 0.000211, 0.000178, 0.000033, \

37. 0.000037, 0.000004, 0.000005, 0.000000])

38. srfa = 0.3 # surface albedo

39. icol = 4

39

Fig.15b: Input data for Rayleigh (see 0 1 2

1 1 1, 0, and = [24]) and aerosol scattering (see column 1

l in Table 7

from [99]).

Computation of the cosine of the solar angle, downward user-defined nodes, azimuth in radians and

lengths of arrays finalize the preparation step (Fig.15c)

Fig.15c: Auxiliary input parameters.

Now one computes exact single scattering (Fig.15d), including the TOA surface contribution. “Exact”

relates to representation of the phase function: no Fourier series are involved and either all moments

xk are used, or the phase function is interpolated over scattering angle to get values at the view

direction. In the latter case, expansion is completely avoided in the single scattering correction.

Fig.15d: This section computes exact single scattering path radiance at TOA and BOA. For TOA, contribution of the

direct solar beam reflectance is accounted for. Refer to Eq.[30] for the factor of 2.0 in line 52 and to Sec.3.5 for the

factor of 0.5*ssa in lines 51, 54, and 58.

It is important to make sure that single scattering corresponds to the same incident TOA flux as the

multiple scattering which is computed using Fourier series (loop over Fourier index m).

Now, for each azimuth order m, the RTE is solved at Gauss nodes and all boundaries for all scattering

orders in Fig.15e.

Script: gsit.py

...

40. time_start = time.time()

41. mu0 = np.cos(np.radians(sza)) # cosine of solar zenith, mu0 > 0

42. mudn = -mup # cosines of downward view zeniths

43. nmu = len(muup) # number of upward view zeniths

44. azr = np.radians(azd) # relative azimuths in radians

45. naz = len(azd) # number of relative azimuths

46. nrows = nmu*naz # number of rows in output array

Script: gsit.py

...

47. Itoa = np.zeros((nmu, naz))

48. if srfa > 0.0:

49. for imu, mu in enumerate(muup):

50. Itoa[imu, :] = single_scattering_up(mu, mu0, azr, \

51. nlr*dtau, 0.5*ssa*xk) +\

52. 2.0*srfa*mu0*np.exp(-nlr*dtau/mu0)*np.exp(nlr*dtau/mu)

51. else:

52. for imu, mu in enumerate(muup):

53. Itoa[imu, :] = single_scattering_up(mu, mu0, azr, \

54. nlr*dtau, 0.5*ssa*xk)

55. Iboa = np.zeros((nmu, naz))

56. for imu, mu in enumerate(mudn):

57. Iboa[imu, :] = single_scattering_down(mu, mu0, azr, \

58. nlr*dtau, 0.5*ssa*xk)

40

Fig.15e: Solve RTE for the given m at all Gauss nodes and optical depth grid. Refer to Sec.3.5 for the factor of

0.5*ssa in line 65.

Diffuse intensity for all Gauss directions, up and down, is averaged within each thin layer dtau (Fig.15f)

Fig.15f: Diffuse intensity in between each pair of boundaries and at all Gauss directions.

These form input for functions that integrate along the line of sight (user-defined mu). Unlike

gauss_seidel_iterations_m(), these functions return only multiple (second onward)

scattering orders for the given Fourier moment m. This multiple scattering radiation is weighted with

cos(mφ), Eq.(5) and added to the exact single scattering computed above (Fig.15g).

Fig.15g: Integration along the line of sight and accumulation of the Fourier series finalize the RTE solution. Refer to

Sec. 3.5 for the factor of 0.5*ssa in lines 77 and 81.

Script: gsit.py

...

59. time_gsitm = 0.0

60. deltm0 = 1.0

61. for m in range(nm):

62. t1 = time.time()

63. mug, wg, Igup, Igdn = \

64. gauss_seidel_iterations_m(m, mu0, srfa, nit, ng1, \

65. nlr, dtau, 0.5*ssa*xk)

66. t2 = time.time()

67. time_gsitm += t2 - t1

Script: gsit.py

...

61. for m in range(nm):

...

68. Ig05 = np.zeros((nlr, 2*ng1))

69. for ilr in range(nlr):

70. Iup05 = 0.5*(Igup[ilr, :] + Igup[ilr+1, :])

71. Idn05 = 0.5*(Igdn[ilr, :] + Igdn[ilr+1, :])

72. Ig05[ilr, :] = np.concatenate((Iup05, Idn05))

Script: gsit.py

...

61. for m in range(nm):

...

73. # Accumulate Fourier series

74. cma = deltm0*np.cos(m*azr)

75. for imu, mu in enumerate(muup):

76. Ims_toa = source_function_integrate_up(m, mu, mu0, srfa, \

77. nlr, dtau, 0.5*ssa*xk, mug, wg, Ig05, Igdn[nlr, :])

78. Itoa[imu, :] += Ims_toa*cma

79. for imu, mu in enumerate(mudn):

80. Ims_boa = source_function_integrate_down(m, mu, mu0,

81. nlr, dtau, 0.5*ssa*xk, mug, wg, Ig05)

82. Iboa[imu, :] += Ims_boa*cma

83.#

84.# Kronecker delta = 2 for m > 0

85. deltm0 = 2.0

86. print('m =', m)

87.#end for m

41

Summation of the Fourier series completes the RTE solution. In the paper, we omit as trivial the part of

the gsit script that reads the benchmark file and tests the code and print out the result. Instead, we

refer the reader to the source code that comes with the paper. Table 3 below indicates maximum and

average errors vs benchmark for input parameters indicated above as well as the runtime for the whole

script and separately for gauss_seidel_iterations_m (all Fourier orders combined). Appendix

provides detailed output (prnt_scrn = True in line 9) and benchmark numbers (content of

test_gsit_R&A_srf.txt, line 10).

Table 3: Accuracy (relative absolute error vs. benchmark IPOL) and runtime for the simulated cases23.

Case Max % error
at TOA

Mean %
error at TOA

Max % error
at BOA

Mean %
error at BOA

gauss_se

idel_ite

rations_

m()

runtime, s.

gsit
runtime, s.

Rayleigh 0.02 0.05 0.11

Aerosol 0.09 0.06 0.12 0.06 0.06 0.12

Not surprisingly, multiple scattering is the slowest part of the code, consuming 50% of the runtime (in

fact more because the main script was not optimized with the high-performance Python compiler,

Numba). In the following section we provide ideas to keep in mind while coding for high performance,

further development, and support.

4. A Few Steps Forward

4.1. Mixing different types of scattering
In case of two or more scattering components, the RTE input is a linear mixture of scattering properties

of each. Let us consider two scattering components, Rayleigh and absorbing aerosol, in presence of gas

absorption. Assume Rayleigh layer is characterized by the total optical thickness, τR, phase function

pR(Θ), and expansion moments rk, and aerosol is defined by the total aerosol thickness τA, phase function

pA(Θ), expansion moments αk and single scattering albedo ωA. The absorption optical thickness of the

gas is τG. The phase functions and expansion moments are mixed linearly

, 0, 1, 2

() () ();
, 2

R k A k

R R A A k

A k

w r w k
p w p w p x

w k

+ =
 = + =

 (38)

where weights are defined by scattering optical thicknesses

 (); 1R R R A A A Rw w w= + = − . (39)

The total optical thickness of the layer and single scattering albedo of the mixed components are

 0; ()R A G R A A = + + = + . (40)

23 DELL Latitude E6520 laptop on Intel i7-2720QM CPU, 2.2 GHz, 8GB DD3 SDRAM (1333 MHz), Windows 10 64 bit;
Python 3.7.6 integrated with Anaconda 3/Spyder 4 IDE.

42

Eqs.(38)-(40) are well known. However, regarding RT code development, three notes are worth

mentioning: 1) to assure flexibility of the RT code, we recommend mixing components outside the RT

solver; 2) Eq.(38) indicates that Rayleigh component affects only the first three moments, but higher

moments from aerosol must be weighted as well; 3) adding Rayleigh smooths out the mixed phase

function. Hence, numerically it might be better to mix the phase functions first and compute the

expansion moments next, however the mixing ratio typically changes with height (known as the

atmospheric profile). The next section discuss how RT code incorporate those.

4.2. Cases with variable vertical profiles
The presented version of gsit lacks one important feature: the dependence of optical properties on

height (vertical profile). To include the vertical profiles would be a good exercise for an interested

reader. This is not hard to do since GS and SO explicitly deal with numerical integration over τ, layer by

layer. Hence, instead of layer-independent phase function and single scattering albedo, one deals with

layer-dependent ones. In terms of expansion moments, scaled by single scattering albedo, one deals

with xk[0:nl, 0:nk], where Legendre order k is in the lead dimension for fast computation of the

Fourier moment of the phase function. The number of optical layers, nl, is different from the number of

steps dtau; the former may be a handful to a few dozen, while the latter may be dozens to hundreds. It

is convenient to define a mask that relates indices of element layers dtau to a particular index of the

optical layer. Fig.16 shows an example for 2 optical layers and 9 element layers.

Fig.16a: Element layers 0-3 belong to the top optical
layer, element layers 4-8 – to the bottom optical layer.

Fig.16b: Alternation of input vertical profile, il=0:1,

to fit integer number of element layers jl = 0:9

into each optical layer il.

The following simple code relates element and optical layers:

for jl in range(nlr):

 il = mask[jl]

 use xk[il, 0:nk]

It is of course unlikely that in application each optical layer will contain an integer number of element

layers. In this case, as Fig.16b shows, one must slightly alter the input optical profile. One can find full

Fortran texts of two subroutines that perform this task [38]. Validation of these subroutines [40] in case

of realistic profiles [71] did not reveal problems caused by minor change of the input optical properties.

4.3. Computation and some properties of the expansion moments
Atmospheric optical properties often come from separate packages for light scattering by small

particles. Many of those are publicly available and very carefully coded. In Mie codes [100–102] for light

scattering by spherical particles, expansion moments xk are available together with the phase function.

Usually, Mie codes are fast and can be built in the RT solver. T-matrix [103] and ray tracing codes are

much slower. They are used for generating LUTs with some basic set of optical parameters (kernels).

These LUTs require massive storage space: for example, kernel LUTs for spheroidal package [104] can be

Element layer index

Optical layer index

il

jl

0 1

0 1 2 3 4 5 6 7 8

Element layer index

Optical layer index

il

jl

0 1

0 1 2 3 4 5 6 7 8

<

<

43

as large as 5 GB. The LUTs are then interpolated (multidimensionally) to compute a specific user-defined

case. Since this also takes time, it is recommended to precompute those “small” LUTs as well.

An important feature of non-Mie packages is that expansion moments are not readily available. One

must compute those by numerically integrating the phase function (see Eq.(9)) using Gauss quadrature

of sufficiently high order

1

11

2 1 2 1
() () () ()

2 2

N

k k j j k j

j

k k
x p x P x dx w p x P x

=−

+ +
= . (41)

A few remarks about Eq.(41): first, x0 = 1, which never happens on practice due to numerical inaccuracy.

This is avoided by scaling all elements by 1/x0. Second, unlike in legpol(), it is efficient to make the

cosine of the scattering angle on the lead dimension. Third, as Eq.(41) indicates, the phase function must

be computed at Gauss nodes, which is not always the standard output [104]. One must interpolate from

the package grid to the Gauss nodes. This step requires some research: shall one interpolate in the angle

space, or in the cosine space? Shall this be done on the log of the phase function (for smoothness)?

What kind of interpolation should be used? Finally, one computes the expansion moments until either

high-order moment become negligibly small, or when the phase function is represented at some

scattering angle with sufficient accuracy. Given that every moment is computed with some error, and

errors from all the moments are combined when one recalculates the phase function, the expansion

must be approached with great care.

Unless it is necessary to combine the particle scattering code in RT solver, we recommend using it as a

standalone tool and to precompute optical depths and phase functions in the form of LUTs. This not only

saves time for RT simulation and makes it easier to debug potential problems, but also helps avoid hard-

to-spot problems caused by using legacy and modern languages within the same packages (e.g. memory

allocation).

4.4. BRDF
Accounting for azimuthally dependent BRDF is similar to what we have demonstrated above for the

Lambertian case, except one has to expand BRDF in Fourier series over azimuth

 0

1

(, ,) (,) 2 (,)cos()
M

m

m

m
=

 = + (42)

Symmetry of the BRDF with respect to principal plane is assumed (which is also a common assumption

in Earth remote sensing) – hence only the cosine function is used in the series. Analytical integration

over azimuth is replaced with numerical quadrature; Gaussian quadrature is usually used

2 1

0 0 0 0

10 0

1
(,) (, ,) (, ,) (, ,)

2

N

j j

j

d x dx w x

=

 = =

 (43)

2

0

1
(,) (, ,)cos()

2

m m d

 =

 (44)

44

The order of the quadrature, N in Eq.(43), grows together with the specular component (e.g., glint) and

in general estimated empirically. For ocean roughed by a 2 m/s wind, SORD uses 180 nodes for

integration over azimuth [40].

There are two important things to mention. First, the BRDF reflects only those Fourier components that

were generated in atmosphere. Thus, for instance, in a Rayleigh atmosphere, one needs only m = 0, 1,

and 2. Higher Fourier components of the BRDF pass through atmosphere without scattering (and

accounted on TOA by the single scattering correction). Second, one applies numerical Fourier expansion

for each pair of incident-reflected zenith directions using the computationally expensive cosine function.

There are two ways to accelerate the computations: 1) precompute and save the BRDF Fourier moments

and 2) avoid multiple computations of cosines by expressing cos(m φ) as cos((m-1) φ + φ) and use

trigonometric relations for the cosine of the sum24. This technique introduces dependence in RTE

solution for different m, which is not an obstacle if one uses parallel computations above the solver level

as we recommend in the next Section 4.5.

4.5. Suggestions for code efficiency and readability
RT codes (like other software) should be developed with efficiency and future support in mind. This

includes many factors: on the one hand, it is reasonable to use the best algorithm for the given scenario,

and a computationally efficient implementation of the algorithm. On the other hand, the time required

to solve the problem is the sum of the code runtime and developing/debugging time. A simple but less

runtime-efficient algorithm may turn out to be the best for the case. An example is the GS method for

cloud remote sensing applications (i.e. high optical thickness). The DO and SH methods are more

computationally efficient in this case (recall GS recalls division into layers of small optical thickness,

while DO/SH runtime does not depend on optical thickness) but rely on a more complicated

mathematical apparatus.

In this section we will discuss a few aspects related to the development of the gsit code presented

here. There are many books and papers on efficient scientific software development, “Writing scientific

software: a guide for good style” [105] and “The Software Optimization Cookbook” [106] are just two

out of many examples. A brief introduction on “How to Write Fast Numerical Code” [107] is good to

refresh one’s memory on particular techniques for efficient coding. One can find short summaries on

software engineering best practices in [108,109], [110]. In terms of coding philosophy, the online

summary25 of “Elements of Programming Style” [111] cannot be over recommended – especially “make

it right – then make it fast”.

Out of many useful recommendations in [112] and [113] we believe the most important for RT code

development is optimization of memory reference. Elements of arrays should be located consecutively

(unit-stride) to avoid “jumps”. Thus, in arrays that contain data for numerical integration over angle and

over optical thickness, the angle data is in the lead (fast) dimension as the angular integration happens

at every boundary. C/C++ developers may decide to sacrifice clarity and go with one-dimensional

arrays, instead of two-dimensional matrices, or use “fast matrix allocation method” [105]. Another

advice is to avoid using computationally expensive functions, such as np.exp(-dtau/mup), called

multiple times in the innermost loop of gauss_seidel_iterations_m(). These quantities should

24 https://ams.confex.com/ams/13CldPhy13AtRad/techprogram/paper_171283.htm
25 https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style

https://ams.confex.com/ams/13CldPhy13AtRad/techprogram/paper_171283.htm
https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style

45

ideally be precomputed and called from memory. We have sacrificed that here for readability. Note that

this option is available only for equal step ∆τ=dtau.

Once the selected method of solution is coded sufficiently cleanly, further increase in performance is

achieved by modifying the algorithm. As the previous section shows,

gauss_seidel_iterations_m() is the slowest function that determines the runtime, t, of the

whole code as:

 2

IT L Gt M N N N , (45)

where M is the number of Fourier moments (equals the number of

gauss_seidel_iterations_m() calls), NIT is the number of iterations, NL is the number of

element layers ∆τ, NG is the number of gauss nodes. The latter is squared because one computes the

contribution from all Gauss nodes to all Gauss nodes, basically, using matrices.

Obviously, faster performance can be achieved at the expense of accuracy by decreasing all parameters

in Eq.(45). Alternatively, M can be reduced without loss of accuracy using a single scattering correction.

In fact, it is now a standard option in all modern RT codes that simulate scattering of solar light (see

“Introduction”). Since single scattering has an analytical representation, double scattering can be

achieved by analytic integration of the single scattering over τ [85,114] – this will further reduce M. In

the SO method, higher scattering orders require lower M due to smoothness of angular dependence of

radiation scattered multiple times. We are not sure from our experience or aware of any publication

showing that higher M can be computed using fewer iterations in the GS method. The “modified Fourier

transform method” [95] utilize the idea that fewer M is needed if solar and/or view zenith is close to the

local normal z (nadir or zenith). In the limit case of irradiation and/or observation along the z-axis

(intensity is symmetric w.r.t. relative azimuth), m = 0 regardless the phase function.

The number of layers NL can be decreased by replacing a simple technique, Eq.(37), with a more

sophisticated rule that a) prevents precomputation of the exponential function and b) involves more

costly functions such as square root. Indeed, the number of steps decrease, but the runtime may not

[40]. Finally, the decrease of the number of Gauss ordinates is achieved by using the so-called

“truncation” technique combined with single or double scattering correction [115].

Once everything possible has been squeezed from theoretical and numerical aspects, it is time for brute

force: parallel computation using tools like MPI, OpenMP, for parallel and distributed processing, built-in

Numba functions that translates Python to faster compiled machine code, and GPU processing.

Independent solution of the RTE for a given Fourier order m looks like a great opportunity. In this paper,

we solve the RTE for only one solar zenith angle (GS and SO methods), one wavelength, one set of

atmospheric optical properties (optical thickness, phase function, single scattering albedo), and one

surface. In applications, one runs the RTE solver for a large set of these. We therefore recommend

running one RT solver on a single core and distribute scenarios, solar geometries, bands over many

CPUs.

Readability is important. We recommend using code comments to describe all input/output parameters,

including data type and size for arrays, in each function. If a global variable cannot be avoided for some

reason, it must be described as well. Since RT codes are scientific software, developer may consider

adding specific references (page and/or equation number) to papers and/or weblinks – as we did for the

46

polynomials. The reason for all this is simple: what is clear at the development stage and a week after

that to the developer, may not be so clear in a month, or to someone other the developer working with

the source code.

Careful consideration on variable and function naming conventions is a key not only for future

maintenance, but also for debugging. Since the development of the RT solver relies heavily on

mathematical apparatus, the developer experiences a natural temptation to use “spelled” symbols from

equations. For example, tau, mu, and mu0, for optical thickness τ and cosines of the view µ and solar μ0

zeniths, respectively. If mu[:] is an array, using of imu as an index and mui=mu[imu] is convenient.

Another example is single scattering albedo, ω0. What would be the best name: equation based (omg0

or omega0) vs. acronym-based (ssa), vs. full or partially spelled (SingleScatteringAlbedo –

camel case; sgl_scat_alb – underscore, etc.)? The answer depends on personal preferences and

coding experience, general language standards (e.g., for Python code26), overall goal (use the code once

and forget vs. create and maintain for years), or naming convention in the team, to name just a few

factors. As a rule, we’d recommend using shorter names for frequently used variables. According to this

rule and to better represent the structure of the code, the developer might prefer longer names for

functions. In Table 5, we list names of all functions we used in the original manuscript and the code

before peer-revision, and after it. The intention of the table is to help the developer chose between

compact but less meaningful vs. long but descriptive function names.

Table 5: Function names in gsit: compact (originally submitted code) vs expanded (after peer-revision).

Compact Expanded Purpose of function

gauszw gauss_zeroes_weights Computes Gauss zeros and weights

gsitm gauss_seidel_iterations_m Computes m-th Fourier component for multiple
scattering of light using Gauss-Seidel iterations

polleg legendre_polynomial Computes ordinary Legendre polynomials

polqkm schmidt_polynomial Computes Schmidt polynomials for the given zenith
moment k and azimuth moment m

sfidn source_function_integrate_down Computes RTE solution at user-defined line of sight at
BOA (downward) using integration of the source
function

sfiup source_function_integrate_up Same as above, except for TOA (upward)

sglsdn single_scattering_down Computes single scattering at BOA (downward)

sglsup single_scattering_up Same as above, except for TOA (upward)

Object-oriented programming is becoming popular in scientific software development. The object-

oriented principles help reduce the number of arguments in functions, and support maintenance as the

software is scaled up to include more features. However, the RT solver is a small-scale software

containing from a few dozens to a few hundred lines of code. The number of input optical parameters is

known in advance from the RT equation, while numerical parameters come from the selected numerical

technique. At the low level, the functional form is arguably easier to understand for domain scientists

who were taught some programming rather than people who are primarily computer scientists. The

object-oriented concept could be advantageous in cases when several numerical RT solvers with

26 https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/

47

different accuracy parameters on input and maybe different output (flux, intensity only, complete

Stokes vector, etc.), are combined in a single package (RT toolbox), which eventually becomes a part of

weather forecasting [116] and climate models [117–120].

Finally, one may ask: how long does it take to develop a (simple) RT solver? This, of course, depends on

many risk factors [121]. In 1975, Brooks mentioned 2000-3000 debugged instructions (lines) per man-

year, which is about 10 lines of code per workday. Decades later in the 1995 edition of the same book,

this number did not change [122]. Depending on language, this parameter may reach tens of lines of

code per day [123] (not including documentation). In view of the complexity of RT theory we assume 10

lines per day to develop, test, and document the code, and estimate that an RT freshman would spend

from two weeks to a month full time to develop and understand the presented code from scratch. The

time will not be spent in vain because, as discussed in the Introduction, the useful life spans of RT codes

can be years or decades.

5. Summary
In this paper we report, step by step, the process of creating a deterministic (non-Monte Carlo) RT code

and relate each step to the underlying theoretical components. As the algorithm of numerical solution

to the RTE is essentially opposite to the sequence of sophisticated analytical evaluations (Fig.17, red

arrows), attempting to code an RT solver based on the existing literature may not offer quick help to an

interested user.

For clarity of academic demonstration, our open source27 Python RT code gsit is limited to simulation

of monochromatic solar light scattering in a plane-parallel vertically homogeneous atmosphere bounded

from below by an evenly reflecting surface. Polarization of light is ignored, optical properties of the

atmosphere are assumed known, and only one method (Gauss-Seidel iteration) is discussed in detail.

However, we cover the main steps used to solve the RTE in general: expansion of the phase function in

Legendre series, Fourier expansion over azimuth for user-defined solar zenith angle, numerical

integration over zenith and optical depth, integration of the source function technique to account for

user-defined view geometry, and single scattering correction. We show in Section 3.6.1 the difference

between the methods of Gauss-Seidel iterations and Successive Orders. We also illustrate the principles

of Adding-Doubling and similar techniques. Our Section 4 contains sufficient information on how to

make gsit applicable for inhomogeneous atmospheres. Pieces of Python code and corresponding

necessary equations are collocated and discussed in parallel which, we believe, support understanding.

The analytical integration over optical depth in the methods of Discrete Ordinates and Spherical

Harmonics is based on a more sophisticated formalism, not covered in this paper. The Monte Carlo

method, which is also relatively easy to understand and code, is also omitted as it has a statistical nature

completely different from deterministic RT codes discussed in this paper.

If one wants to start coding quickly, we recommend the following strategy: start from Section 3 by re-

typing (not copy-pasting) the presented pieces of code, try to understand relevant equations, and

exercise unit testing as described in that section. Numerical implementation of the theoretical

evaluations starts with coding the low-level functions first: Legendre polynomials, Gauss nodes and

weights, and single scattering approximation. By the end of Section 3, the user will have a fully working

27 https://github.com/korkins/gsit

https://github.com/korkins/gsit

48

RT code (within the limitations mentioned above) which would simplify understanding of Sections 1-2 as

well as other literature and existing codes in the Earth science and beyond. Implementation of the

inhomogeneous atmosphere in gsit would serve as a fairly straightforward exercise, while adding

azimuth-dependent BRDF and polarization would require more effort and understanding.

At last, we would like to turn back to Ken Thompson’s epigraph at the beginning of the paper. This

quotation is perhaps an exaggeration, as there is no doubt that re-use of stable, well-documented,

professionally created code is an important part of efficient software development and maintenance.

We do not want to dissuade the reader from this, and indeed the present paper imports several

community-developed libraries. However, we wish to emphasize that writing (and debugging) a piece of

code oneself greatly benefits one's understanding of how it works, and time spent for refactoring of an

old-but-good RT code that “works” will pay off in the long run.

Acknowledgements
The work of AI and AMS is supported by the NASA PACE project. The authors also acknowledge the

encouragement and support of P. J. Werdell (NASA GSFC) in pursuing this work.

49

Fig.17: A diagram of the theoretical evaluations starting from the RTE and breaking it down to lower-level steps (red arrows). The development of the RT code,

however, starts from low-level stand-alone functions and goes the way opposite to theoretical evaluations.

50

 References
[1] K. Thompson, Commun. ACM 27 (1984) 761–763.

[2] C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C.
Pause, T. Dowling, L. Bugliaro, Geosci. Model Dev. 9 (2016) 1647–1672.

[3] P. Eriksson, S.A. Buehler, C.P. Davis, C. Emde, O. Lemke, J. Quant. Spectrosc. Radiat. Transf. 112
(2011) 1551–1558.

[4] J. Yang, S. Ding, P. Dong, L. Bi, B. Yi, J. Quant. Spectrosc. Radiat. Transf. 251 (2020) 107043.

[5] J.V. Dave, Astrophys. J. 140 (1964) 1292–1303.

[6] P.K. Bhartia, R.D. McPeters, L.E. Flynn, S. Taylor, N.A. Kramarova, S. Frith, B. Fisher, M. Deland,
Atmos. Meas. Tech. 6 (2013) 2533–2548.

[7] J. Herman, L. Huang, R. McPeters, J. Ziemke, A. Cede, K. Blank, Atmos. Meas. Tech. 11 (2018)
177–194.

[8] N.A. Krotkov, L.N. Lamsal, E.A. Celarier, W.H. Swartz, S. V. Marchenko, E.J. Bucsela, K.L. Chan, M.
Wenig, Atmos. Meas. Tech. Discuss. (2017) 1–42.

[9] L. Lamsal, N. Krotkov, A. Vasilkov, S. Marchenko, W. Qin, E.-S. Yang, Z. Fasnacht, J. Joiner, S. Choi,
D. Haffner, W. Swartz, B. Fisher, E. Bucsela, Atmos. Meas. Tech. Discuss. (2020) 1–56.

[10] K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, Appl. Opt. 27 (1988) 2502–2509.

[11] I. Laszlo, K. Stamnes, W. Wiscombe, S.-C. Tsay, in: A.A. Kokhanovsky (Ed.), Light Scatt. Rev.,
Springer, Berlin, 2016, pp. 3–65.

[12] B. Yao, C. Liu, S. Teng, L. Bi, Z. Zhang, P. Zhang, B.-J. Sohn, Sci. China Earth Sci. 63 (2020) 1701–
1713.

[13] D. Ramon, F. Steinmetz, D. Jolivet, M. Compiègne, R. Frouin, J. Quant. Spectrosc. Radiat. Transf.
222–223 (2019) 89–107.

[14] M. Baes, J.I. Davies, H. Dejonghe, S. Sabatini, S. Roberts, R. Evans, S.M. Linder, R.M. Smith, W.J.G.
de Blok, Mon. Not. R. Astron. Soc. 343 (2003) 1081–1094.

[15] M. Baes, P. Camps, Astron. Comput. 12 (2015) 33–44.

[16] P. Camps, M. Baes, Astron. Comput. 9 (2015) 20–33.

[17] S. Verstocken, D. Van De Putte, P. Camps, M. Baes, Astron. Comput. 20 (2017) 16–33.

[18] P. Camps, M. Baes, Astron. Comput. 31 (2020) 100381.

[19] Z. Merali, Nature 467 (2010) 775–777.

[20] D. Heaton, J.C. Carver, Inf. Softw. Technol. 67 (2015) 207–219.

[21] O. Dubovik, Z. Li, M.I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D.J. Diner, W.R.
Espinosa, P. Goloub, X. Gu, O. Hasekamp, J. Hong, W. Hou, K.D. Knobelspiesse, J. Landgraf, L. Li, P.
Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai,
F. Parol, Y. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. Sun, P. Tabary, L.D.

51

Travis, F. Waquet, F. Xu, C. Yan, D. Yin, J. Quant. Spectrosc. Radiat. Transf. 224 (2019) 474–511.

[22] J. Lenoble, ed., Radiative Transfer in Scattering and Absorbing Atmospheres: Standard
Computational Procedures, A Deepak Publishing, Hampton, VA, 1985.

[23] J.E. Hansen, L.D. Travis, Space Sci. Rev. 16 (1974) 527–610.

[24] J.W. Hovenier, C.V.M. der Mee, H. Domke, Transfer of Polarized Light in Planetary Atmospheres:
Basic Concepts and Practical Methods, Kluwer Academic Publishers, Dordrecht, 2004.

[25] K. Stamnes, Rev. Geophys. 24 (1986) 299–310.

[26] J. Chowdhary, P.W. Zhai, E. Boss, H. Dierssen, R. Frouin, A. Ibrahim, Z. Lee, L.A. Remer, M.
Twardowski, F. Xu, X. Zhang, M. Ottaviani, W.R. Espinosa, D. Ramon, Front. Earth Sci. 7 (2019).

[27] S. Chandrasekhar, Radiative Transfer, Oxford University Press, London, 1950.

[28] V. Sobolev, Light Scattering in Planetary Atmospheres, Pergamon Press, 1976.

[29] V. Kourganoff, Basic Methods in Transfer Problems: Radiative Equlibrium and Neutron Diffusion,
Dover Publications, New York, 1952.

[30] K. Stamnes, G.E. Thomas, J.J. Stamnes, Radiative Transfer in the Atmosphere and Ocean,
Cambridge University Press, 2017.

[31] V. V Rozanov, A. V Rozanov, A.A. Kokhanovsky, J.P. Burrows, J. Quant. Spectrosc. Radiat. Transf.
133 (2014) 13–71.

[32] R. Spurr, M. Christi, in: A.A. Kokhanovsky (Ed.), Springer Ser. Light Scatt., Springer, 2019, pp. 1–
62.

[33] S.Y. Kotchenova, E.F. Vermote, R. Levy, A. Lyapustin, Appl. Opt. 47 (2008) 2215–2226.

[34] J.E. Hansen, J.B. Pollack, J. Atmos. Sci. 27 (1970) 265–281.

[35] H.C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications. Volume 1,
Academic Press, 1980.

[36] V. V Rozanov, D. Diebel, R.J.D. Spurr, J.P. Burrows, J. Geophys. Res. Atmos. 102 (1997) 16683–
16695.

[37] D.S. Efremenko, D.G. Loyola, A. Doicu, R.J.D. Spurr, Comput. Phys. Commun. 185 (2014) 3079–
3089.

[38] S. Korkin, A. Lyapustin, A. Sinyuk, B. Holben, Remote Sens. Clouds Atmos. XXI 10001 (2016)
100010B.

[39] S.V. Korkin, A.I. Lyapustin, V.V. Rozanov, J. Quant. Spectrosc. Radiat. Transf. 112 (2011).

[40] S. Korkin, A. Lyapustin, A. Sinyuk, B. Holben, A. Kokhanovsky, J. Quant. Spectrosc. Radiat. Transf.
200 (2017) 295–310.

[41] S. Korkin, A. Lyapustin, J. Quant. Spectrosc. Radiat. Transf. 227 (2019) 106–110.

[42] A.I. Lyapustin, T.Z. Muldashev, J. Quant. Spectrosc. Radiat. Transf. 61 (1999) 545–555.

[43] A. Lyapustin, Appl. Opt. 41 (2002) 5607.

52

[44] A.M. Sayer, G.E. Thomas, R.G. Grainger, Atmos. Meas. Tech. 3 (2010) 813–838.

[45] A.M. Sayer, N.C. Hsu, C. Bettenhausen, J. Lee, J. Redemann, B. Schmid, Y. Shinozuka, J. Geophys.
Res. 121 (2016) 4830–4854.

[46] A.M. Sayer, N.C. Hsu, J. Lee, C. Bettenhausen, W. V. Kim, A. Smirnov, J. Geophys. Res. Atmos. 123
(2018) 380–400.

[47] A. Ibrahim, A. Gilerson, T. Harmel, A. Tonizzo, J. Chowdhary, S. Ahmed, Opt. Express 20 (2012)
25662.

[48] A. Ibrahim, A. Gilerson, J. Chowdhary, S. Ahmed, Remote Sens. Environ. 186 (2016) 548–566.

[49] A. Ibrahim, B.A. Franz, Z. Ahmad, S.W. Bailey, Front. Earth Sci. 7 (2019) 1–15.

[50] A. Lyapustin, Y. Wang, S. Korkin, D. Huang, Atmos. Meas. Tech. 11 (2018).

[51] A. Lyapustin, Y. Wang, S. Korkin, R. Kahn, D. Winker, IEEE Geosci. Remote Sens. Lett. 17 (2020).

[52] P.J. Werdell, M.J. Behrenfeld, P.S. Bontempi, E. Boss, B. Cairns, G.T. Davis, B.A. Franz, U.B. Gliese,
E.T. Gorman, O. Hasekamp, K.D. Knobelspiesse, A. Mannino, J.V. Martins, C. McClain, G. Meister,
L.A. Remer, Bull. Am. Meteorol. Soc. 100 (2019) 1775–1794.

[53] P.J. Werdell, B.A. Franz, S.W. Bailey, G.C. Feldman, E. Boss, V.E. Brando, M. Dowell, T. Hirata, S.J.
Lavender, Z.P. Lee, H. Loisel, S. Maritorena, F. Mélin, T.S. Moore, T.J. Smyth, D. Antoine, E.
Devred, O.H.F. D’Andon, A. Mangin, Appl. Opt. 52 (2013) 2019–2037.

[54] P. Jeremy Werdell, C.R. McClain, Satellite Remote Sensing: Ocean Color, 3rd ed., Elsevier Ltd.,
2019.

[55] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Pascal: The Art of
Scientific Computing, Cambridge University Press, 1989.

[56] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific
Computing, 3rd ed., Cambridge University Press, 2007.

[57] S. Arms, J. Chastang, M. Grover, J. Thielen, M. Wilson, D. Dirks, Bull. Am. Meteorol. Soc. 101
(2020) E1492–E1496.

[58] R.T. Wilson, Comput. Geosci. 51 (2013) 166–171.

[59] P. Ricchiazzi, S. Yang, C. Gautier, D. Sowle, Bull. Am. Meteorol. Soc. 79 (1998) 2101–2114.

[60] V.P. Ghate, P. Kollias, S. Crewell, A.M. Fridlind, T. Heus, U. Löehnert, M. Maahn, G.M.
McFarquhar, D. Moisseev, M. Oue, M. Wendisch, C. Williams, Bull. Am. Meteorol. Soc. 100 (2019)
ES5–ES9.

[61] J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, D. Tanré, J. Quant. Spectrosc. Radiat.
Transf. 107 (2007) 479–507.

[62] O.P. Hasekamp, J. Landgraf, J. Quant. Spectrosc. Radiat. Transf. 75 (2002) 221–238.

[63] A. Lyapustin, Y. Knyazikhin, Appl. Opt. 40 (2001) 3495.

[64] K.F. Evans, J. Atmos. Sci. 55 (1998) 429–446.

53

[65] A. Doicu, M.I. Mishchenko, D.S. Efremenko, T. Trautmann, J. Quant. Spectrosc. Radiat. Transf. 258
(2021) 107386.

[66] D. Zawada, G. Franssens, R. Loughman, A. Mikkonen, A. Rozanov, C. Emde, A. Bourassa, S. Dueck,
H. Lindqvist, D. Ramon, V. Rozanov, E. Dekemper, E. Kyrölä, J.P. Burrows, D. Fussen, D.
Degenstein, Atmos. Meas. Tech. 14 (2021) 3953–3972.

[67] P. Castellanos, A. da Silva, J. Atmos. Ocean. Technol. 36 (2019) 819–832.

[68] M. Raissi, P. Perdikaris, G.E. Karniadakis, J. Comput. Phys. 378 (2019) 686–707.

[69] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Nat. Rev. Phys. 3 (2021)
422–440.

[70] M. Gao, P. Zhai, B.A. Franz, K. Knobelspiesse, A. Ibrahim, B. Cairns, S.E. Craig, G. Fu, O. Hasekamp,
Y. Hu, P.J. Werdell, Atmos. Meas. Tech. 13 (2020) 3939–3956.

[71] C. Emde, V. Barlakas, C. Cornet, F. Evans, S. Korkin, Y. Ota, L.C. Labonnote, A. Lyapustin, A. Macke,
B. Mayer, M. Wendisch, J. Quant. Spectrosc. Radiat. Transf. 164 (2015) 8–36.

[72] B.M. Herman, S.R. Browning, J. Atmos. Sci. 22 (1965) 559–566.

[73] P.-W. Zhai, Y. Hu, C.R. Trepte, P.L. Lucker, Opt. Express 17 (2009) 2057.

[74] B.M. Herman, T.R. Caudill, D.E. Flittner, K.J. Thome, A. Ben-David, Appl. Opt. 34 (1995) 4563–
4572.

[75] A.H. Karp, J. Greenstadt, J.A. Fillmore, J. Quant. Spectrosc. Radiat. Transf. 24 (1980) 391–406.

[76] A.I. Lyapustin, Appl. Opt. 44 (2005) 7764–7772.

[77] C. Moler, C. Van Loan, SIAM Rev. 45 (2003) 3–49.

[78] S. Korkin, E.-S. Yang, R. Spurr, C. Emde, N. Krotkov, A. Vasilkov, D. Haffner, J. Mok, A. Lyapustin, J.
Quant. Spectrosc. Radiat. Transf. 254 (2020) 107181.

[79] V.I. Krylov, A.H. Stroud, Approximate Calculation of Integrals, Dover, 2005.

[80] W.H. Press, S. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77: The Art
of Scientific Computing, 2nd ed., 1997.

[81] W.H. Press, S. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of
Scientific Computing, 2nd ed., Cambridge University Press, 1997.

[82] J.B. Sykes, Mon. Not. R. Astron. Soc. 111 (1951) 377–386.

[83] H.J. Weber, G.B. Arfken, Essential Mathematical Methods for Physicists, 2003.

[84] R. Blackely, Potential Theory in Gravity and Magnetic Applications, University Press, Cambridge,
1995.

[85] W.M.F. Wauben, J.F. de Haan, J.W. Hovenier, Astron. Astrophys. 276 (1993) 589.

[86] B.M. Herman, J. Geophys. Res. 70 (1965) 1215–1225.

[87] B. Van Diedenhoven, O.P. Hasekamp, J. Landgraf, Appl. Opt. 45 (2006) 5993–6006.

54

[88] B.M. Herman, A. Ben-David, K.J. Thome, Appl. Opt. 33 (1994) 1760.

[89] T.R. Caudill, D.E. Flittner, B.M. Herman, O. Torres, R.D. McPeters, J. Geophys. Res. Atmos. 102
(1997) 3881–3890.

[90] R. Loughman, D. Flittner, E. Nyaku, P.K. Bhartia, Atmos. Chem. Phys. 15 (2015) 3007–3020.

[91] J. Eluszkiewicz, G. Uymin, D. Flittner, K. Cady-Pereira, E. Mlawer, J. Henderson, J.L. Moncet, T.
Nehrkorn, M. Wolff, J. Quant. Spectrosc. Radiat. Transf. 193 (2017) 31–39.

[92] H.H. Walter, J. Landgraf, O.P. Hasekamp, J. Quant. Spectrosc. Radiat. Transf. 85 (2004) 251–283.

[93] H.H. Walter, J. Landgraf, J. Quant. Spectrosc. Radiat. Transf. 95 (2005) 175–200.

[94] Z. Ahmad, R.S. Fraser, J. Atmos. Sci. 39 (1982) 656–665.

[95] J. V Dave, J. Gazdag, Appl. Opt. 9 (1970) 1457–1466.

[96] M.I. Mishchenko, A.A. Lacis, L.D. Travis, J. Quant. Spectrosc. Radiat. Transf. 51 (1994) 491–510.

[97] E.S. Chalhoub, R.D.M. Garcia, J. Quant. Spectrosc. Radiat. Transf. 64 (2000) 517–535.

[98] P.W. Zhai, Y. Hu, D.B. Josset, C.R. Trepte, P.L. Lucker, B. Lin, J. Quant. Spectrosc. Radiat. Transf.
115 (2013) 19–27.

[99] F. Kuik, J.F. de Haan, J.W. Hovenier, J. Quant. Spectrosc. Radiat. Transf. 47 (1992) 477–489.

[100] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH,
1998.

[101] W.J. Wiscombe, Appl. Opt. 19 (1980) 1505–1509.

[102] M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small
Particles, Cambridge University Press, Cambridge, 2002.

[103] M.I. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 242 (2020) 106692.

[104] O. Dubovik, A. Sinyuk, T. Lapyonok, B.N. Holben, M. Mishchenko, P. Yang, T.F. Eck, H. Volten, O.
Muñoz, B. Veihelmann, W.J. van der Zande, J.F. Leon, M. Sorokin, I. Slutsker, J. Geophys. Res.
Atmos. 111 (2006) 1–34.

[105] S. Oliveira, D.E. Stewart, Writing Scientific Software: A Guide for Good Style, Cambridge
University Press, Cambridge, UK, 2006.

[106] R. Gerber, A. Bik, K. Smith, X. Tian, The Software Optimization Cookbook, 2nd ed., Intel Press,
2005.

[107] S. Chellappa, F. Franchetti, M. Puschel, in: R. Lammel, J. Visser, J. Saraiva (Eds.), Gener.
Transform. Tech. Softw. Eng. II, Springer, Berlin, 2007, pp. 196–259.

[108] D. Kelly, D. Hook, R. Sanders, Comput. Sci. Eng. 11 (2009) 48–52.

[109] G. Wilson, D.A. Aruliah, C.T. Brown, N.P. Chue Hong, M. Davis, R.T. Guy, S.H.D. Haddock, K.D.
Huff, I.M. Mitchell, M.D. Plumbley, B. Waugh, E.P. White, P. Wilson, PLoS Biol. 12 (2014).

[110] J. Carver, D. Heaton, L. Hochstein, R. Bartlett, Comput. Sci. Eng. 15 (2013) 7–11.

55

[111] B.W. Kernighan, P.J. Plauger, The Elements of Programming Style, 2nd ed., McGraw-Hill, 1978.

[112] K. Dowd, C. Severance, High Performance Computing, 2nd ed., O’Reilly Media, 1998.

[113] G. Hager, G. Wellein, Introduction to High Performance Computing for Scientists and Engineers,
1st ed., CRC Press, Inc., USA, 2010.

[114] R. Buras, T. Dowling, C. Emde, J. Quant. Spectrosc. Radiat. Transf. 112 (2011) 2028–2034.

[115] V. V. Rozanov, A.I. Lyapustin, J. Quant. Spectrosc. Radiat. Transf. 111 (2010) 1964–1979.

[116] R. Kendall, J.C. Carver, D. Fisher, D. Henderson, A. Mark, D. Post, C.E. Rhoades, S. Squires, IEEE
Softw. 25 (2008) 59–65.

[117] J.B. Drake, P.W. Jones, G.R. Carr, Int. J. High Perform. Comput. Appl. 19 (2005) 177–186.

[118] S.M. Easterbrook, T.C. Johns, Comput. Sci. Eng. 11 (2009) 65–74.

[119] T. Clune, R. Rood, IEEE Softw. 28 (2011) 49–55.

[120] J. Pipitone, S. Easterbrook, Geosci. Model Dev. 5 (2012) 1009–1022.

[121] R. Sanders, D. Kelly, IEEE Softw. 25 (2008) 21–28.

[122] F.P. Brooks, The Mythical Man-Month (Anniversary Ed.), Addison-Wesley Longman Publishing
Co., Inc., USA, 1995.

[123] L. Prechelt, Computer (Long. Beach. Calif). 33 (2000) 23–29.

Appendix: Benchmark Results for Section 3.6.3: Main Program
Table 4a. TOA results. Columns left to right: solar zenith angle, SZA, relative azimuth, AZA, cosine of the

view zenith angle (negative for ascending radiation), “exact” results generated with IPOL for Rayleigh

scattering, “exact” results generated with IPOL for Aerosol scattering over reflecting surface. One can

reproduce these results using our open-source Python script gsit.py.

See Table4a_TOA.xls

Table 4b. Same as Table 4a, except for BOA radiation (positive view cosines).

See Table4b_BOA.xls

