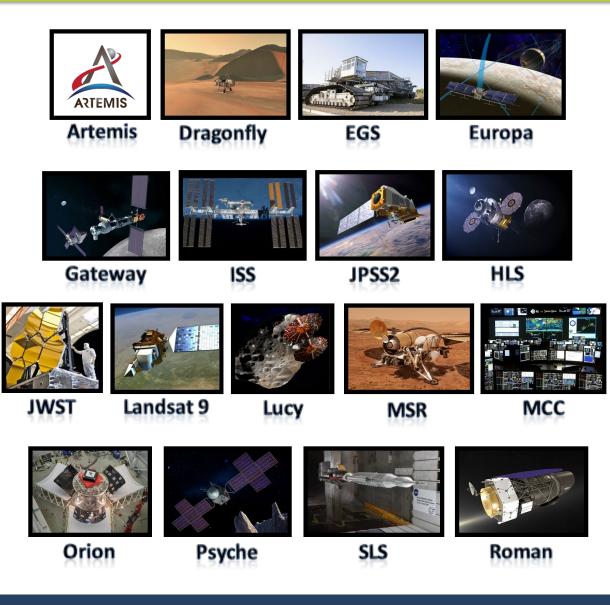
Adaptive IV&V for Increasingly Complex Software Systems

NASA's Independent Verification and Validation (IV&V) Program Fairmont, West Virginia Wes Deadrick, IV&V Program Director

Kainarina Johnson Independent Varilisation & Validation Pasility

www.nasa.gov/centers/ivv

- Established in 1993, driven by recommendation after Space Shuttle Challenger accident.
- Based at the **Katherine Johnson IV&V Facility** in Fairmont, WV.
- Is the IV&V services provider for NASA and applied to the Agency's highest-profile missions
- Is risk driven.
- Employs rigorous analysis and testing methodologies throughout the Software Development Life Cycle (SDLC) to assure safety and mission critical systems and software will operate reliably, safely and securely.
- Strives to reduce the highest safety and mission software risks, inform decision makers, and provide confidence based on objective evidence.



Which NASA projects receive IV&V?

- NASA established IV&V as a requirement in NPR 7150.2, NASA Software Engineering Requirements. Per NPR 7150.2, IV&V is required on the following:
 - a. Category 1 projects as defined in NPR 7120.5.
 - b. Category 2 projects as defined in NPR 7120.5 that have Class A or Class B payload risk classification per NPR 8705.4.
 - c. Projects selected explicitly by the NASA Chief, Office of Safety and Mission Assurance to have software IV&V.

The result: IV&V is applied to projects that are humanrated, have lifecycle costs of several hundred million dollars or more, or have high priority and complexity.

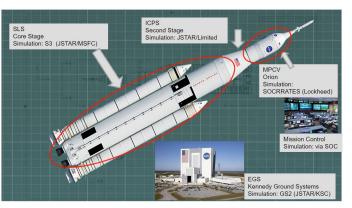
The Growing Complexity NASA IV&V Faces

Increased reliance on data driven algorithms for mission critical software behavior

Overview: Data driven software has become more common, bringing with it new approaches to documentation and development for data content that differ from executable code. There also seems to be a growing tendency for systems to express complex software behaviors through data instead of code.

- Challenges:
 - Data is dynamic, less readable than code
 - Flight-like end-to-end system testing may be deemphasized
 - Further, segmentation of 'data' as the domain of Systems Engineering (while code is the domain of Software Engineering) introduces risk

System of Systems Integration Verification and Validation

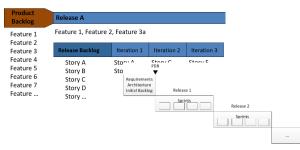

Overview: NASA's Human Rated missions incorporate multiple complex and large systems, and the degree of risk relating to the interfaces and integrated behaviors is high

Challenges:

- Large complex systems
- Multiple developers and stakeholders

and techniques are needed, are currently in work

Various domains



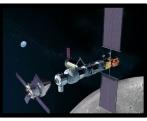
New and Emerging SW Development Lifecycle Models

Overview: Across the IV&V portfolio, development efforts follow many different processes. Agile development processes have been around the IV&V Program for multiple years at this point, but each tend to have various nuances in their approach (SAFE, Scrum, etc). New processes also continue to emerge, which require NASA IV&V to learn and adapt.

Challenges:

 Each development effort applies varying processes that produce different artifacts at different points along the timeline

Overview: Engineering practices like true autonomy, MBSE and Machine Learning are right on the horizon for NASA IV&V practioners. How to verify the correct operations of such systems is an evolving area of research and the state-of-the-practice is still unclear. How

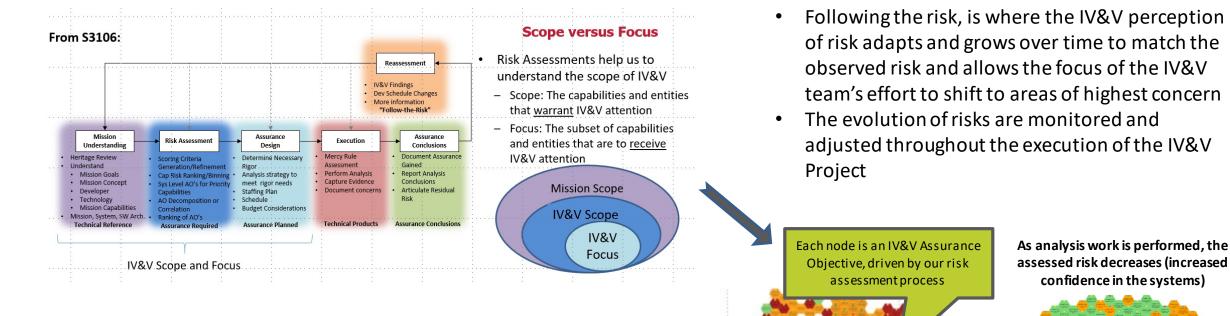

IV&V analysis should be performed, from how to identify the existence of risk to what tools

New technologies on the horizon: MBSE/MBMA, Machine Learning, AI

Challenges:

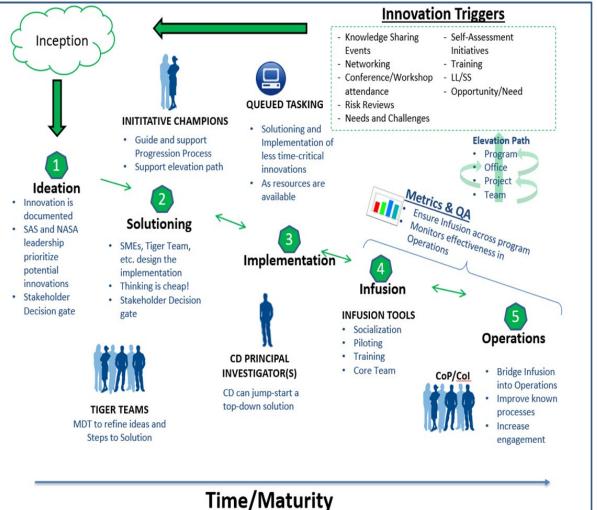
Operations

- Hard to prepare for V&V of True Autonomy
- Mixed approaches to MBSE

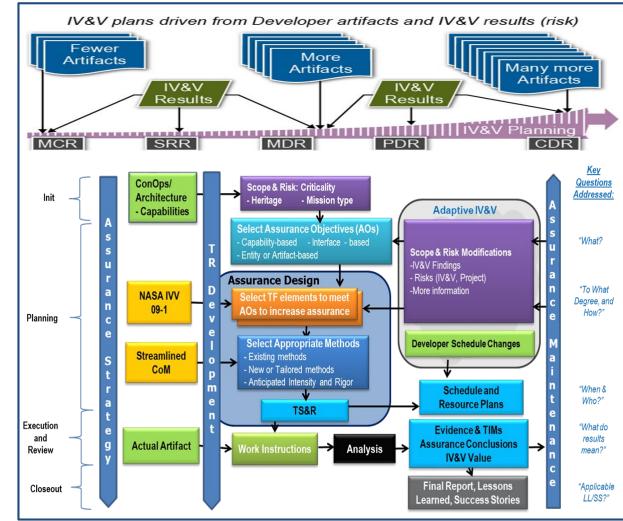


ļ

Why Adaptive IV&V is Necessary


- IV&V collaboration with the Software Engineering Institute at Carnegie Mellon University
- Helped IV&V adopt Agile and Lean concepts that integrated logically with some of the ways we were trying to perform analysis and resulted in the following paper:
 - <u>Agile approach to assuring the safety-critical embedded</u> <u>software for NASA's Orion spacecraft</u>

Risk is dynamic, IV&V's Risk Process adheres to the core IV&V principles, but utilizes adaptive measures to continuously update in response to changing risk

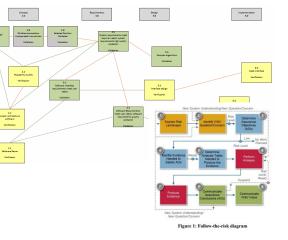

How the NASA IV&V Program adapts

Continuous Innovation

Continuous Evaluation

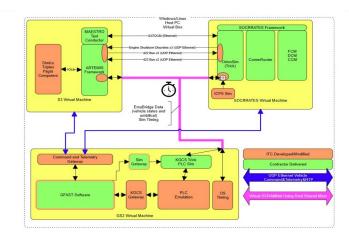
The two engines that power adaptation are innovation of new ideas and evaluation of effectiveness and risk posture.

IV&V Approaches to the Challenges


Increased reliance on data driven algorithms for safety and mission critical software behavior

- Increase coverage and effectiveness of how we perform IV&V on data-driven systems
- Update/create our technical framework and methods to have more formal application
- Better understand the boundaries between software and data
- Tool development to aid our new approaches
 - One solution developed: a set of Python modules broken into 'parser' operations (which read and process data) and 'constraint' operations (to enforce constraints on data

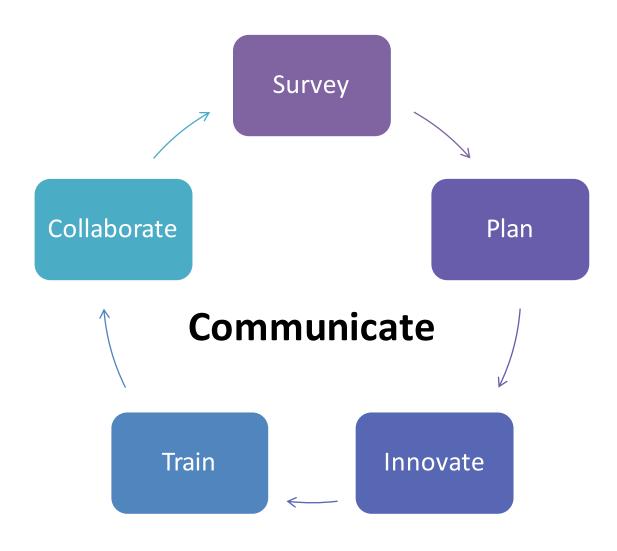
clipie clip


New and Emerging SW Development Lifecycle Models

- Agile IV&V for Agile development
 - Adoption of "Follow the Risk IV&V"
- The emergence of Analysis Threads to the IVV 09-1 Technical Framework application
 - Types of Threads
 - Correct and Complete
 - Traceability
 - Emergent Behavior
- Adaptive Assurance Design

System of Systems Integration Verification and Validation

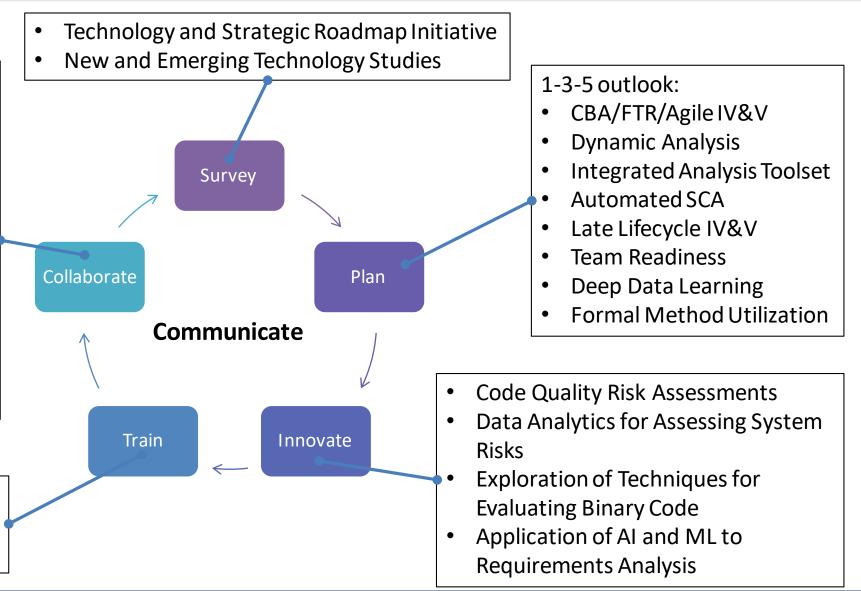
- ARRISTOTLE was developed to facilitate risk-reduction testing of all phases for the Artemis return to the moon programs.
- Capabilities
 - Test as you fly
 - Fault injection across interfaces
 - Detailed post-processing log analysis tools
 - Ability to pause time and analyze states
 - Flight binaries



New technologies on the horizon: MBSE/MBMA, Machine Learning, AI

- Augmenting ATS Requirement Analysis Tool with Artificial Intelligence
 - Help prioritize analysis with application of AI machine learning
 - Results of the machine learning research can be integrated into the IV&V developed Analysis Tool Set (ATS)
- Capability Development efforts for developing approaches and tools required to assure safety-critical autonomous software systems
- JSTAR independent testing application of Machine Learning for Test Coverage

Acronym SBS	Name Beam Steering Control	File sbs.c	Line Coverage		Function Coverage	
			72.0 %	949 / 1318	84.3 %	70/83
SDI	Diagnostic	sdi.c	83.0 %	1343 / 1618	80.5 %	66/82
SIM	Instrument Manager	sim.c	66.3 %	555 / 837	79.3 %	23/29
SLA	Laser Control	sla.c	88.7 %	375 / 423	100.0 %	33/33
SMT	Main Computer Electronics Housekeeping and Telemetry	smt.c	76.2 %	214/281	66.7 %	14/21
SRT	Remote Terminal	srt.c	88.4 %	289/327	100.0 %	30/30
STH	Thermal Control	sth.c	85.6 %	664 / 776	97.4 %	38/39
SXP	Extrapolator	sxp.c	35.9 %	417 / 1161	60.6 %	20/33
SFM	File Manager	fm.c (common)	60.4%	462 / 765	76.9%	40/52
SHS	Health and Safety	hs.c (common)	84.7%	687/811	92.5%	49/53



- Survey both the IV&V workforce and the state of the practice to identify trends and inform vision for IV&V
- Develop and maintain a strategic roadmap to achieve vision by mapping goals to a 1-3-5 plan
- Charter initiatives to achieve goals through innovation
- Prepare workforce for analysis of new and evolving technologies
- Collaborate with external communities to inform and validate our vision and achieve our goals
- Communicate at every stage and at every level to ensure commitment and support

- Small communities of practice within the IV&V Program (e.g. SCAWG)
- NASA Engineering Network
- SARP
- MDA
- Interagency Science and Technology Partnership Forum (Trusted Autonomy)
- International IV&V Working Group
- IV&V Project Checkpoint Reviews
 - IV&V Team Readiness Initiative
 - Weekly Technical Discussions
 - IV&V Boot Camp

