

# Assessing risk due to small sample size in probability of detection analysis using tolerance intervals

**SPIE Smart Structures + NDE 2022** 

March 8, 2022

Ajay Koshti NASA Johnson Space Center

## Background



#### An illustration of NDE reliability assessment in Limited Sample (LS) POD analysis

POD - Probability of Detection

POF – Probability of False Positive



- LS POD<sup>1</sup> analysis originally used signal responses from nominally fixed target size flaws
- Noise is measured as a signal response outside flaw area
- Signal response distribution can be described by mean and standard deviation
- Assumes that the signal response sample is RANDOM to the population.
- Objective is to determine **decision threshold** that meets POD and POF reliability conditions
- Probability and Confidence in describing signal response distribution or predicting whether a given signal response value belongs to the population distribution depends upon sample size of signal response measurements.
- Creating a large sample size for independent signal repose measurements for flaws (e.g. 1 measurement per flaw) may be expensive, time consuming and/or impractical.
- Hence, use of LS POD is attractive to make the NDE qualification or reliability assessment more practical, less expensive and requiring less time.
- However, small sample size poses a risk.

[1] - Koshti, A. M., "Using requirements on merit ratios for assessing reliability of NDE flaw detection," SPIE Smart Structures and NDE, Proc. SPIE 11593, (2021).

Ajay Koshti, NASA Johnson Space Center

#### Issue



- Sampling risk in LS POD comes from small sample size (e.g. 6) and sample bias
  - Small samples are not likely to be random to the population or representative of the population and are likely to be biased
  - Biased samples have lower standard deviation compared to the population
  - LS POD Analysis based on small biased sample of target size flaws can lead to overestimation of POD

# **Objective of LS POD Analysis**



- Primary objective of LS POD analysis is to determine signal response decision threshold such that there is at least 90% (i.e. POD) population signal response data (with 95% confidence) above this threshold.
- Decision threshold  $\hat{a}_{dec.thr.90/95}^{sample}$  at POD/Conf. 90/95 of data is computed from the sample.
- Decision threshold  $(\hat{a}_{dec.thr.90/95}^{population})$  at POD/Conf. 90/95 of data for population is a **theoretical quantity**.
- Following inequality shall be true for LS POD (or any POD analysis) in order to accept LS POD analysis and to mitigate sampling error.

 $\hat{a}_{dec.thr.90/95}^{sample} \leq \hat{a}_{dec.thr.90/95}^{population}$ 

• In other words,  $\hat{a}_{dec.thr.90/95}^{sample}$  shall be a conservative estimation of  $\leq \hat{a}_{dec.thr.90/95}^{population}$ 

#### Signal Response Population Regions, Nominal versus Worst-Case



Split between Nominal and Worst-Case Signal Response Values in Population Distribution

Sampling fraction for Worst-Case = 0.30 Sampling fraction for Nominal case = 0.70

- Higher responses are attributed to nominal flaw and part conditions with chance of occurrence e.g. ~50-70%
  - NDE signal response sample is likely to be nominal response sample, if nominal parameters are used to make flaw specimens
- Worst-Case or lower responses are attributed to offnominal flaw and part conditions with chance of occurrence e.g. ~30-50%



Split between Nominal and Worst-Case Signal Response Values in Population Distribution

Ajay Koshti, NASA Johnson Space Center

#### **Differences Between Population and Sample Signal Responses, and Sampling Definitions**



| Population Signal Responses from<br>Target Size Flaws                                   | Sample Signal Responses from<br>Target Size Flaws                                       |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Real flaws                                                                              | Artificially manufactured flaws                                                         |
| In real parts                                                                           | Specimens are made using controlled fabrication process                                 |
| All part surface geometries<br>(cylindrical, spherical and flat, fillet)<br>are assumed | Simple specimen surface geometry compared to part (e.g. flat)                           |
| All applicable material types are assumed                                               | One material type/alloy is used (nominal)                                               |
| All applicable surface finishes are assumed                                             | Fixed value smooth surface finish is assumed (nominal)                                  |
| Applicable variation in flaw morphology is assumed                                      | Flaw morphology is controlled by<br>controlling flaw manufacturing<br>process (nominal) |
| All applicable orientations of flaws are assumed                                        | Nominal orientation of flaws is assumed                                                 |

 Due to differences between population and sample, sample may not be fully representative of the population, i.e. sample may have a bias.

#### Definitions

- A **representative sample (e.g. stratified sample)** is a group **or** set chosen from a larger statistical population according to specified characteristics.
- A **random sample** is a group **or** set chosen in a **random** manner from a larger population.
  - Both representative and random normal samples are acceptable for  $k_1$  factor statistics, although a representative sample has less variance in results and reduces magnitude of error.
- In statistics, **sampling bias** is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher relative sampling probability than others.
  - It results in a biased sample, a non-random sample of a population.
  - If sampling bias is not accounted for, results can be erroneously attributed to the phenomenon under study rather than to the method of sampling.
  - If a sample is neither random nor representative, it may be a **biased** sample.

# **LS POD Concerns**

NASA

- Small Sample Concern
  - Higher variability of decision threshold for small sample size (e.g. 6)
  - Higher sampling error in POD values for small sample size (e.g. 6)
    - Note: 90/95 POD/confidence is assured for both random and representative samples
- Non-random Sample Concern
  - A small sample generated using fabricated flaw specimens is not likely to be random
    - due to well controlled process of fabricating flaw specimens to nominal parameters and inadequacy of sample size to accommodate all factors that affect signal response
  - If a sample is **biased to higher signal response** values, it causes overestimation error in POD which is further compounded by small sample concern.

# **Approach to Mitigate Sampling Risk**



- Use a validated sampling scheme to mitigate risk from small biased sample or to reduce sampling error
  - Some approaches include using a representative sample which reduces variance in POD estimates, which also reduces magnitude of error. A representative sample can be used in LS POD
  - Other approach is to use a sample of smaller size flaws called nominal sub-target size flaws and qualify the sampling scheme
  - It is proposed that Monte Carlo Sampling sensitivity analysis may be performed to design/validate a sampling scheme and mitigate or reduce sampling risk

#### Illustration of Representative Sample versus Population - Concept only



$$\hat{a}_{90/95,dec.thr} = \hat{a}_{mean} - k_{1,90/95}\sigma$$

 $\hat{a}_{mean}$  =Mean of signal responses  $\sigma$  = Standard deviation of signal responses  $k_{1.90/95}$  = k1 tolerance factor

- Representative sample has both low and high value readings in correct proportion
- Representative sample is like a random sample in its effect on POD estimation except the tolerance ranges on 90/95 decision threshold are smaller.
- LS POD assumes that the sample is random or representative of the population
- This is an example of unbiased sample
- LS POD will provide 95% confidence for minimum 90% POD for analysis based on representative sample





# Illustration of Nominal Sample and Its Influence on POD Estimation – Concept only



- Nominal sample has only high value readings above a probability partition due to nominal conditions (smooth flat surfaces from one alloy and low variability in flaw morphology) used in making specimens.
  - This is an example of sample bias.
  - LS POD assumes that the sample is representative of or random from the population
  - LS POD results using nominal sample may not be acceptable based on sampling sensitivity analysis.

#### Illustration of sample overestimating POD

#### Illustration of Worst-Case Sample and Its Influence on POD Estimation - Concept only



- Worst-Case sample has only low value readings below a probability partition due to Worst-Case conditions (rough curved surfaces, alloy with high noise, and tight gap flaw) used in making specimens
- LS POD assumes that the sample is representative of the population.
- This is an example of sample bias.
- LS POD results using Worst-Case sample may be acceptable based on sampling sensitivity analysis.



#### Illustration of Nominal Sub-target Flaw Response Sample - Concept only





- Nominal sub-target sample has only low value readings compared to target signal responses for population
- LS POD results using Nominal sub-target sample may be acceptable based on sampling sensitivity analysis.

#### Illustration of Nominal Sub-target Sample Underestimating POD

Ajay Koshti, NASA Johnson Space Center

# **D. Random Sampling – Sampling Sensitivity Analysis**



# Higher sampling error in decision threshold or POD values for small sample size



Higher variability of decision threshold for small sample size

 About 5 % decision thresholds are not acceptable as they do not provide POD of 90%.

- Repetitive type D sampling (25 runs) indicates that
  - Sample size of 6 provides decision threshold ≥ 1% POF decision threshold. Meets the criterion for POF < 1%.
  - Sample size of 6 does not provide decision threshold > decision threshold at 90% POD for Population. Meets criteria for providing minimum POD/Conf. 90/95. 5 % decision thresholds are not acceptable, as they do not provide POD of 90.
  - Recommend using lower than calculated decision threshold to improve POD/Conf. as magnitude of error is relatively large.
- Both POD and POF criteria are met indicating that the validation is acceptable.
   Random Sampling (Theoretical) with 25 Runs



#### Sampling Types for used in Sampling Scheme Sensitivity Analysis

- Sampling Types used in Monte Carlo Simulation
- A. Nominal and Worst-Case Sampling for Target flaw
- B. Worst-Case Sampling for Target Size Flaw
- C. Nominal Case Sampling for Target Size Flaw (Special case of A or F)
- D. Random Sampling for Target Size Flaw (Theoretical) (Special case of E)
  - Used as a baseline for comparison
- E. Random Sampling for both Target and sub-target Size Flaws (Theoretical)
- F. Nominal Sampling for both Target and sub-target Size Flaws



### Assessing Sampling Schemes for LS POD for Mitigating Sampling Risk



- Type A Nominal and Worst-Case Sampling
  - Probability split of nominal/Worst-Case between 50/50 to 70/30 is assumed to be reasonable.
  - This is most straight forward from analysis point of view as the goal here is to create representative sample.
  - When both nominal and worst-case values are represented in their probability of occurrence then a **representative sample** is created. LS POD k1-statistics works for a representative sample.
  - Measuring Worst-Case signal response values from real specimens may be challenging due to challenges in making the corresponding specimens.
- Type B Worst-Case Sampling
  - Standard deviation of a Worst-Case sample is lower than that of population. The mean responses are lower. Monte Carlo analysis indicates that reliable LS POD may be validated.
  - Measuring Worst-Case signal response values from real specimens may be challenging due to challenges in making the corresponding specimens.

#### Assessing Sampling Schemes for LS POD for Mitigating Sampling Risk



- Type C Target Flaw Nominal Sampling
  - Does not work and should be avoided
- Type D Random Sample
  - It is not possible get a random sample for small sample size
- Type E Random Target and Sub-target Sampling
  - This option is theoretical for a small sample size
- Type F Nominal Sampling for both Target and sub-target Sampling
  - Nominal Sampling for sub-target only is a special case of Type F sampling
    - Sub-target flaw is a smaller size flaw and nominal sub-target samples are easy to make
    - Sampling size and analysis conservatism can be assessed through Monte Carlo Simulation
      - Standard deviation of a nominal sample is lower than that of representative sample. But it can be adjusted using nominal-random factor to be equivalent to the representative sample. The mean responses are lower. Monte Carlo analysis indicates that reliable LS POD may be validated.

#### LS POD Analysis of Selected Simulated Data, Sample Size = 6



Lognormal Noise Minimum 95% confidence in fit



Note: Repeats are limited to 25 to save computing time but 500 or more are recommended.

#### **Type A - Nominal and Worst-Case Representative/Conservative Sampling**





Red error bars are for 95% data (cumulative one-sided)

- Sample size of 6 provides decision threshold ≥ 1%
  POF decision threshold. Meets the criterion for POF
  < 1%.</li>
- Sample size of 6 does not provide decision threshold > decision threshold at 90% POD for Population. Meets criteria for providing minimum POD/Conf. 90/95.
- Both POD and POF criteria are met indicating that the validation is robust.

# **Type B - Worst-Case Sampling**



- Sample size of 6 provides decision threshold ≥ 1% POF decision threshold. Meets the criterion for POF < 1%.
- Sample size of 6 does not provide decision threshold > decision threshold at 90% POD for Population. Meets criteria for providing minimum POD/Conf. 90/95.
- Both POD and POF criteria are met indicating that the validation is robust.

### **Type C - Nominal Value Sampling**



- Sample size of 6 provides decision threshold ≥ 1% POF decision threshold. Meets the criterion for POF < 1%.</li>
- Sample size of 6 does not provide decision threshold lower decision threshold at 90% POD for Population with 95% confidence. Does not meet criteria for providing minimum POD/Conf. 90/95.
- Indicates unacceptable validation.



# **Type D - Random Sampling**





 About 5 % decision thresholds are not acceptable as they do not provide POD of 90%.

- Sample size of 6 provides decision threshold ≥ 1% POF decision threshold. Meets the criterion for POF < 1%.
- Sample size of 6 does not provide decision threshold > decision threshold at 90% POD for Population. Meets criteria for providing minimum POD/Conf. 90/95. 5 % decision thresholds are not acceptable as they do not provide POD of 90.
- Recommend using lower than calculated decision threshold to improve POD/Conf.
- Both POD and POF criteria are met indicating that the validation is acceptable.



# **Type E - Target and Sub-target Random Sampling**





- Sample size of 6 provides decision threshold ≥ 1% POF decision threshold. Meets the criterion for POF < 1% for .</li>
- Sample size of 6 does not provide decision threshold > decision threshold at 90% POD for Population. Meets criteria for providing minimum POD/Conf. 90/95.
- Both POD and POF criteria are met indicating that the validation is robust.



# **Type F – Nominal Sampling of Sub-target Flaw only**





- Sample size of 6 provides decision threshold ≥ 1% POF decision threshold. Meets the criterion for POF < 1% for .
- Sample size of 6 does not provide decision threshold > decision threshold at 90% POD for Population. Meets criteria for providing minimum POD/Conf. 90/95.
- Both POD and POF criteria are met indicating that the validation is robust.
- Although type F sampling does not provide a representative sample, it can provide a conservative sample that can be used for LS POD analysis
- Can be used successfully to create <u>equivalent random sample</u> <u>properties</u> for sub-target flaws
- Type F sampling can be designed to be conservative.
- Recommended as a lower risk option if it is not practical to produce Worst-Case signal responses

# **Observations from Sampling Runs**

- Type A i.e. nominal-worst 50/50 split sampling
  - Standard deviation of signal response measurement is most robust and conservative
  - Recommended as the lowest risk option if Worst-Case values can be measured
- Type B i.e. Worst-Case sampling also may provide adequate decision threshold
  - May pose difficulty in measurement on a small sample
- Type D random sample
  - It is not possible get a random sample for small sample size
- Type C Target flaw Nominal sampling
  - Does not work and should be avoided
- Type E Random Target and sub-target Sampling
  - Has benefits of type F but is not recommended because it is not possible get a random sample for small sample size
- Type F i.e. Target and sub-target nominal sampling is more practical to all above types
  - Although type F sampling does not provide a representative sample, it can provide a conservative sample that can be used for LS POD analysis
  - Recommended as a lower risk option if it is not practical to produce Worst-Case signal responses i.e. Type A



## Conclusions



- Sampling sensitivity analysis can be used to assess sampling risk in LS POD results and to validate a sampling scheme
- Type A, i.e. Nominal and Worst-Case target flaw sampling can create representative sample, which can be directly used in LS POD analysis
- Type F, i.e. Target and sub-target nominal sampling is more practical than Type A sampling
  - Although, type F sampling does not provide a representative sample, it can provide a conservative sample that can be used for LS POD analysis
  - Type F is recommended as a lower risk option, if it is not practical to produce worst case signal responses needed in type A option