
Robust Semantic Mapping and Localization on a
Free-Flying Robot in Microgravity

Ian D. Miller1, Ryan Soussan2, Brian Coltin2, Trey Smith2, and Vijay Kumar1

Abstract— We propose a system that uses semantic object de-
tections to localize a microgravity free-flyer. Many applications
require absolute localization in a known reference frame, such
as the execution of waypoint trajectories defined by human
operators. Classical geometric methods build a map of point
features, which may not be able to be associated after lighting or
environmental changes. By contrast, semantics remain invariant
to changes up to the robustness of the detection algorithm
and motion of the semantic objects. In this work, we describe
our approaches for both offline semantic map generation as
well as online localization against a semantic map, intended
to run in real-time on the robot. We additionally demonstrate
how our semantic localizer outperforms image-feature matching
in some cases, and show the robustness of the algorithm to
environmental changes. Crucially, we show in our experiments
that when semantics are used to supplement point features,
localization is always improved. To our knowledge, these
experiments demonstrate the first use of learned semantics for
localization on a free-flying robot in microgravity.

I. INTRODUCTION

The Astrobee free-flying robots [1] have been operating
inside the International Space Station (ISS) since 2019. They
can host free-flying robot research, act as mobile cameras for
ground controllers, and collect sensor surveys [2]. Operators
use a 3D graphical interface to plan motion waypoints by
positioning them inside a CAD model of the ISS. Execut-
ing these motions requires Astrobee’s onboard localization
software to provide position estimates in the absolute ISS
coordinate frame used by the CAD model. Robot localization
is an extremely well-studied problem [3], [4], [5], but the
single monocular imager, limited computational capability,
cluttered, truly 3D environment, and necessary robustness of
intra-vehicular robotics (IVR) on the ISS give rise to unique
challenges.

The strategy currently employed by Astrobee [6], [7]
involves building an a priori sparse map of BRISK point
features [8] located in the ISS coordinate frame. This map
is constructed using offline structure-from-motion (SfM)
algorithms. For online localization, features are detected in
an image, and a lookup is performed to the sparse map
database to determine the robot’s pose. While accurate when
successful, we argue that reliance on geometric features such
as BRISK leads to a brittle algorithm. Feature matching

We gratefully acknowledge the support of NVIDIA, ONR Grant N00014-
20-1-2822, and NSF Grant CCR-2112665. Ian Miller acknowledges support
from a NASA Space Technology Research Fellowship.

1 Ian D. Miller and Vijay Kumar are with the GRASP Lab, Uni-
versity of Pennsylvania, Philadelphia, PA 19104. Corresponding author:
iandm@seas.upenn.edu

2 Trey Smith, Ryan Soussan, and Brian Coltin are with the NASA Ames
Intelligent Robotics Group, Moffett Field, CA 94035

Fig. 1: Top: Object detections on the ISS, shown in red,
with map objects projected into the image in green. Blue
lines indicate the associations between detections and map
objects. Bottom: Astrobee robot.

fails in the presence of lighting or environmental changes
that make a location that is still recognizable by a human
unrecognizable for the robot. Environmental changes on the
ISS can include reconfiguration of experiments or stowage
containers being attached to the deck. Lighting changes
can be mitigated by adjusting exposure time and selecting
features intelligently [9], but changes such as individual light
sources moving or turning on and off changes the structure
and direction of shadows, which cannot be compensated for
with whole-image adjustments.

In this work we argue that the semantics of the environ-
ment provide robust cues that the robots can use to localize.
In theory, the identity of an object is completely invariant to
viewpoint, lighting, and configuration, while features relying
directly on pixel values are not. In practice, the invariance
of semantics depends on the detector used. In recent years,
Deep Convolutional Neural Networks (DCNNs) such as Ef-
ficientDet [10] have been shown to achieve strong robustness
as well as computational efficiency, even in constrained
environments. Such detectors show great promise for detect-
ing key objects to act as robust localization landmarks. In
addition, the resulting object maps are human-interpretable,
enabling other high-level tasks such as navigation to objects
or directed exploration, whereas a sparse feature point is
much less informative.

While we motivate and test our method on Astrobee
datasets from the ISS, we note that our localizer can gen-

eralize to a wide variety of applications. For instance, se-
mantics additionally offer invariance to seasonal, viewpoint,
and sensing changes, rendering them attractive for many
terrestrial applications [11]. To our knowledge, this work
constitutes the first application of semantic object detection
to localization of free-flying robots in microgravity, and
the unique robustness, environmental, and computational
challenges therein.

Our contributions in this work are as follows:
• We present a novel method for semantic object-centric

map construction given image poses and object detec-
tions, bypassing the data-association problem.

• We develop a complete system for global localization
using the object-centric semantic map, capable of oper-
ating on computationally constrained hardware.

• We evaluate our method on a variety of datasets from
the ISS, showing superior robustness compared to the
existing feature-based system.

II. RELATED WORK

A. Geometric Localization

Early localization approaches built a database of sparse
image features to localize against. In [4], the authors match
SIFT features between stereo cameras. They initialize the
feature locations based on stereo depth and relocalize against
previously seen features in the map. ORB-SLAM2 [12]
takes a similar approach, building an ORB feature map
and using a bag-of-words approach for relocalization. In
addition, the current Astrobee localization system [6], [7]
uses a sparse feature map composed of BRISK features.
While these methods are effective at relocalization not long
after the map was built, or performing online simultaneous
localization and mapping (SLAM), they are only as robust
as the chosen feature detector and descriptor across lighting
or environment changes.

B. Semantic Localization

The earliest forms of object-based localization detected
unique landmarks of known position, incorporating those
measurements with odometry in a Bayesian framework.
Lenser et al. [13] use colored posts located around a field
coupled with a modified Monte Carlo particle filter to local-
ize quadrupedal robots on a field for RoboCup. However, the
method assumes that all landmarks are unique in appearance,
making the problem of associating detections with map
objects trivial.

In a work most similar to ours, Bavle et al. [5] localize a
quadrotor in by fusing ground plane detections, stereo visual-
inertial odometry (VIO), and semantic object detections in
a particle filter, but treat the world as primarily 2D with a
clear ground plane, an assumption that breaks on the ISS.
Bowman et al. [14] propose a method for probabilistically
associating map objects and detections, though this comes at
the cost of somewhat more expensive optimization. Taking a
different apprach, Ananti et al. [15] localize a robot in a two-
dimensional object map using a particle filter and heatmaps
of object-detection likelihood in image space, but this again

makes a 2D assumption. In [16], the authors are able to
relocalize in a known map viewed from a different angle by
building semantic maps of cuboids from separate datasets,
and registering these two maps to each other. Relocalization,
however, requires aligning two maps, and the method cannot
register a single image to a map.

Recently, dense semantic methods have grown in popular-
ity. Instead of simply representing the map as a set of object
classes and locations, Liu et al. [17] use a dense point-cloud
representation, where each point is given a class. Objects are
first matched by clustering classes and building descriptors
on a semantic graph, followed by dense alignment of the
objects’ geometries. Gawel et al. [11] localize a semantically
segmented image in a dense top-down map by building a
graph descriptor based on semantic topologies in both spaces.
While effective, dense methods require significantly more
computation to handle the complex maps and matching. In
addition, they require training semantic segmentation models,
a process much more time-consuming than bounding-box
labeling for object detection.

C. Semantic Map Building
Many methods seek to build high quality semantic maps

in an online fashion. SLAM++ [18] uses a depth camera
to detect object poses and build an object-level graph of
objects of known geometry to describe the map. Kimera [19]
performs semantic SLAM, utilizing VIO and building mesh
representations of each semantic object, thereby not requiring
known a priori object models. These methods also use depth
sensors or stereo to aid in initializing object locations. By
contrast, EAO-SLAM [20] requires only a monocular imager,
and exploits the motion of the camera to determine the
position and size of objects. However, in order to associate
objects between frames, the method builds on ORB-SLAM2
[12] to match features contained within the object bounding
boxes. By contrast, we do not build a map online, both
because it is known a priori and to limit computation.

D. Localization for Space Robotics
Much of the literature for robot localization in space

revolves around the non-cooperative rendezvous problem
[21], where a robot attempts to rendezvous with some object
in space using visual information. This problem differs
significantly from ours in that there is essentially only one
goal object floating in space, as opposed to the cluttered
environment faced by IVR. The SPHERES free-flyer uses
fixed infrared beacons in the ISS to localize [22], and
Astrobee currently uses image features [7]. JAXA’s Int-Ball
1 free-flyer localizes relative to a known visual fiducial [23].
To our knowledge, this work is the first application of learned
semantics to the IVR localization problem in microgravity.

III. METHOD

In order to use semantic objects for localization, we must
first detect these objects, as well as obtain a semantic object
map to localize against. We first discuss these two problems,
and finally address their integration in the localization algo-
rithm, as well as the overall system design.

Fig. 2: Astrobee image with labelled instances of each class.

A. Object Detection

The Astrobee’s monocular greyscale camera has signif-
icant fisheye distortion, so we rectify the image during
pre-processing [24]. This choice allows us to use standard
projective geometry methods for the rest of the algorithm.

We use the EfficientDet [10] model, in its smallest lite0
variety. Training and validation is performed with a 90-10
split on 2351 bounding boxes, all taken from 132 images
from the execution of a single Astrobee trajectory. We
additionally use RandAug [25] for data augmentation in the
context of TensorFlow Lite Model Maker. Our labels span
across 8 classes, examples of which are shown in Fig. 2.

B. Map Building

1) Offline registration: We construct semantic maps of-
fline to localize against. Given per-image detections from
the trained detector, we also require high quality image
poses. To do this, we first select a subset of the images
from the dataset, avoiding overly redundant images while
ensuring sufficient overlap. We then run an SfM pipeline
[7] to create a bundle-adjusted pose graph of these images.
These images are then registered against an existing sparse
map of the ISS and bundle adjusted again. Finally, we run
the existing sparse map localizer [6] on the entire dataset,
using the newly-constructed map. Because the features in
the new map are from images collected during the same ISS
activity, environmental changes are minimal and registration
is of very high quality. Once this procedure is complete, we
have associated pose and object detections.

2) Notation: Let there be C object classes and K images
in total. Let c ∈ {1, . . . , C} be a class index. Let Dc

k =
{dck,n}n=1,...,|Dc

k| be the set of object detections for class c
in image k, and pk be the camera pose of image k. Then
Dc = {(Dc

k, pk)}k=1,...,K is the set of object-detection-
set/pose pairs for object class c. For simplicity and clarity of
notation, we sometimes suppress the c indices.

3) Heatmap Generation: Next, we find candidate 3D ob-
ject positions by searching for sufficiently large local maxima
in object detection heat maps. The heat map construction
process is described in Algorithm 1. We voxelize the map
volume into L voxels, where each voxel l has position bl,
and for each class c define an object detection heat map
Hc = {hcl }l=1,...,L. The heat map value hcl should be large
if the robot detects an object of class c when it looks toward
bl from diverse viewpoints.

Fig. 3: Generation of the per-class object heatmaps.

Every detection dk,n with pose pk defines a frustum,
shown in red in Fig. 3. We clip this frustum by constrain-
ing the scale of the object based on knowledge of the
approximate sizes of objects. These bounds are shown in
green in Fig. 3, and we denote the resulting clipped frustum
F c(dck,n, pk). Let R(p) and X(p) be the rotation matrix and
position vector, respectively, of pose p. We then compute the
object viewpoint for each cell in the detection frustum Dir,
shown in blue in Fig. 3. We want to upweight cells which are
contained in detection frusta from a variety of viewpoints,
and Algorithm 1 uses the efficient heuristic of adding to hl
when the viewpoint changes significantly. The resulting per-
class 2D heatmap projections of these weights are shown in
Fig. 4.

4) Final Map Refinement: We then detect sufficiently
large local maxima, and use these as our initial object
locations. We let the final map be M = {M c}c=1,...,C ,
where M c = {mc

1, . . . ,m
c
|Mc|} is the set of locations of

|M c| objects of class c. Note that throughout this entire
process, we avoid any explicit data association.

Algorithm 1 Per-class Heatmap Building
Input: Pose sequence pk, detections dk, constant δ
Output: Heatmap hl

1: Vl ← [0, 0, 0]T ∀ l ∈ {1, . . . , L}
2: hl ← 0 ∀ l ∈ {1, . . . , L}
3: for k ∈ {1, . . . ,K} do
4: Dir ← R(pk)[0, 0, 1]T

5: for n ∈ {1, . . . , |Dk|} do
6: for l ∈ {1, . . . , L | bl ∈ F (dk,n, pk)} do
7: ∆θ ← arccos (Dir · Vl)
8: if ∆θ > δ then
9: Vl ← Dir

10: hl ← hl + ∆θ
11: end if
12: end for
13: end for
14: end for

While the resulting maps are reasonable, we can nonethe-
less perform further refinement. We project the estimated
object positions into each image using its known pose pk.
We greedily assign detections to objects on a per-class basis,

Fig. 4: Per-class 2D heatmap projections built from single
dataset. Detected maxima are shown by blue dots.

Fig. 5: Semantic maps overlaid onto the Japanese Experiment
Module (JEM). The lower map shows the initial map after
heatmap maximum detection, the upper map after pose graph
optimization. The boxes highlight changes between the maps.

and thereby build a factor graph [26]. In this graph, the object
positions and poses pk act as nodes to be optimized, while
projection factors connect the two, and prior factors anchor
the robot poses to the initial estimates. We optimize this
graph using GTSAM [26], and show the resulting map in
Fig. 5. We find the refined map to be of higher qualitative
quality than the initial map, as well as ultimately yielding
quantitatively more accurate localization.

C. Localization

The Astrobee localization system uses a graph optimiza-
tion formulation, which we summarize here but is described
in more detail in [6]. The system maintains a pose graph
over a sliding window of duration ∆T , shown in Fig. 6.
Sequential poses, associated with images, are connected with
a combination of factors comprising inertial measurement
unit (IMU) and optical flow constraints. With only these
factors, the system performs VIO. In addition, we add sparse
(BRISK) features to the pose graph as projection factors
connecting to known feature locations in the sparse map.
There are several ARTags [27] located on the Astrobee dock,
and these are treated similarly to the sparse features, with
the ARTag pose initialized at the time of first viewing. We

Fig. 6: Visualization of localization pose graph.

Fig. 7: Visualization of the sum of the x and y costs
at different mα positions using different buffer sizes. The
detection bounding box is shown in red.

handle semantic factors similarly as well. When a detection
is associated with an object in the map, creating the tuple
(mj , dk,n, pk), we add a projection factor between the pose
and object using the detection and continue to optimize the
graph. The additional computational burden of our method
is therefore quite minimal, since there are relatively few
semantic object factors added to the optimization compared
to sparse feature factors.

We make several modifications to the semantic factors in
order to further improve performance. Firstly, the standard
deviation σ = (σx, σy) of the noise model is scaled by
the size of the detection bounding box bbox(dk,n). We do
this because we expect noise in the detector of the order
of magnitude of the bounding box size. In addition, if an
object is partially in view, the bounding box center may
not necessarily align with the object’s actual centroid. In
order to combat this, we set a threshold τ as a function of
the bounding box size where no cost is applied. Finally, we
scale the uncertainty inversely with the number of matched
detections, motivated by the intuition that a larger number
of associations suggests stronger confidence in those asso-
ciations, as well as more strongly constrains the graph. A
visualization of the cost, varying the position of mα with
respect to a detection, under different τ is shown in Fig. 7.
Formally,

σ = bbox(dk,β)R/Nmatch

E = max
{∣∣Kp−1k mα − pos(dk,β)

∣∣− τbbox(dk,β), 0
} (1)

where R is a tunable parameter and E is the cost. In
practice, instead of the max we use two Sigmoid Linear Units
[28], which are a smooth approximation with a continuous
Jacobian, making the graph optimization more robust.

We now have only the data association problem left to
solve. We firstly define a cost Cαβ where for the association
of object mα with detection dk,β , we have

Cα,β =
∥∥(Kp−1k mα − pos(dk,β))/bbox(dk,β)

∥∥
2

(2)

We can then formulate the data assocation optimization

minimize
Jk

∑
n

Cjk,n,n

subject to jk,a 6= jk,b, jk,a ≤ |M |, jk,a ∈ Z+ ∀ a, b
(3)

where Jk = {jk,1, . . . , jk,N}. In other words, for a given
image k, we want to find the unique assignment Jk between
detections and objects that minimizes the sum of the distance
between the paired detections and objects. Note that we scale
the distance by the size of the detection bounding box. The
optimal solution to this problem is given by the Hungarian
algorithm [29] operating on the cost matrix C with elements
Cα,β .

We note that the number of mapped objects and detected
objects may differ, so there may be unassigned objects or
detections. Therefore, we create virtual objects or detections
with an equal large distance to eachother, padding C with
some large constant cost Γ to make it square. In addition,
we set elements of C exceeding a threshold to Γ. We then
simply ignore the resulting assignments with cost Γ, thereby
efficiently thresholding the cost a given association can have.

D. System Design

As described in [1], the majority of the Astrobee autonomy
stack is built on ROS and runs on the mid-level processor
(MLP). In order to avoid increasing computation demand on
this processor, we run the detector on the high-level processor
(HLP) under Android, implemented in TensorFlow Lite.
Images are sent from the MLP to the HLP and detections are
returned over the internal network. We tested our model on
a development board with the same processor as the HLP,
and found inference on our model to run around 4 Hz. For
the experiments presented here, algorithms were run offline,
but the detection rate was conservatively artificially set to 1
Hz.

IV. DATASETS

We tested on 5 separate datasets, spanning across three
different days several months apart in the Japanese Experi-
ment Module (JEM) on the ISS. These datasets are detailed
in Table I, where the dataset number (1, 2 or 3) indicates the
day. Example images taken on each day from a similar loca-
tion are shown in Fig. 8. Note the variations in lighting and
rack configurations, as well as object locations. All training
images for our object detector were taken from dataset 1.
For testing, we built a sparse map and semantic map from
datasets D1 and D2a in order to compare the methods using
the same data, using the high quality poses from our offline
SfM pipeline detailed in Sec. III-B. Table I shows which
maps are used for localization for which datasets in our
experiments. For computing error from ground truth, we use
the SfM poses as well.

V. RESULTS

For all experiments, we ran the localizer in VIO mode,
that is, not including factors from sparse map features or
semantic objects. We also tested on the same datasets using

Dataset Duration (min:sec) Length (m) Map
D1 31:23 28.7 M2a

D2a 12:33 15.9 M1

D2b 4:45 7.5 M1

D3a 10:56 16.2 M2a

D3b 7:43 22.8 M2a

TABLE I: Datasets used for Evaluation

Fig. 8: Images taken from a similar pose from each day
represented in our datasets. Some notable differences are
highlighted.

sparse mapping factors, semantic factors, and both. For these
cases, the sparse maps and semantic maps are built from the
datasets indicated in Table I.

A. Qualitative Results

We plot the position errors for three datasets over time
in Fig. 9. While orientation errors are not shown for clarity,
they follow similar trends. Note that incorporating semantics
leads to lower position errors at almost every instant as
opposed to simply forward-integrating with VIO. However,
semantics do not generally achieve as low an error as sparse
features when such feature matches are available. Regions
when the localizer is able to register sparse point features
are highlighted in the plots. Due to the localizer using sparse
maps built under different conditions, it is frequently unable
to locate the current image. When this is the case, the error
can gradually increase as the localizer relies on VIO. This
is particularly evident in dataset 1, where the error grows to
be greater at one point than when purely using VIO, likely
due to the IMU bias estimation being poor at the time when
sparse registration was lost.

By contrast, semantic objects are detected and associated
in many more frames, despite using a map built from the
same data as the sparse map. Therefore, by incorporating
both semantic objects and sparse features we achieve the
accuracy of sparse features when they are available, but the
semantics increase robustness, decreasing drift when point
features cannot be registered.

The error traces for datasets 1 and 2a end earlier when
sparse features are not used due to some implementation de-
tails of timestamp handling. However, this only occurs once
the robot has docked. For computing root-mean-squared-
error (RMSE), we simply ignore these portions of the
datasets. In addition, note that the starting positions differ

0 500 1000 1500
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
rr

o
r

(m
)

Dataset 1 Position Error

VIO

Sparse Mapping

Semantics

Sparse and
SemanticsSparse Registration

0 200 400 600
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r

(m
)

Dataset 2a Position Error

0 100 200 300 400
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
rr

o
r

(m
)

Dataset 3b Position Error

Legend

Fig. 9: Position errors over time for different datasets using
different localization strategies. The shaded regions show
where sparse feature factors were added.

for Dataset 3b depending on the localization method. This
occurs because the initial position estimate is not quite
accurate, but when sparse features are used it is corrected
immediately. When semantic features are incorporated, the
localizer corrects itself in the correct direction over time.

B. Quantitative Results

We compute the RMSE error for all datasets, which are
plotted in Fig. 10. Dataset 2b has exceptionally large VIO
error due to the robot not starting in the dock and beginning
motion quickly, causing poor IMU bias estimation and large
amounts of drift. This drift is strong enough that semantics
are unable to correct effectively before there is sufficient drift
for data assocations to begin to be incorrect. This leads to

D1 D2a D2b D3a D3b
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

 P
o

si
ti

o
n

 E
rr

o
r

(m
)

Localization Accuracy Comparison

VIO

Sparse

Semantics

Sparse and
Mapping Semantics

2.32 2.56 1.19

Fig. 10: RMSE position errors over the entire trajectory for
each dataset.

large errors for both the VIO and semantics only modes.
Incorporating sparse features corrects this error, and adding
semantics improves quality further very slightly.

We emphasize that for every dataset, adding semantics
improves the RMSE compared to the error from only using
sparse features. While in most cases the localizer using
semantics alone is unable to achieve as high an accuracy
as using sparse features alone, this is unsurprising. A sparse
point feature is associated with a specific image point and
there are often many of them per-image, while semantic
objects are larger, less precisely located, and fewer. However,
their greater detection robustness under different conditions
leads to the semantic-sparse combination performing most
strongly.

In addition, note that datasets 2b, 3a, and 3b demonstrate
the efficacy of our method under circumstances where the
object detector was not trained on any images in the dataset,
nor was the semantic map built using any images in the
detector training set. We argue, therefore, that our semantic
detector offers excellent robustness to map and lighting
changes, even when not explicitly trained on data reflecting
those changes. Our method also demonstrates robustness
even to changes in the map, since as can be seen in Fig. 8,
the locations of objects in the map are not identical between
datasets. We expect that performance could be improved
further by increasing the variety of images in the training
set, as well as using multiple datasets for map construction.

VI. CONCLUSION

In this work, we have presented methods for object-centric
semantic map generation and localization leveraging seman-
tic maps in the context of microgravity. Our map generation
method bypasses the data association problem, aside from
the final refinement step, by using a voxelized heat map
formulation. We have also shown that utilizing semantics
in addition to sparse point features leads to increases in
localization performance for all of our datasets, and argued
that semantics provide a highly robust counterpart to sparse
features for absolute localization. In the future, we plan to
deploy and test our system in-the-loop on the ISS, enabling
greater localization robustness for Astrobee and future free-
flying robots.

REFERENCES

[1] L. Fluckiger, K. Browne, B. Coltin, J. Fusco, T. Morse, and
A. Symington, “Astrobee robot software: Enabling mobile autonomy
on the iss,” in Proc. of the Int. Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), 2018.

[2] M. G. Bualat, J. S. Barlow, J. V. Benavides, B. Coltin, L. J. Flück-
iger, M. G. Moreira, K. Hamilton, and T. Smith, “Astrobee on-orbit
commissioning,” in Proc. IAF Int. Conf. Space Ops, 2021.

[3] N. J. Fairfield and B. A. Maxwell, “Mobile robot localization
with sparse landmarks,” in Mobile Robots XVI, D. W. Gage and
H. M. Choset, Eds., vol. 4573, International Society for Optics
and Photonics. SPIE, 2002, pp. 148 – 155. [Online]. Available:
https://doi.org/10.1117/12.457439

[4] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks,” The inter-
national Journal of robotics Research, vol. 21, no. 8, pp. 735–758,
2002.

[5] H. Bavle, S. Manthe, P. de la Puente, A. Rodriguez-Ramos, C. Sampe-
dro, and P. Campoy, “Stereo visual odometry and semantics based lo-
calization of aerial robots in indoor environments,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 1018–1023.

[6] R. Soussan, B. Coltin, V. Kumar, and T. Smith, “Astroloc: An
efficient and robust localizer for a free-flying robot,” in 2022 IEEE
International Conference on Robotics and Automation (ICRA), 2022.

[7] B. Coltin, J. Fusco, Z. Moratto, O. Alexandrov, and R. Nakamura,
“Localization from visual landmarks on a free-flying robot,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 4377–4382.

[8] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in 2011 International Conference on
Computer Vision, 2011, pp. 2548–2555.

[9] P. Kim, B. Coltin, O. Alexandrov, and H. J. Kim, “Robust visual local-
ization in changing lighting conditions,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 5447–
5452.

[10] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 10 781–10 790.

[11] A. Gawel, C. Del Don, R. Siegwart, J. Nieto, and C. Cadena, “X-
view: Graph-based semantic multi-view localization,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1687–1694, 2018.

[12] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[13] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled mobile robots,” in Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, pp. 1225–
1232 vol.2.

[14] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Proba-
bilistic data association for semantic slam,” in 2017 IEEE international
conference on robotics and automation (ICRA). IEEE, 2017, pp.
1722–1729.

[15] R. Anati, D. Scaramuzza, K. G. Derpanis, and K. Daniilidis, “Robot
localization using soft object detection,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 4992–4999.

[16] J. Li, D. Meger, and G. Dudek, “Semantic mapping for view-invariant
relocalization,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 7108–7115.

[17] Y. Liu, Y. Petillot, D. Lane, and S. Wang, “Global localization with
object-level semantics and topology,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 4909–4915.

[18] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at the
level of objects,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2013, pp. 1352–1359.

[19] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 1689–1696.

[20] Y. Wu, Y. Zhang, D. Zhu, Y. Feng, S. Coleman, and D. Kerr, “Eao-
slam: Monocular semi-dense object slam based on ensemble data
association,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 4966–4973.

[21] M. Dor and P. Tsiotras, “ORB-SLAM applied to spacecraft non-
cooperative rendezvous,” in 2018 Space Flight Mechanics Meeting,
2018, p. 1963.

[22] S. Nolet, “The spheres navigation system: from early development
to on-orbit testing,” in AIAA Guidance, Navigation and Control
Conference and Exhibit, 2007, p. 6354.

[23] S. Mitani, M. Goto, R. Konomura, Y. Shoji, K. Hagiwara, S. Shigeto,
and N. Tanishima, “Int-Ball: Crew-supportive autonomous mobile
camera robot on ISS/JEM,” in Proc. IEEE Aerospace Conf., 2019,
pp. 1–15.

[24] G. Blott, M. Takami, and C. Heipke, “Semantic segmentation of
fisheye images,” in Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, 2018, pp. 0–0.

[25] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search space,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 702–703.

[26] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[27] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2. IEEE, 2005, pp. 590–596.

[28] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning,”
Neural Networks, vol. 107, pp. 3–11, 2018.

[29] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

https://doi.org/10.1117/12.457439

	Introduction
	Related Work
	Geometric Localization
	Semantic Localization
	Semantic Map Building
	Localization for Space Robotics

	Method
	Object Detection
	Map Building
	Offline registration
	Notation
	Heatmap Generation
	Final Map Refinement

	Localization
	System Design

	Datasets
	Results
	Qualitative Results
	Quantitative Results

	Conclusion
	References

