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EFFECT OF CROSS-CORRELATION OF ORBITAL ERROR ON
PROBABILITY OF COLLISION DETERMINATION

 Stephen J. Casali1, Doyle T. Hall1, Daniel R. Snow1, M. D. Hejduk2,
Lauren C. Johnson1, Brent B. Skrehart1 and Luis G. Baars1

This paper discusses the effect of global model error on probability of collision
(Pc) determination.  Modifications to the Pc formulation for cross-correlation of
orbital error in prediction are developed and assessed for recent conjunctions.
While specific geometries can be identified or constructed to produce significant
change in Pc for the modified formulation, it is of operational interest to
quantify the relative occurrence of such cases for satellite conjunction risk
assessment.  Such analysis is feasible per data collections in place over the past
year.

INTRODUCTION

Probability of collision (Pc) determination between satellites requires full statistical knowledge of
the underlying orbital errors.  Orbital error can be broadly categorized as satellite-specific error,
originating from random observational inaccuracies, for example; and globally-induced error,
arising from imprecision in standard physical models, for example.  Each error source distinctly
affects Pc, as has long been recognized regarding standard alogorithms1 for computing Pc.  While
prior papers have addressed this distinction2, the practical identification, modeling, and breakout
of globally-induced error for Pc computation is nontrivial.

General Background

Recently, global atmospheric density forecast error was statistically characterized for an
operational density model during development of a new uncertainty model for the drag consider
parameter within the Astrodynamics Support Workstation (ASW).  The development resulted in
the Dynamic Consider Parameter (DCP) application in ASW, operationally deployed in mid-
2015.   Although the effort was conducted to improve satellite state covariance realism,
implications for Pc determination were evident during the analysis per the connection to globally-
induced error.

The drag consider parameter in ASW represents a relative change in predicted atmospheric
density ( ) and/or ballistic coefficient (B).  It is defined strictly in prediction as a step function
from the end of the orbit determination (OD) reflecting the discontinuous nature of the solar
indices forecast relative to measured values.  Originally, the drag consider parameter uncertainty
was set to 12%, applicable to lower altitudes as for the International Space Station (ISS).  DCP
extended it to higher altitudes and added temporal variation with solar activity.
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The methodology for DCP logically divides predicted  and B error into two independent
components.  The first represents the usually predominant error due to solar forecast inaccuracy,
to  include  related  forecast  errors  in  the  Dynamic  Calibration  Atmosphere  (DCA)  coefficients3.
The second represents error due to frontal area change in prediction relative to the OD solution as
manifested by B.  Fourth-order polynomials for four categories of solar activity give density
forecast uncertainty versus perigee height.  Variable frontal area uncertainty is obtained through
reductions on the ASW B histories looking back many months to one year.  Each DCP
component  is  expressed  as  a  relative  uncertainty,  and  the  total  DCP variance  is  the  sum of  the
component variances assuming statistical independence.  DCP is run for each drag satellite three
times per day in synch with the cadence for ASW solar indices download and DCA solution.
Both DCP component uncertainties are saved in growing histories by satellite.

Note that the first DCP component is globally-driven, while the second is satellite-specific.  The
former implies cross-correlation of orbital error between satellites, particularly given its typical
predominance.  This was in fact evident during the DCP evaluation, for which high correlations
were observed for in-track error amongst satellites and with solar activity throughout the DCP
study period.  However, currently there is no means of accounting for cross-correlation of orbital
error in the Pc computation from separately generated ephemerides.

Inclusion of cross-correlation effects is facilitated by the recently developed ASW-based Brute
Force Monte-Carlo (BFMC) tool4, which performs predictions of primary and secondary satellites
within an execution.  This allows statistically treating globally-induced drag error as distinct from
satellite-specific drag error per the two DCP uncertainties, through either direct application of
global error in the Monte Carlo trials themselves or as an analytical adjustment to the standard Pc,
as developed below.

Study Objective
The goal herein is to develop the Pc formulation for the presence of density forecast error and
related cross-correlation of orbital error.  The practical effect of the resulting alterations to the
standard Pc is then shown.  The analysis is performed in the context of the ASW drag consider
parameter and DCP per their relation to density forecast error, which is often the largest source of
orbital inaccuracy for low-Earth satellites.  Cross-correlation of orbital error stemming from mis-
modeling in the OD is more complicated and not treated herein, although in most cases it is
expected to be the minor contributor to overall error cross-correlation.

DEVELOPMENT

The standard Pc computation is driven by the miss vector at time of closest approach (TCA) and
its associated covariance, as determined from estimates of primary and secondary state and
covariance.  The miss vector is just the positional difference to the secondary from the primary at
TCA, and the miss vector covariance is a combination of primary and secondary covariance.  The
miss vector covariance is often referred to as the joint covariance and is developed below using
the following definitions, with bold indicating vectors or matrices and dimensions (dim)
indicated.

r  =  variable denoting position vector at TCA (dim 3)
 =  variable denoting a posteriori mean (estimate) of r (dim 3)

P =  variable denoting a posteriori covariance matrix of r (dim 3 by 3)
 =  variable denoting epoch state error (dim state size n)
 =  variable denoting positional state transition matrix (dim 3 by n),

     mapping deviation in epoch state to position deviation at TCA
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G =  variable denoting positional global model parameter transition vector (dim 3),
     mapping deviation in  (below) to position deviation at TCA

 =  variable denoting global model parameter error
 =  variable denoting a priori (empirical) sigma of

p =  subscript denoting primary satellite
s =  subscript denoting secondary satellite
m =  subscript denoting miss vector at TCA
g =  subscript denoting global model parameter
e =  subscript denoting epoch variable

From the definition of miss vector (rm = rs - rp),  its  mean  ( m), and covariance (Pm),  with  E
denoting the expected value operator,

m = E[rm] = E[rs - rp] = E[rs] - E[rp] = s - p (1)

Pm = E [(rm - m) (rm - m)T] = E [((rs - s) - (rp - p)) ((rs - s) - (rp - p))T] (2)

Pm  = E [(rs - s) (rs - s)T] + E [(rp - p) (rp - p)T]

      - E [(rs - s) (rp - p)T] - E [(rp - p) (rs - s)T]
(3)

Pm = Ps + Pp - E [(rs - s) (rp - p)T] - E [(rp - p) (rs - s)T] (4)

where the last relation results from the definition of primary and secondary covariance (Pp , Ps),
analogous to the first relation in Eq. (1) for m in terms of primary and secondary mean ( p , s).

Normally, the two subtractive terms in Pm are assumed to be zero in the standard Pc computation,
with the joint covariance simply given as the sum of primary and secondary covariance.  This is
justified if the orbital errors from orbit determination and prediction of the two satellites are
statistically independent.  Relating a position deviation at TCA to a deviation in epoch state via
the state transition matrix

rs - s = s s  and rp - p = p p (5)

readily implies the subtractive terms in the expression for Pm are in fact zero if errors in the orbit
determination are independent with E[ s

T
p] = 0, and no common prediction errors are present.

The point of the current analysis is to consider the case where common prediction errors are
present.  This implies generalizing the above error relations to include a global model parameter
error g acting purely in prediction, representable in its simplest form as

rs - s = s s + Gs g  and rp - p = p p + Gp g (6)

where state transition vector G (satellite dependent) gives the linearized effect of scalar g on
predicted position over the course of state propagation from epoch, analogous to .  Substitution
into the general expression for Pm in Eq. (3) gives

Pm = E [( s s + Gs g) ( s s + Gs g)T] + E [( p p + Gp g) ( p p + Gp g)T]

        - E [( s s + Gs g) ( p p + Gp g)T] - E [( p p + Gp g) ( s s + Gs g)T]         (7)

Again assuming the OD states are independent (E[ s
T

p] = 0) and naturally assuming global error
acting in prediction is independent of epoch errors (E[ s g]  =  0  =  E[ p g]), leads to a more
complete form for Pm with 2

g = E[ 2
g]

Pm = s Ps/e
T

s + p Pp/e
T

p  + 2
g (Gs GT

s + Gp GT
p - Gs GT

p - Gp GT
s)         (8)
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Pm = Ps + Pp - 2
g (Gs GT

p + Gp GT
s)         (9)

where Pp/e and Ps/e are the primary and secondary covariances at epoch representing errors in .

For this application, g represents a relative change in density  during prediction with respect to
model density per the ASW definition of drag consider parameter.  As such, g and g reflect just
the density forecast component of DCP.  Further, g is equivalent to a relative change in B
through the B term in drag acceleration, and because ASW solves for B as a relative correction,
G is the B column of .  This mathematically allows for simply increasing the B variance of Ps/e

and Pp/e by 2
g to give the additive 2

g terms (versus separately mapping and adding).  Moreover,
DCP frontal area variance is also naturally added the same way to Ps/e and Pp/e being satellite-
specific and B-induced.  Since the two DCP component variances sum to the full DCP variance,
the result  is  the total  DCP variance is  added to epoch B variance for  each satellite  to  yield the
additive terms of Pm comprised by Ps and Pp in Eq. (9).

Therefore,  the  DCP  density  forecast  component  is  currently  reflected  in Pm through just the
additive terms of Eq. (9) but not the subtractive terms.  In other words, global uncertainty is
included but applied independently to the two satellites through epoch B variance in separate
satellite predictions.  The result is Pm may be inflated, depending on the relative contributions of
the terms.  Usually some inflation in Pm is conservative and acceptable, as it tends to increase Pc
to a degree, but for small-separation conjunction geometries, this inflation may artificially
decrease Pc.

Finally, the general expression for Pm is actually a little more complicated than stated because the
global density error affects the two satellites slightly differently.  Because DCP varies with
perigee height, the satellites generally will have different DCP density forecast uncertainties if
they differ in perigee height.  However, this is usually a lesser effect, particularly for near-circular
orbits, and the adjustments needed to Pm to  account  for  it  are  minor.   Rather  than  a  single 2

g

term, 2
s/g, 2

p/g,  and  ( s/g p/g) terms appear in the global contributions, with similar values
typically, where the extra s and p subscripts denote some dependency of global density error
uncertainty on the secondary and primary orbits.  This can be seen through creating a generalized
dependency in Eq. (7) for g as s/g = s/g x and p/g = p/g x, where x is an unbiased random
variable with unity variance and again uncorrelated to epoch state error ( ).  Making this
generalization gives

Pm = s Ps/e
T

s + p Pp/e
T

p + 2
s/g Gs GT

s + 2
p/g Gp GT

p

                                   - s/g p/g Gs GT
p - s/g p/g Gp GT

s       (10)

Pm = Ps + Pp - s/g p/g Gs GT
p - s/g p/g Gp GT

s       (11)

General Implications

Several inferences can be drawn on the effect the global density error g and its statistics have on
the miss vector covariance Pm.   For  notational  clarity,  the  simpler  form  for Pm in  Eq.  (9)  is
initially discussed, though the results extend analogously to the more general form for Pm in Eq.
(11) as given subsequently.  Several additional quantities are required below and further
expounded during the discussion to follow:

v   =  variable denoting a velocity vector at TCA
k   =  variable denoting a drag sensitivity scalar
r   =  subscript denoting relative velocity at TCA
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o   =  subscript denoting orthogonal velocity at TCA

First, the basic form for Pm can be restated as

Pm = s Ps/e
T

s + p Pp/e
T

p + 2
g (Gs - Gp) (Gs - Gp)T (12)

which also readily follows from performing the preceding reduction starting from the miss vector:

rm - m = (rs - s) - (rp - p) (13)

rm - m = s s + Gs g - p p - Gp g (14)

rm - m = s s - p p + g (Gs - Gp) (15)

These arrangements illustrate the one-dimensional effect of g and its associated statistics in Pm,
where it is seen to contribute a covariance of rank one given by 2

g (Gs - Gp) (Gs - Gp)T.

Further insight can be gleaned in considering the specific effect drag has on TCA position in the
context of Pc computation.  As commonly accepted, the dominant effect of drag is in the velocity
direction, neglecting smaller variations in height and out-of-plane, to where to first-order G = k v.
In other words, deviations in g translate into a positional change along v at TCA according to a
satellite-dependent proportionality variable k (implicitly containing v = |v|):

Gs = ks vs and Gp = kp vp (16)

This means (Eq. (15)) deviations in miss vector due to g are simply given by g (ks vs - kp vp).
Moreover, during rotation to the collision plane perpendicular to relative velocity in the Pc
formulation, errors along relative velocity are rotated out.  This leads to only the components of
vs and vp orthogonal to the relative velocity (vr = vs - vp) as relevant to the projection of Pm in the
collision plane and hence to Pc.  Furthermore, vs and vp share the same orthogonal component vo

in the plane of the velocities, as evident geometrically from the diagram

Figure 1. Relative Velocity Illustration

Therefore, the effect of g on rm in the collision plane is just g (ks - kp) vo , to where its statistical
effect on the projection of Pm in the collision plane is 2

g (ks - kp)2 vo vo
T.  Furthermore, it follows

analogously that taking into account satellite dependency in the statistics of g just modifies the
expression for the statistical effect to be ( s/g ks - p/g kp)2 vo vo

T.  Similar to Eq. (11), this can be
seen through adding a generalized dependency in Eq. (15) for g as s/g = s/g x and p/g = p/g x,
where x is an unbiased random variable with unity variance.  The general result then follows from
Eq. (15) and Eq. (16) and taking the expected value of (rm - m)(rm - m)T.
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Several key points emerge regarding the influence of global density error uncertainty on Pc
through its effect on the projection of Pm in the collision plane.  These are in line with intuition
prior to the analysis but are more apparent upon reduction and dynamical simplification as above.

First, the effect on Pc is negligible when vo is small or zero, in line with intuition that head-on
conjunctions are relatively unaffected, with the main change then being TCA uncertainty.
Second,  if  sensitivity to  drag is  low (e.g.  small  energy dissipation rate  (EDR),  which is  given a
more formal description in the following section, or short propagation), as reflected in the
proportionality variable k, the effect is comparatively small, as also intuitively evident.  Similarly,
if global density error variance 2

g is small or assumed negligible, the effect trivially vanishes.

Third and more interestingly, if the drag sensitivities are comparable or identical for the two
satellites, through some combination of EDR and propagation time, the effect again vanishes,
even for significant drag cases.  This was understood prior as the example of a “crossing”
conjunction with similar drag uncertainty dispersions that might behave in tandem for a perfectly
correlated error source.  For this case, the implication is that global uncertainty needs no
inclusion, akin to not applying the main DCP component (density forecast uncertainty) of the
drag consider parameter variance at all.

This raises the fourth point mentioned previously that applying DCP independently by satellite
without breaking out global and satellite-specific error can lead to inflation of the joint covariance
and its projection in the collision plane.  The current process essentially applies (k2

s + k2
p) in the

above, versus (ks -  kp)2 =  k2
s +  k2

p -  2  ks kp , in processing satellites independently, with the
subtractive term omitted. This observation holds for both the simpler and more general
expressions for Pm in g and ( p/g , s/g).

In summary to this point, the complete form for the joint covariance of the miss vector has been
derived and discussed for the influence of a global relative density error per Eq. (9) and Eq. (11),
where certain cross correlation error terms normally assumed to be zero arise in the formulation.
The effect of these terms is to decrease the size of the joint covariance relative to that produced
by separate application of drag consider parameter variance to primary and secondary satellites.
Scenarios are readily identifiable for close conjunctions where applying the subtractive terms
could raise Pc, while for other cases with larger miss vectors, the current Pc is conservative due to
effective inflation.

EDR Approximation

Further approximation along the lines of the above velocity form for G utilizing EDR and
prediction time (t)  is  possible.   EDR  is  a  composite  measure  of  the  level  of  drag  acting  on  a
satellite, encompassing all drag acceleration parameters in density, velocity, B, etc.  Instantaneous
EDR is simply the negative dot product of velocity (v) and drag acceleration (aD) from the
physical definition of rate of change of specific energy, with average EDR over an OD or
prediction interval reported by ASW.  Being directly connected to orbital energy, EDR is
relatable to the dominant in-track drag effect on semi-major axis (a) and mean-motion (n), as
outlined below in terms of t, change in mean-anomaly ( M) due to drag, and Earth gravitational
constant .

With an overhead dot denoting the time rate of change of a variable, Lagrange’s Planetary
equations5 show  is  proportional  to  the dot  product  of v and aD (considering drag only), which
also follows from differentiation of the two-body energy equation.  Given the close relation
between  and  found from differentiating n2 a3 = , it follows that EDR is proportional to /2
and thus to quadratic mean-anomaly change per M = ( /2) t2 (from general perturbations (GP)
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theory).  Lastly, a deviation in mean-anomaly corresponds to a deviation along v by an elapsed t
= M/n.  This progression is summarized as

v2/2 = /r - /2a         = (2a2/ ) v . aD         = (-2a2/ ) EDR       (17)

n2 a3 =         2n a3 + 3 n2 a2  = 0        /a = - 2/3 ( /n)       (18)

 = (3 na / ) EDR        /2 = 3/2 EDR / ( a)    M = 3/2 EDR t2 / ( a)       (19)

r = ( M/n) v = v { 3/2 EDR t2 / ( a)} / n       (20)

Therefore, Eq. (20) relates EDR and prediction time to a positional change due to drag at TCA.
This sensitivity relation is what the prior model transition vector G represents.  The only
remaining step is to recognize that relative changes in density and B translate into relative
changes in EDR since drag acceleration aD is proportional to each.  Therefore, G is simply given
by r from Eq. (20), meaning a deviation in r due to a relative global density variation is simply

r g.

ANALYSIS

To address the practical effect of the cross correlation of orbital error due to predicted density
error, recent conjunctions from the Conjunction Assessment Risk Analysis (CARA) database
were examined in the BFMC framework.  The conjunctions comprise data from the Conjunction
Data Message (CDM) and associated primary and secondary Vector Covariance Message (VCM)
containing epoch state and model.  In support of the VCM, CARA has been collecting
corresponding environmental data to fully reproduce operational scenarios since spring 2016,
although the complete datasets needed for this purpose were not finalized until spring 2017.  This
data includes both DCP uncertainty components as well as the model-compatible B, solar indices,
and DCA coefficients, to where recent conjunctions of interest should be fully assessable.

However, off-line reproduction of an operational scenario is not always straightforward or
possible, mainly because of inherent timing issues in the data capture process for the VCMs and
environmental data occurring approximately once per shift and for high-interest conjunctions to
where the environmental data in effect for a conjunction cannot always be automatically
identified.  Therefore, some conjunctions require manual reconstruction to ensure BFMC assess
the correct operational scenario.  Moreover, the CARA database currently does not distinguish
between VCMs with the same epoch time (keeping just the latest VCM), so the satellite state
needed to reproduce a conjunction may not be available.  Such occurrences are not rare
operationally, as analysts can produce multiple updates with the same epoch time in order to fine-
tune a high-interest conjunction.  Finally, reproducibility aside, the required database retrieval
and conjunction verification is time consuming.

For these reasons, in addition to evaluating cross correlation within the BFMC framework of full
special perturbations (SP), the effect was also assessed through CDM analysis and
approximations to the drag dynamics discussed above.  This allowed for quicker turnaround in
gaining initial insight into the degree and scope of the effect across hundreds of conjunctions than
is  possible  from  the  full  SP  BFMC  process.   To  this  end,  EDR  and  prediction  times  directly
available  in  the  CDM were  utilized  to  approximate  the  drag  dynamics  from epoch  to  TCA,  as
given in Eq. (20).  Since DCP information is not present in the CDM, and given the approximate
nature of Eq. (20), this analysis was conducted as a Pc variation across a range of sample DCP
density  forecast  uncertainties.   A  full  SP  assessment  applying  actual  DCP  data  for  each
conjunction followed this preliminary CDM analysis once the overall effect was evident.
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Altogether,  the  analysis  consisted  of  preliminary  CDM  testing  leading  into  a  broader  full  SP
assessment.   The  latter  evaluation  was  itself  broken  into  two  sets.   The  first  focused  on
conjunctions with elevated drag, while the second considered the larger set of non-trivial drag
(defined below).  These runs determined Pc two ways, as current Pc without adjusting for cross-
correlation and modified Pc adjusting for cross-correlation, per the joint covariance form in Eq.
(11) and Eq. (9).

Finally, as a basic analysis check, a general Monte Carlo BFMC run was performed for several
sample conjunctions identified within the full SP runs.  For this test, BFMC was modified to
perform an extra random draw explicitly for density forecast error and apply it to both satellites
according to its DCP  variance, as described for Eq. (11) via random variable x and associated

p/g and s/g.  The DCP B variances (only) were applied individually to epoch covariance as usual.

Analysis Data
Recent conjunctions over approximately the past year were of primary interest, which also
coincides when the full SP data for BFMC started to become available just before April 1, 2017.
Otherwise, the study would have also considered further back into the solar cycle closer to solar
maximum, versus the near solar minimum currently in effect.  Several hundred conjunctions were
desired to infer the prevalence and significance of the cross-correlation effect.

The preliminary CDM testing consisted of all CDMs in the CARA database over 2017 with both
primary  and  secondary  EDR  >  0.0006  W/kg  (EDR  Bin  >  1)  to  consider  just  cases  possessing
clear drag dynamics, resulting in approximately 440 conjunctions.  The subsequent full SP
analysis  for  the  elevated  drag  set,  using  the  same  EDR  definition  as  the  CDM  testing,  also
considered about a year of conjunctions from April 2017 to April 2018, resulting in
approximately 250 useable conjunctions.  The full SP analysis on the non-trivial range of drag
with EDR > 0.00001 W/kg for either satellite (and neither EDR zero) considered only about 4
months of recent conjunctions, resulting in about 2700 useable conjunctions.  The latter set was
restricted to a few months to maintain a manageable sample size, particularly during solar
minimum, when a large percentage of satellites experience diminished (EDR Bin 1) levels of
drag.

Also to maintain a sample of interest, only conjunctions with standard Pc > 10-6 were considered
for the elevated drag cases, for both CDM and full SP tests.  For the full SP non-trivial drag case,
Pc  >  10-5 was considered as a compromise with sample size reasonableness.  (Initially queries
with Pc > 10-6 over the past year for non-trivial drag conjunctions resulted in over 20,000 cases,
an unwieldy number.)  Finally, in all cases, the hard-body-radius was set to a representative 20 m,
since relative Pc versus absolute Pc was of interest in the results to follow, except for the ISS, for
which 70 m was invoked.

Analysis Results
The results of the preliminary CDM analysis are shown in Figure 2, which illustrates the effect of
cross-correlated orbital error on standard Pc across a range of hypothetical DCP density forecast
uncertainties.  Being just hypothetical, the generic term of global consider parameter (GCP) for

g in Eq. (9) denotes the curves in Figure 2.  Here, standard Pc, also known as 2D-Pc, refers to Pc
found by linear reductions to the collision plane and subsequent quadrature over a 2D circular
area defined by the (combined) hard-body-radius.

In Figure 2, the y-axis is the ratio of 2D-Pc accounting for cross-correlation per Eq. (9) relative to
2D-Pc that omits the subtractive terms in Eq. (9).  The x-axis is conjunction instance expressed as
a ratio to  the total  number of  conjunctions for  a  given GCP.  The total  number varies  by GCP
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because as GCP rises, it becomes increasingly unrealistic for lower altitude satellites, as reflected
in the CDM B variance containing the actual DCP variance, which tends to fall with altitude.
(GCP variance cannot exceed CDM relative B variance.)  Therefore, sample sizes for GCP = 12%
and GCP = 15% fell noticeably to 390 and 270, respectively, from the 440 for GCP = 5%, with
only a small drop-off occurring for GCP = 8% and GCP = 10%.  Finally, each curve is rank-
ordered individually by Pc ratio value (vertical slices do not represent the same conjunction).

Figure 2. Preliminary CDM Analysis Results

Figure 2 implies there is substantial effect due to the cross-correlation of orbital errors in
prediction, which was a logical prerequisite for performing the more extensive full SP analysis.
As GCP increases, the disparity between adjusted and unadjusted 2D-Pc also increases.  GCP =
5% has minor impact on Pc, while GCP = 15% is much more pronounced, especially for the
smaller ratios, where a significant number of conjunctions show a drop in Pc to zero or near zero
(almost 10%).  However, on the other side of the plot, only relatively few conjunctions exhibit
more than a factor of 2 disparity (under 5%).

Results of the full SP assessment follow in Figure 3 through Figure 8.  Similar to Figure 2, these
show the ratio of 2D-Pc modified for cross correlation per Eq. (11) relative to current 2D-Pc.
Since these SP runs replicated the actual conjunctions with the true DCP, there is only one
conjunction per point (no GCP range).  Also, in addition to rank-ordered plots, the ratio is shown
versus current 2D-Pc to better identify the ratios in the Pc range of prime interest above about 10-

5.

Figure 3 through Figure 5 show results for the elevated drag case (EDR Bin > 1) by rank-order
and 2D-Pc respectively, with the last on a logarithmic scale to better discern the smallest values.
The trend is similar to that of Figure 2 for GCP = 15%, but more pronounced, with fewer ratios
near unity and about 20% near zero at the lower end of the ratio.  As in Figure 2, relatively few
ratios, under 5%, are above about 2, though significant disparities can occur at the higher end.

Relative Effect of GCP on 2D-Pc in 2017 
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Figure 6 through Figure 8 show results analogous to Figure 3 through Figure 5 for the non-trivial
drag case (EDR Bin > 1).  These more general drag results also encompass many elevated drag
cases.  The results show a much larger swath of ratios near unity, as expected, since EDR Bin 1
contains many objects with EDR approaching the trivial cutoff of 10-5.  Otherwise, the general
trends are very similar to those of the elevated drag conjunctions, with a few even more
pronounced ratios above 2 (up to 9).

Figure 3. SP Assessment Results for Elevated Drag by Instance
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Figure 4. SP Assessment Results for Elevated Drag by 2D-Pc

Figure 5. SP Assessment Results for Elevated Drag by 2D-Pc (Rescaled)
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Figure 6. SP Assessment Results for Non-Trivial Drag by Instance

Figure 7. SP Assessment Results for Non-Trivial Drag by 2D-Pc
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Figure 8. SP Assessment Results for Non-Trivial Drag by 2D-Pc (Rescaled)
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successfully assessed the question from concept to application, with BFMC being instrumental in
the analysis through its process for semi-automatic conjunction reproduction and assessment.

Overall, the results are in line with the anticipation that accounting for cross-correlation of orbital
error tends to lower Pc due to its general deflation effect on the joint covariance, except in a
minority of unique geometry conjunctions.  For conjunctions with the right combination of orbital
and drag characteristics, the cross-correlation effect can be substantial, though there are many
conjunctions with marginal EDR for which this is not the case.  For satellites with elevated EDR,
the effect appears to be significant in terms of a factor of 1/2 or 2 change in about 1/3 of cases.
Moreover, a positive outcome is that relatively few conjunctions exhibit factors much above 2,
where the modified 2D-Pc is decidedly larger than that given by the current 2D-Pc.  In this sense,
2D-Pc tends to be conservative, though overly so for many conjunctions with significant drag.

Finally, the ideal practical implementation of the modified formulation for Pc needs investigating.
Though discussed in general herein, specific criteria for when the modification is warranted is of
clear interest, in terms of EDR, prediction time, velocity geometry, etc.  It is also of interest
whether an EDR-based approach is feasible in practice.  Otherwise, the full SP BFMC could be
operationalized for this purpose, but might prove unwieldy across the hundreds of routine
conjunctions worked daily.  A longer term solution is to consider CDM additions for the required
drag sensitivity vectors, along with accompanying DCP information, or even the deflated joint
covariance itself.  Also longer term, the overall phenomenon should continue to be examined and
refined, particularly leading up to the next solar maximum in coming years, when average EDR
levels will be much higher.

ACROYNMS

ASW = Astrodynamics Support Workstation
BFMC = Brute Force Monte Carlo
CARA = Conjunction Assessment and Risk Analysis
CDM = Conjunction Data Message
DCA = Dynamic Calibration Atmosphere
DCP = Dynamic Consider Parameter
EDR = Energy Dissipation Rate
GCP = Global Consider Parameter
GP = General Perturbations
ISS = International Space Station
OD = Orbit Determination
SP = Special Perturbations
TCA = Time of Closest Approach
VCM = Vector Covariance Message
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