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ABSTRACT
Artificial neural networks offer a highly nonlinear and adaptive model for predicting complex
interactions between input-output parameters. However, these networks require large training
datasets, which often exceed practical considerations in modeling experimental results. To alleviate
the dataset size requirement, a method known as physics guided machine learning has been applied to
construct several neural networks for predicting propeller tonal noise in the time domain over a broad
range of flight conditions. Three space-filling designs, namely, Latin-Hypercube, Sphere-Packing,
and Grid-Space, were used to distribute points throughout the input parameter space encompassing
nondimensional flight conditions and observer geometry. Each neural network’s performance was
validated by conditions outside of the training set and compared to the Propeller Analysis System tool
from the NASA Aircraft Noise Prediction Program. Compared to the Grid-Space input design, the
Latin-Hypercube and the Sphere-Packing designs provided better representations of the domain for
training. Regarding the network archetype, a fully connected perceptron was found to outperform the
partially connected perceptron in its ability to predict tonal noise for small datasets. The black-box
nature of these neural networks was also explored to understand how the networks constructed the
waveform and understand why some network designs produced better models.
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1. INTRODUCTION

With the advent of electric vertical takeoff and landing (eVTOL) technology, distributed
propulsion has become a viable option to the Unmanned Aerial System (UAS) and Advanced Air
Mobility (AAM) vehicle designer. In many cases, the distributed propulsion system is comprised
of several independently controlled lifting rotors or propellers. While the role of each propulsor
may be configuration and mission profile dependent, aerodynamically generated rotor or propeller
noise is still a common issue amongst eVTOL aircraft. Aside from high-fidelity numerical
simulations, aeroacoustic codes such as CHARM [1], CAMRAD2 [2] coupled with WOPWOP
[3] or ANOPP/ANOPP2 [4] all have varying abilities to predict distributed propulsion vehicle
noise. Generally speaking, computational time increases significantly when an attempt is made to
predict interactional noise sources (e.g., rotor-rotor interaction [5], blade-airframe interaction [6],
and blade-wake interaction [7]) in addition to airfoil self-noise and steady tonal noise. Interactional
sources are expected to be major contributors to the overall noise footprint of these vehicle classes
but are physically complex and difficult to efficiently predict.
To this end, this paper investigates an alternative modeling approach employing the use of Artificial
Neural Networks (ANNs) to operate as a computationally efficient noise prediction scheme. ANNs
have the potential to capture highly nonlinear interactions at low expense; however, ANNs often
require large datasets to train. Additionally, it is difficult to predetermine an appropriate number
of runs(i.e. test points) to train a network, making experimental test matrices arduous to establish.
Methods of integrating physics based knowledge into the ANN and optimizing the distribution of
input conditions throughout the design space could alleviate the dataset size requirements to fit the
model. With that in mind, the efficacy of training ANNs on three dataset distribution methods and
two architectures designs will be addressed. As a first step, the research herein will focus on the
applicability of an ANN framework limited to steady noise sources with the goal of expanding to
more complex source mechanisms (e.g., interactions) in the future. Previous research has shown
ANNs to be an effective method using integrated acoustic metrics [8]; however, a time domain
version is preferred here to support auralization or sound quality assessments.

2. BACKGROUND

2.1. Propeller Noise
An isolated propeller produces both tonal and broadband noise. Broadband noise can be

categorized into three types: blade self-noise [9], turbulence ingestion noise (TIN), and blade-wake
interaction (BWI) noise [10]. Self-noise occurs when the boundary layer turbulence scatters off the
airfoil, TIN is produced when a propeller ingests atmospheric turbulence, and BWI noise occurs
when the wake from a previous blade impinges on the next blade. Tonal sources can be divided into
unsteady noise, such as harmonic excitation by atmospheric turbulence, and steady noise, represented
by thickness and periodic loading noise. Thickness noise is a function of the geometry’s displacement
of the fluid during flight, while the loading noise is a product of the surface pressure distribution
across the blade. The broadband and unsteady tonal sources are aperiodic in nature and are excluded
from further discussion in this study. For this preliminary study, only the steady thickness and loading
noise will be considered.



2.2. Physics Guided Machine Learning
Across many disciplines in the scientific community, ANNs have been successfully applied to

model first principle domains [11]. However, ANNs have major drawbacks such as the massive
datasets required for training as well as the inability to predetermine a sufficient dataset for training.
Another concern is the black-box nature of ANNs, which casts doubt on their reliability. Recently,
ANNs have been designed to integrate physics based information to steer the network learning
process and minimize nonphysical results. The common term used to define this approach is called
Physics Guided Machine Learning (PGML) and is broadly classified into one of five categories:
(i) physics guided loss function, (ii) initialization, (iii) physics guided design of architecture, (iv)
residual modeling, and (v) hybrid physics ML modeling. The third method, physics guided design of
architecture, has been chosen to guide the construction of the ANN in this study.

2.3. Physics Guided Design of Architecture
A classic multilayer perceptron (MLP), shown in Figure 1, is composed of several layers relating

inputs to outputs. The expression in layer k relates inputs ak
j to the outputs ak+1

l with

Figure 1: Classic architecture of a multilayer perceptron.
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The input layer, k = 0, supplies the initial actuators, a0, into the first layer, k = 1, which is then
augmented with a series of weights, W, and summed with a bias, b, to return a neuron value, n.
The neurons are then transformed with an activation function, f , to produce the next set of actuator
values, a1. This process is fed forward, layer by layer, until the output, ỹ, is returned. For the three
layer example given in Figure 1, layers k = 1 and k = 2 are called hidden layers while the final
layer, k = 3, is called the output layer. The layout from Figure 1 shows that the same operations are
carried out in all the layers; however, the hidden layers use the nonlinear tansig activation function
while the output layer uses a linear function. Tansig is a hyperbolic tangent sigmoid function that
generates an ’s’ shape curve with an output range of [-1, 1], as shown in Figure 2. The subscript,
l, represents the number of neurons in layer k while subscript, j, represents the connection between
neurons in a previous layer to the neurons in the current layer. Since the total number of neurons
in one layer may differ from the next, S k is used to represent the total number of neurons in layer



Figure 2: The tansig transfer function response.

k. It should be noted that Figure 1 shows a Fully Connected Artificial Neural Network (FCANN);
however, ANNs can be designed to have targeted connections between layers. This is known as a
Partially Connected Artificial Neural Network (PCANN). Both types of ANNs will be compared in
this work. The training algorithm used in this study was the Levenberg-Marquardt algorithm (LMA).
LMA is an optimization algorithm that adjusts the weights and biases during training to minimize the
loss function. This algorithm blends the steepest descent method with the Gauss-Newton algorithm,
allowing LMA to retain the quick convergence of Gauss-Newton and the stability of the steepest
descent algorithm [12]. LMA iteratively updates the network’s weights with Equation 3,

W(z + 1) = W(z) − (JT
a (z)Ja(z) + µI)−1Ja(z)e(z), (3)

in which z represents the current iteration, W(z) is the current iteration for all the weights and biases
in the network, µ is the combination coefficient, e(z) is the error between the desired, yg, and actual
output, ỹg, of the ANN, in Equation 4, and Ja(z) represents the Jacobian.

e = [e1, e2, ..., eG]T = [y1 − ỹ1, y2 − ỹ2, ..., yG − ỹG]T (4)

The Ja is a RGxQ with G representing the number of empirical input-output pairs and Q representing
the total number of weights and biases in the entire network. The loss function used in this study was
the mean square error (MSE), as shown in Equation 5.

MS E =
1
G

G∑
g=1

(yg − ỹg)2 (5)

3. SIMULATION SETUP AND DATA COLLECTION

The aerodynamic pressure acting on the blade surfaces of the 2-bladed Aeronaut CAM 16x8
propeller was calculated using Blade Element Momentum Theory (BEMT). Surface pressure as
well as blade kinematics were then used to calculate the acoustic pressure propagated to far field
observer locations using Farassat’s Formulation 1A (F1A). This process for aerodynamic simulation
and acoustic propagation is included in ANOPP-PAS, which was used throughout this work. The
F1A formulation is a time-domain solution to the Ffowcs Williams-Hawkings acoustic analogy and
describes the acoustic emission perceived by an observer, at position x, as a surface moves at a
subsonic speed. F1A has been used to reliably predict the steady tonal noise components: thickness
noise, p′T , and loading noise, p′L [13]. ANOPP-PAS was selected as the computational tool for this
work based on its previous prediction success for this propeller when compared to experimental
results [14]. The propeller has a tip Mach number of Mtip = ωRp/c0 where ω is the angular speed and
Rp is the radius of the propeller, which operates in a freestream with velocity V as shown in Figure
3a. The undisturbed medium has a density of ρ0 and the speed of sound is c0. A non-dimensional



Figure 3: (a) Presents the variables and observers used in ANOPP-PAS and (b) depicts the arc of
observers’ azimuth observer angles with respect to the propeller.

advance ratio, J = V/(2NRp), can be calculated using these quantities where N is the revolutions
per second. The ANOPP-PAS simulation was conducted over half a revolution with the first blade
starting at ψ = 0 and ending at ψ = 0.5. An ANN that generates a waveform for a full revolution,
ψ = 0 to 1, would require additional actuators to capture the signal and this would not provide any
additional benefit in relating inputs to outputs. Since the propeller is operating at a steady state, the
thrust, T , and the thrust coefficient, CT = T/(ρ0πR2

pM2
tipc2

0), are constant during rotation. Figure 3b
shows an arc of observer locations positioned at distance, r, away from the propeller’s center of
rotation. The arc of observers starts below the plane of rotation at ϕ = 235◦ and ends above the plane
of rotation at ϕ = 125◦. The in-plane observer is located at ϕ = 180◦. All observers in Figure 3b lie on
a fixed vertical plane since the acoustic emission is axisymmetric around the propeller. The distance
between the noise source and the observer, r, plays a significant role in the acoustic signature,
prompting its use as an additional input parameter; however, once p′ has reached the far field, the
amplitude of the waveform decays with r for a 1st order estimate of the acoustic signature. In this
simulation, all observers were placed 10 meters from the propeller. Table 1 lists the parameters and
the input ranges considered in this study. All input ranges were rescaled to [-1,1] for regularization.
Machine learning is an interpolation problem and requires the training data to be representative of

the domain of interest. Specifically, space-filling designs should be used to distribute the input data
over the parameter space. Space-filling designs are ideal for modeling systems that are deterministic

Table 1: The parameters and design space for the ANN to model

Physical property Symbol Input range Unit

Blade revolution ψ 0 - 0.5 [-]

Tip Mach number Mtip 0.18 - 0.56 [-]

Advance ratio J 0.2 - 0.5 [-]

Thrust coefficient CT 0.00834 - 0.1179 [-]

Azimuth observer angle ϕ 125 - 235 Degrees

Blade pitch θ [-5 - 5] Degrees



or near-deterministic with multiple variables and complex interactions between variables [8,15].
Two of these methods, Latin-Hypercube (LH) and Sphere-Packing (SP), were chosen for this study
and compared against a Grid-Space distribution. Both LH and SP distribute E number of points
throughout the domain of interest with the objective to maximize the minimum distance between
points. LH contains a constraint that evenly spaces the levels of each factor where SP has no such
constraint. The Grid-Space design evenly distributes points, one factor at a time, over the design
space. Training data sets consisting of E = 120 and E = 200 runs were made for comparing the
FCANN against the PCANN for all the three distribution methods. For the Grid-Space distributions,
the E = 120 dataset parameters Mtip and J have a spacing interval of 0.04 and 0.15 while θ is
distributed non-uniformly at -5◦, -1◦, 1◦, and 5◦. The E = 200 dataset has the parameters Mtip, J,
and θ are spaced at intervals of 0.04, 0.1, and 1◦. The total number of runs, E, is related to the total
number of empirical pairs, G, as a function of sampling rate with each wavelength sampled for 128
points per wavelength.

4. MACHINE LEARNING METHODOLOGY

This paper implements concepts from method (iii): physics guided design of architecture. As
previously noted, the F1A formulation separates the source terms into thickness and loading noise.
These individual source terms can be summed to calculate the total acoustic pressure for an observer
positioned in the far field. Using this observation, two separate ANNs were created to model
the thickness and loading noise, respectively, based off parameters that influence their particular
waveforms. For loading, the parameters CT , Mtip, θ, ϕ, and ψ are known to augment the waveform
while the thickness noise waveform is influenced by J, Mtip, ϕ, and ψ. Blade pitch, θ, alters the
motion of the blades through the medium and could be considered as a parameter in the thickness
noise ANN; however, it was determined that the blade pitch contribution across the input range has
a negligible influence on the thickness waveform and can be ignored for this analysis. The loading
noise and thickness noise ANNs have been built with a PCANN and FCANN architecture as shown
in Figure 4. Each architecture estimates the total acoustic pressure, p′, for half a revolution, based on
the output from the p′L and p′T ANNs. The architectures are nearly identical with the exception of ψ,
which is introduced into the second hidden layer instead of the first layer for the PCANN. This paper
proposes that, by delaying the introduction of ψ into the PCANN, the actuators in the first hidden
layer will be constrained to "learn" how to relate the aerodynamic inputs with amplitude and phase

Figure 4: Architecture for the loading and thickness neural network.



of the waveform while ψ constructs the waveform based on the a1 outputs, which are constant during
the blade rotation. The FCANN has no delayed input and ψ is introduced to the first hidden layer.
The p′L ANNs have 32 neurons in each hidden layer with 1 neuron in the output layer whereas the p′T
ANNs have 28 neurons in each hidden layer with 1 neuron in the output layer.

5. RESULTS

The three distribution methods, LH, SP, and Grid-Space, were used to construct the thickness and
loading ANNs. Each combination of distribution method and tonal noise component was trained
eight different times with a randomized initialization for the weights and biases. After training, the
performance of each ANN was evaluated over a hold-out dataset using a performance metric, PE, to
determine each ANN’s ability to model the acoustic waveform for new conditions. The performance
metric, PE, is defined as:

PE = 100

1 − 1
E

E∑
e=1

∣∣∣∣∣RMS (ye) − RMS (ỹe)
RMS (ye)

∣∣∣∣∣
 (6)

with the root-mean-square (RMS) applied to the signal. During training, the E = 120 and E = 200
datasets were distributed between three subsets: training, validation, and test into a 70%-15%-15%
distribution. The training subset adjusts the weights and biases, the validation subset monitors the
ANN fit to determine if early stopping is necessary to avoid over-fitting, and the testing subset is
used to calculate the performance. Once an ANN was trained, a check was performed with the test
data to determine if the PE > 90%. If successful, the network was stored as one of eight networks
for a given distribution/architecture. To ensure consistent comparison across datasets, an additional
20 conditions were generated in ANOPP-PAS. This unseen dataset is used to determine the PE for
Table 2 and 3. Table 2 shows the performance of the p′T PCANN and FCANN models trained over
the E = 120 dataset for all three distribution methods. Both architectures have "learned" to predict
the acoustic waveform for new conditions when trained on the SP and LH distributions; however,
the Grid-Space distribution shows a loss in prediction performance for both architecture designs.

Table 2: The best performing p′T ANN for a given architecture and space-filling configuration.

PCANN FCANN

PE=120% PE=120%

Sphere-Packing (SP) 96.76 99.367

Latin-Hypercube (LH) 95.24 99.573

Grid-Space 84.02 87.63

Figure 5a demonstrates how the waveform for thickness noise, p′T , increases with Mtip at J = 0.2
and ϕ = 180◦. For Mtip < 0.3, the first blade passing frequency is the dominating contributor to the
waveform, resulting in a signal resembling a sine wave. As Mtip increases, thickness noise increases
in amplitude and the waveform’s shape changes to an impulse. Figure 5b shows, that for a given Mtip

and J, the amplitude of the waveform is highest for the observers in the plane of rotation. Figure
5c compares three J values for Mtip = 0.4 and ϕ = 145◦. For J, the amplitude is nearly constant
but the phase is delayed with larger J inputs for observers below and above the plane of rotation.



Figure 5: (a) Comparison of the LH PCANN against ANOPP-PAS for new conditions while (b) show
the effect of ϕ at Mtip = 0.52 and J = 0.2 and (c) shows the effect of J at Mtip = 0.52 and ϕ = 145◦.

Table 3: The best performing p′L ANN for a given architecture and space-filling configuration.

PCANN Loading Performance FCANN Loading Performance

P%E=120 P%E=200 P%E=120 P%E=200

Sphere Packing (SP) 21.35 97.88 98.52 97.17

Latin Hypercube (LH) 15.5 72.53 66.98 95.18

Grid-Space -2.31 70.88 -6.74 83.49

The performance for the p′L PCANN and FCANN are shown in Table 3. The PCANNs trained over
E = 120 conditions failed to accurately predict the p′L waveform for new conditions. The reason
for this failure will be explored in section 6. For the PCANN, only the SP distribution, trained on
200 points, was able to predict the p′L waveform above 90% accuracy. Table 3 also shows that the
ANNs trained using the SP design outperform ANNs trained using LH and Grid-Space designs. For
the FCANN, the E = 120 training dataset saw drastic improvements in PE for both the SP and LH
design but little variation for Grid-Space. The FCANN E = 200 case provided the best PE across
the distribution methods. Overall, the FCANN show a considerable improvement in predicting the
p′L waveform for new conditions in comparison to the PCANN architecture. Figure 6a evaluates the
prediction performance of each PCANN as a function of Mtip for a constant θ, ϕ, and CT while Figure
6b evaluates the prediction performance of the FCANN on the same conditions. The ANOPP-PAS
trend, plotted with gray squares, shows the predictive RMS trend for previously unseen conditions.
The SP PCANN rarely deviates from the ANOPP-PAS trend but the LH and Grid-Space PCANNs
fail to globally predict the influence Mtip has on p′L. The FCANNs, trained on the same dataset,
successfully predicted the trend across all design spaces as shown in Figure 6b. Most of the PCANNs
have converged on a suboptimal set of weights and biases to model Mtip. It appears that by delaying
the ψ input, the PCANN is constrained by the architecture. Instead of guiding the ANN towards a
set of weights and biases that relate aerodynamic inputs to the amplitude and phase of the waveform,
the proposed architecture merely constrains the training process. Table 3 reinforces this conclusion
as PCANNs require larger datasets to attain similar PE as the FCANNs. The reason for this will
be investigated in section 6. Figure 7 shows the loading noise response for each parameter over



Figure 6: (a) Compares the PCANN Mtip trends while (b) compares the FCANN Mtip trends.

a portion of the input domain to highlight trends and determine the effect each parameter has on
the tonal noise. A reference case, (CT = 0.06416, Mtip = 0.4, θ = 0◦, ϕ = 180◦), is plotted in each
subfigure, in cyan, to highlight changes in amplitude and waveform across plots. Figure 7a adjusts the
collective pitch between -2◦ and 2◦ and shows that the waveform increases in amplitude with larger
θ inputs. Figure 7b compares three observers placed above, in-plane, and below the axis of rotation.
Observers positioned below the axis experience a waveform with larger amplitudes while observers
above the axis see a decrease in amplitude. The nonuniform emission field is a result of the cambered
airfoil. Figure 7c show that the p′L is highly sensitive to Mtip as the amplitude rapidly rises with steady
increments in Mtip. Figure 7d adjusts the CT over a range of feasible flight conditions at θ = 0◦. The
p′L is marginally influenced by CT .

Figure 7: (a) Contrasts the p′L waveform for three θ conditions and (b) shows the nonuniform
emission field for observers above, in-plane, and below the axis of rotation. (c) Shows that p′L is

highly sensitive to changes in Mtip while (d) finds small changes in p′L for CT .



6. INTERPRETATION OF THE NEURAL NETWORK

This section delves into the architecture of the FCANN and PCANN and provides an ad hoc
explanation for the ANN ability to construct the waveform. A sensitivity analysis such as Lek’s
Profile-Method [16] could be implemented to gain insights into the ANN. This approach adjusts
one parameter at a time to contrast the parameter’s sensitivity while holding all other parameters
constant, usually held at the minimum, 20th, 40th, 60th, 80th, and maximum percentiles. For the
waveform, evaluating percentiles of the signal does not provide clarity for the ANN. The signal could
be converted to its RMS equivalent, but the parameters influence on the phase would be lost. Instead,
by examining the actuators response in each ANN architecture, it is possible to determine how the
waveform is constructed by the ANNs and understand why the FCANN outperforms the PCANN.
The interpretation starts by examining the output and steps backwards, layer by layer, to determine
how the ANN constructs the waveform. Information regarding the output actuator, a3, is the hidden
representation of the acoustic pressure. Equation 7 allows the output to shift between hidden and
Pascal unit for the p′T ANN.

p′T =
a3 + 1
2.139

− 0.00180 (7)

As previously mentioned in the Physics Guided Design of Architecture section, the hidden layers,
for both architectures, use the tansig transfer function. Figure 2 shows the tansig function is
highly sensitive to inputs from -3 to 3 while inputs beyond this range are nearly constant. For this
interpretation, it is useful to categorize the actuators into two groups, active and passive actuators.
An actuator is deemed active if the output of a2

j changes by 0.01 over the input range of ψ from 0
to 0.5. Actuators that fail to meet this criterion are defined as passive actuators. The advantage of
classifying the actuators becomes apparent after running an example. For the LH PCANN inspection,
the condition (J = 0.29, Mtip = 0.56, ϕ = 125o) was supplied to study the construction of the p′T
waveform. The PCANN prediction, in Pascals, can be seen in Figure 8a and the hidden equivalent,
a3, waveform can be seen in Figure 8b. Figure 8a and 8b have the same waveform but different
numerical values because of the linear conversion between the hidden and Pascal units, from Equation
7. During the run, the 28 actuators in the second hidden layer were monitored and 12 actuators meet
the active criterion. The active actuators are multiplied by their respective weights and summed to
construct the waveform seen in Figure 8c. Figure 8d show that each active actuator is using a portion
of their tansig output to shape the waveform while strictly adhering to the tansig output.
A new operating condition will use a different set of active actuators to model the waveform. The
PCANN reserves actuators for different input regions, allowing a set of activation functions to alter
the waveform at the appropriate time. An ANN trained on a representative dataset will adjust the
W and b to "learn" when an actuator should be active or passive. For example, when an active
actuator shifts to a passive state, it means the inputs from the previous layer, a1, have shifted the
output, a2 = f 2(n2), towards the extremes, preventing ψ from adjusting a2. Figure 9a shows that the
FCANN can predict the p′L waveform for an unseen condition while Figure 9b demonstrates how
the individual active actuators generated the resultant waveform. Note the active actuators, a2

7 and
a2

8, are not adhering to the tansig slope. Because the ψ input is connected to the first hidden layer
in the FCANN, the a1(ψ) provides an additional set of actuators that can determine which actuators
should be active as well as aid in the construction of the waveform from 0 to 0.5. This allows the
FCANN to generate actuator outputs that do not strictly adhere to the transformation function. The
PCANN underperforms due to the constrained architecture. This suggests that when designing the
architecture for an ANN, one should take precaution when constraining the transfer functions.



Figure 8: (a) Compares PCANN prediction to ANOPP-PAS and (b) shows the equivalent a3 output.
(c) Shows only 12 of the 28 actuators are required to construct the waveform and (d) plots them

individually.

Figure 9: (a) Compares the FCANN against ANOPP-PAS and (b) shows the 11 active actuators used
by the ANN to predict an equivalent waveform.

7. CONCLUSION

ANNs can operate as surrogate models, which can capture highly nonlinear interactions with
minimal computation resources. However ANNs often require large datasets to alleviate this burden.
A concept known as PGML was applied to structure the connections between hidden layers as a
means of relating aerodynamic inputs to the acoustic tonal loading and thickness noise. The proposed
architecture, a PCANN, was trained on three different distribution methods and compared against a
conventional FCANN. The PCANN adequately fits the training data but underpredicts for new data in
comparison to FCANN. After exploring the FCANN and PCANN hidden layers, it was determined
that the PCANN had constrained the actuators output. For loading noise, the SP FCANN shows the
best predictive performance with PE=120 = 98.52%. This was the only case where the smaller sample
size, E = 120, could obtain a highly predictive ANN, PE > 90%. For thickness noise, the ANN saw
little benefit across architecture approach but showed similar trends for the space-filling design. The
SP distribution provides an excellent representation of the domain in which to train the ANNs.



8. FUTURE WORK

This work is meant to act as a stepping stone and provide insight for building ANNs when it is
difficult to generate large datasets for poorly understood acoustic phenomena. While the proposed
architecture has failed to outperform the classic FCANN, this does not diminish the PGML approach.
There are additional methods, not explored in this paper, which have alleviated issues dealing with
the drawbacks of ANNs. These will be explored in future efforts.
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