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1. Abstract	39 

Snow	is	a	fundamental	component	of	global	and	regional	water	budgets,	particularly	40 

in	mountainous	areas	and	regions	downstream	that	rely	on	snowmelt	for	water	resources.	41 

Land	surface	models	(LSMs)	are	commonly	used	to	develop	spatially	distributed	estimates	42 

of	snow	water	equivalent	(SWE)	and	runoff.	However,	LSMs	are	limited	by	uncertainties	in	43 

model	physics	and	parameters,	among	other	factors.	In	this	study,	we	describe	the	use	of	44 

model	calibration	tools	to	improve	snow	simulations	within	the	Noah-MP	LSM	as	the	first	45 

step	in	an	Observing	System	Simulation	Experiment	(OSSE).	Noah-MP	is	calibrated	against	46 

the	University	of	Arizona	(UA)	SWE	product	over	a	Western	Colorado	domain.	With	47 

spatially	varying	calibrated	parameters,	we	run	calibrated	and	default	Noah-MP	48 

simulations	for	water	years	2010-2020.	By	evaluating	both	simulations	against	the	UA	49 

dataset,	we	show	that	calibration	decreases	domain	averaged	temporal	RMSE	and	bias	for	50 

snow	depth	from	0.15	to	0.13	m	and	from	-0.036	to	-0.0023	m,	respectively,	and	improves	51 

the	timing	of	snow	ablation.	Increased	snow	simulation	performance	also	improves	52 

estimates	of	model-simulated	runoff	in	four	of	six	study	basins,	though	only	one	has	53 

statistically	significant	improvement.	Spatially	distributed	Noah-MP	snow	parameters	54 

perform	better	than	default	uniform	values.	We	demonstrate	that	calibrating	variables	55 

related	to	snow	albedo	calculations	and	rain-snow	partitioning,	among	other	processes,	is	a	56 

necessary	step	for	creating	a	nature	run	that	reasonably	approximates	true	snow	57 

conditions	for	the	OSSEs.	Additionally,	the	inclusion	of	a	snowfall	scaling	term	can	address	58 

biases	in	precipitation	from	meteorological	forcing	datasets,	further	improving	the	utility	of	59 

LSMs	for	generating	reliable	spatiotemporal	estimates	of	snow.	60 

	61 
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2. Introduction	62 

Snow	is	a	critical	part	of	global	and	local	water	budgets,	particularly	in	watersheds	63 

with	headwaters	in	mountainous	regions	(Viviroli	et	al.,	2007;	Immerzeel	et	al.,	2020).	64 

Millions	of	people	around	the	world	rely	on	snowmelt-derived	runoff	(Barnett	et	al.,	2005;	65 

Li	et	al.,	2017),	especially	in	semi-arid	regions.	Despite	being	an	integral	component	of	66 

global	and	regional	water	balances,	estimating	mountain	snow	accumulation	remains	one	67 

of	the	largest	challenges	of	snow	hydrology	(Bormann	et	al.,	2018;	Dozier	et	al.,	2016).	68 

While	some	mountain	ranges	have	relatively	dense	in	situ	networks,	other	areas	lack	69 

observations	(Dozier	et	al.,	2016),	limiting	techniques	for	interpreting	point	observations	70 

across	a	larger	scale.	Beyond	in	situ	observations,	remote	sensing	offers	the	ability	to	71 

observe	snow	extent	from	space	(Hall	et	al.,	2002),	but	estimating	snow	water	equivalent	72 

(SWE)	to	understand	the	water	content	of	the	snowpack	remains	a	significant	challenge,	73 

particularly	in	the	mountains	(Lettenmaier	et	al.,	2015;	Nolin,	2010;	Takala	et	al.,	2011;	74 

Vuyovich	et	al.,	2014).	75 

Due	to	limited	in	situ	networks	and	uncertainty	in	remotely	sensed	observations,	76 

models	are	a	practical	alternative	for	developing	spatiotemporal	estimates	of	snow	depth	77 

and	SWE	across	large	regions.	Model	intercomparison	efforts	have	helped	to	identify	78 

important	processes	to	improve	simulating	snow	(Essery	et	al.,	2009;	Etchevers	et	al.,	79 

2004;	van	den	Hurk	et	al.,	2016;	Krinner	et	al.,	2018;	Rutter	et	al.,	2009),	such	as	multi-80 

layer	snowpack.	While	snow	models	often	have	complex	physics	and	parameterizations,	81 

resulting	in	accurate	simulations	of	snow	compared	to	in	situ	observations	(Dutra	et	al.,	82 

2012;	Etchevers	et	al.,	2004),	such	processes	are	often	too	computationally	complex	for	83 

land	surface	models	(LSMs)	designed	to	run	over	large	geographical	areas.	Additionally,	84 
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snow	models	are	typically	focused	only	on	modeling	the	snowpack	processes	whereas	85 

LSMs	also	enable	the	linkages	to	the	water,	energy,	and	carbon	cycle	processes.	Though	86 

LSMs	allow	for	simulations	across	a	range	of	spatial	and	temporal	scales	in	a	87 

computationally	efficient	manner,	the	relatively	simple	nature	of	their	conceptual	88 

formulations	and	model	parameterizations,	as	compared	to	complex	process	models,	89 

increases	the	uncertainties	of	their	predictions.	Further,	biases	in	model	forcing	data,	90 

particularly	precipitation,	are	a	major	driver	of	model	error	(Raleigh	et	al.,	2015;	Schmucki	91 

et	al.,	2014;	Henn	et	al.,	2018),	and	studies	suggest	that	reanalyses,	which	are	often	used	for	92 

model	meteorological	forcing,	underestimate	precipitation	in	mountainous	areas	(Henn	et	93 

al.,	2018;	Enzminger	et	al.,	2019;	He	et	al.,	2019).	Such	limitations	are	well	documented	in	94 

the	literature,	where	it	has	been	suggested	that	common	LSMs,	such	as	the	Noah	LSM	with	95 

multiple	parameterization	options	(Noah-MP;	Niu	et	al.,	2011),	underestimate	snow	mass	96 

(Chen,	Liu	et	al.,	2014;	Kumar	et	al.,	2019;	Xia	et	al.,	2017;	Chen,	Barlage,	et	al.,	2014).	97 

Despite	these	issues,	LSMs	are	an	essential	tool	for	producing	multi-year	estimates	of	snow	98 

accumulation	over	continental	or	global	study	domains.	99 

To	reduce	biases,	models	are	often	calibrated	against	reliable	observation-based	100 

datasets	(e.g.	Ahl	et	al.,	2008;	Franz	&	Karsten,	2013;	Henn	et	al.,	2016;	Rutter	et	al.,	2009).	101 

Calibration	has	a	long	history	in	operational	snow	modeling	(e.g.	Turcotte	et	al.,	2017;	102 

Franz	et	al.,	2008)	and	previous	intercomparison	projects	explicitly	considered	the	103 

performance	of	calibrated	vs.	non-calibrated	models	(Rutter	et	al.,	2009;	Essery	et	al.,	104 

2009).	Often	in	snow	and	hydrological	modeling,	simulations	are	calibrated	against	105 

discharge	for	improving	model	performance	(Franz	and	Karsten,	2013;	Hay	et	al.,	2006;	Ahl	106 

et	al.,	2008;	Turcotte	et	al.,	2017;).	More	recently,	efforts	have	aimed	to	improve	snow	107 
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estimation	by	calibrating	against	SWE	(Chen	et	al.,	2017;	Franz	et	al.,	2010),	snow-covered	108 

area	(Franz	and	Karsten,	2013;	Parajka	and	Bloschl,	2008),	or	multi-objective	strategies	109 

that	include	two	or	more	calibration	variables	(Nemri	and	Kinnard,	2020;	Parajka	et	al.,	110 

2007;	Chen	et	al.,	2017;	Franz	and	Karsten,	2013).		111 

The	performance	of	a	calibrated	model,	however,	will	depend	upon	parameter	112 

selection	for	use	during	calibration,	and	complex	LSMs	such	as	Noah-MP	have	hundreds	of	113 

parameters	throughout	the	model	code,	some	that	are	hard-coded	to	spatially	uniform	114 

values.	Cuntz	et	al.	(2016)	examined	over	100	Noah-MP	parameters,	dozens	of	which	are	115 

hard-coded	into	the	LSM,	and	showed	that	simulated	surface	runoff	is	sensitive	to	almost	116 

all	selected	snow	parameters;	the	authors	conclude	that	it	is	necessary	to	expose	some	of	117 

the	hard-coded	parameters	during	calibration	in	order	to	improve	model	performance.	118 

Similarly,	Mendoza	et	al.	(2015)	discussed	that	hard-coding	parameters	diminishes	model	119 

agility;	they	identify	several	important	hard-coded	snow	parameters	that	are	treated	as	120 

spatially	uniform	constants	but	in	actuality	likely	vary	through	both	time	and	space.	121 

Here	we	calibrate	Noah-MP	against	SWE	estimates	from	the	University	of	Arizona	122 

gridded	observation-based	snow	data	product	(here	referred	to	as	UA;	Zeng	et	al.,	2018)	in	123 

an	effort	to	address	dry	biases	in	Noah-MP	and	improve	snow	estimation.	We	evaluate	the	124 

impact	of	calibration	on	simulation	of	snow	mass	in	a	mountainous	region.	Since	125 

calibration	will	have	implications	beyond	snow-related	variables,	we	also	examine	impacts	126 

to	other	hydrologic	processes,	including	runoff.	The	overarching	motivation	for	the	127 

calibration	is	to	produce	a	Noah-MP	simulation	that	better	approximates	snow	conditions	128 

through	improvements	to	snow	depth	and	SWE.		129 
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We	aim	for	the	calibrated	simulation	to	be	used	as	the	“nature	run”	(NR)	in	a	130 

forthcoming	snow-focused	Observing	System	Simulation	Experiment	(OSSE).	OSSEs	are	131 

data	assimilation	experiments,	performed	to	evaluate	the	type	and	impact	of	data	to	be	132 

collected	from	proposed	missions	and	to	enable	the	assessment	of	the	utility	from	133 

competing	mission	designs	and	design	configurations	(Garnaud	et	al.,	2019;	Crow	et	al.,	134 

2001,	2005;	Wang	et	al.,	2008;	Nearing	et	al.,	2012).	Further,	these	experiments	help	to	135 

quantify	the	utility	of	observations	beyond	the	immediate	variable	of	interest	(e.g.,	the	136 

impact	of	assimilating	snow	information	on	other	aspects	of	the	water	budget,	such	as	137 

streamflow).	OSSEs	are	useful	in	developing	assessments	of	proposed	observational	138 

methods	and	can	be	performed	in	addition	to	field	work,	such	as	the	extensive	NASA	139 

SnowEx	campaigns,	for	evaluating	proposed	sensors.		140 

A	NR	is	the	foundational	step	of	an	OSSE,	upon	which	the	data	assimilation	141 

experiments	are	built	(see	Figure	S1	for	general	steps	to	an	OSSE).		Within	an	OSSE,	the	NR	142 

simulation	is	considered	the	“true”	state	of	the	variable	of	interest.	Therefore,	NRs	are	143 

developed	using	a	high-quality	model	and	meteorological	inputs	and	should	not	have	large	144 

uncertainty.	Synthetic	observations	are	then	generated	from	the	NR,	after	accounting	for	145 

sources	of	errors	and	uncertainty	associated	with	the	anticipated	sensor.	The	synthetic	146 

observations	are	assimilated	into	an	open	loop	model	simulation,	and	the	assimilated	147 

result	is	compared	back	to	the	original	NR	to	understand	how	well	the	proposed	sensor	148 

captures	the	“true”	conditions.	The	quality	of	the	NR,	therefore,	significantly	impacts	the	149 

conclusions	made	from	the	OSSE.	Since	previous	studies	highlight	biases	in	LSMs	related	to	150 

snow	depth	and	SWE	estimation,	it	is	critical	to	reduce	LSM	bias	and	uncertainty	to	assess	151 

how	proposed	technologies	perform	in	a	variety	of	environments.	If	the	NR	and	resulting	152 
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synthetic	observations	are	biased	low,	for	example,	it	will	be	difficult	to	understand	how	a	153 

proposed	sensor	observes	deep	snowpacks.	While	a	NR	is	not	expected	to	be	a	perfect	154 

simulation,	if	it	has	a	known	systematic	negative	bias	for	SWE	and	snow	depth,	the	155 

assimilation	experiments	may	not	provide	much	information	for	how	a	sensor	performs	in	156 

regions	where	models	have	larger	uncertainty,	such	as	deep	snow	and	forested	regions	157 

(Kim	et	al.,	2021).	The	calibration	procedure	described	below	is	the	first	and	an	essential	158 

step	in	an	OSSE	designed	to	test	potential	configurations	for	a	snow	mission.	159 

In	addition	to	producing	an	improved	NR	for	the	OSSE,	we	aim	to	address	three	160 

research	questions:	1.)	Can	calibration	address	known	dry	biases	in	LSMs	that	cause	161 

underestimation	of	snow	accumulation?	2.)	How	does	calibration	impact	streamflow,	162 

beyond	the	targeted	snow	variables?	and	3.)	Can	calibration	suggest	areas	of	model	163 

configuration	that	need	improvement,	such	as	meteorological	forcing	data	for	use	as	model	164 

boundary	conditions?	We	test	whether	Noah-MP	with	calibration	pre-processing	yields	165 

similar	snow	estimates	as	a	higher	resolution,	computationally	expensive	and	complex	166 

snow	physics	model	(SnowModel).	We	introduce	the	study	area	and	calibration	procedure	167 

in	Section	3	below.	In	Section	4,	we	report	results	from	the	calibration	experiments,	and	in	168 

Section	5,	we	discuss	implications	and	provide	thoughts	for	future	studies.	169 

	170 

3. Data	and	Methods	171 

3.1. Model	Setup		172 

We	use	the	NASA	Land	Information	System	(LIS;	Kumar	et	al.,	2006;	Peters-Lidard	173 

et	al.,	2007)	for	simulations	over	a	western	Colorado	domain.	The	domain	is	selected	to	174 

include	sites	from	previous	NASA	SnowEx	field	campaign	locations,	including	Grand	Mesa	175 
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and	Senator	Beck	(Figure	1).	LIS	is	a	land	surface	modeling	framework	designed	to	be	176 

highly	flexible,	offering	users	choice	of	LSM,	meteorological	forcing,	and	assimilation	of	in	177 

situ	and	remotely	sensed	observations,	among	other	options.	Created	to	be	178 

computationally	efficient,	LIS	can	perform	simulations	over	large	regional	and	global	179 

domains.	The	central	component	of	the	LIS	framework	is	the	LSM	selection;	LIS	offers	180 

several	community-supported	LSMs	relevant	to	operations	and	research.	Here	we	use	181 

Noah-MP	version	4.0.1.	Recent	work	demonstrates	that	Noah-MP	has	superior	182 

performance	to	the	original	Noah	LSM	for	simulating	snow	(Chen,	Barlage	et	al.,	2014;	183 

Chen,	Liu	et	al.,	2014;	Kim	et	al.,	2021;	Minder	et	al.,	2016;	Wrzesien	et	al.,	2015)	due	to	184 

model	physics	updates,	including	a	multilayer	(three	layer)	snowpack.	Table	S1	lists	the	185 

physics	options	selected	for	the	Noah-MP	simulation.	186 

In	the	LIS	framework,	Noah-MP	simulates	both	surface	water	and	energy	fluxes	as	187 

they	respond	to	meteorological	boundary	conditions	supplied	by	LIS.	Simulations	are	from	188 

September	2009	through	July	2020	at	0.01°	spatial	resolution	(~1	km)	and	use	hourly	189 

meteorological	forcing	data	from	the	North	American	Land	Data	Assimilation	System	phase	190 

2	(NLDAS-2;	Xia	et	al.,	2012).	LIS	includes	statistical	downscaling	procedures	for	matching	191 

meteorological	data	to	the	specified	spatial	resolution	of	the	LSM.	The	1/8°	spatial	192 

resolution	NLDAS-2	forcing	data	are	downscaled	to	~1	km	through	a	bilinear	spatial	193 

interpolation	approach.	The	model	was	first	spun	up	for	72	years	beginning	in	January	194 

1979	and	running	through	January	2020	twice	until	the	simulation	begins	in	September	195 

2009.	We	also	simulate	the	same	time	period	using	the	default	parameters	to	understand	196 

how	calibration	impacts	the	Noah-MP	results.	We	distinguish	between	the	two	simulations	197 
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as	Noah-MP-Cal	and	Noah-MP-Def	to	represent	the	calibrated	and	default	configurations,	198 

respectively.		199 

	200 

3.2. Noah-MP	Parameter	Calibration	201 

Previous	studies	suggest	that	LSMs	underestimate	snow	accumulation,	particularly	202 

in	mountains	(Broxton,	Zeng,	et	al.,	2016;	Wrzesien	et	al.,	2017,	2018).	A	recent	model	203 

intercomparison	using	an	ensemble	of	LSM	simulations	from	LIS	highlighted	the	model	204 

disagreement	and	uncertainty	of	snow	estimation	over	North	America,	including	mountain	205 

areas	(Kim	et	al.,	2021).	To	improve	Noah-MP	simulations,	we	select	24	parameters	for	206 

calibration	(Table	1),	based	on	previous	sensitivity	studies	(Cuntz	et	al.,	2016;	Mendoza	et	207 

al.,	2015)	and	their	relationship	to	modeled	snow	processes.	In	Noah-MP-Def,	these	208 

parameters	are	either	hard-coded,	often	to	a	single	spatially	uniform	value,	or	provided	in	209 

lookup	tables	that	vary	based	on	land	or	soil	properties.	In	contrast,	the	results	from	210 

calibration	are	spatially	distributed	parameters	that	can	vary	across	the	domain	(Figure	2).	211 

In	addition	to	23	existing	parameters	within	Noah-MP,	we	include	a	snowfall	scale	factor	in	212 

the	calibration.	Precipitation	underestimation	will	impact	the	snow	simulation	and	lead	to	213 

biases	throughout	the	snow	season.	The	inclusion	of	a	snowfall	scale	factor	allows	us	to	214 

target	the	uncertainty	resulting	from	biases	in	precipitation	forcing.	All	24	parameters	are	215 

explored	in	point	scale	and	full	domain	tests,	though	only	the	parameters	that	are	sensitive	216 

enough	to	warrant	calibration	are	described	in	Section	4.1.	217 

Noah-MP	is	calibrated	against	SWE	estimates	from	the	University	of	Arizona	dataset	218 

(UA;	Zeng	et	al.,	2018)	in	an	optmization	approach.	The	UA	data	product	provides	SWE	at	4	219 

km	spatial	resolution	over	the	conterminous	United	States	(Zeng	et	al.,	2018).	Estimates	220 
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are	provided	daily	between	1981	and	2020.	UA	is	based	on	the	assimilation	of	in	situ	221 

measurements	of	both	SWE	and	snow	depth	(Broxton,	Dawson,	et	al.,	2016)	and	222 

precipitation	and	temperature	values	from	the	PRISM	dataset	(Daly	et	al.,	2000).	UA	has	223 

been	evaluated	against	multiple	datasets	(Dawson	et	al.,	2018),	including	airborne	lidar	224 

measurements	of	snow	depth.	We	note	that	any	biases	in	UA	SWE	will	likely	be	reflected	in	225 

the	calibrated	parameters	and	the	resulting	simulations;	however,	such	biases,	especially	in	226 

gridded	observation-based	data	products	like	UA,	are	unavoidable.	227 

We	calibrate	over	water	years	2007-2009.	This	period	was	selected	by	examining	228 

domain	averaged	SWE	from	water	years	1982-2020	from	the	UA	record.	From	229 

comparisons	of	domain-wide	average	maximum	SWE	and	depth,	this	period	included	230 

average	(2009),	high	(2008),	and	low	(2007)	snow	conditions	for	the	study	region.	231 

Domain-wide	average	maximum	SWE	(snow	depth)	for	water	years	2007,	2008,	and	2009	232 

is	135.5	mm,	231.0	mm,	and	162.4	mm,	respectively,	(524.0	mm,	850.1	mm,	and	536.9	mm,	233 

respectively)	vs.	the	long-term	mean	of	163.5	mm	(618.5	mm).	234 

For	calibration,	we	use	a	genetic	algorithm	(GA),	which	is	part	of	the	LIS-235 

Optimization	and	Uncertainty	subsystem	(Kumar	et	al.,	2012).	The	GA	is	a	common	236 

stochastic	tool	used	in	hydrology	model	optimization	(Duethmann	et	al.,	2014;	Isenstein	et	237 

al.,	2015;	Shafii	&	De	Smedt,	2009;	Wang,	1991;	Yapo	et	al.,	1998)	and	is	designed	to	mimic	238 

biological	evolution	where	the	fittest	of	the	population	(i.e.,	parameter	sets),	as	determined	239 

through	comparison	to	an	observational	dataset,	survive	and	move	to	the	next	generation.	240 

Within	each	generation,	crossover	and	mutation	operators	are	used	to	produce	new	241 

parameter	estimates	and	to	introduce	diversity	in	the	parameter	set.	To	ensure	good	242 

solutions	are	not	lost	between	generations	due	to	either	crossover	or	mutation	operators,	243 
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an	elitism	strategy	is	used,	where	the	best	solution	is	carried	over	to	the	next	generation.	244 

Over	many	generations,	the	average	fitness,	which	reflects	the	quality	of	the	solution,	tends	245 

to	increase	due	to	the	selection	of	individuals	that	compare	favorably	to	observations.		246 

GAs	aim	to	prevent	overfitting	through	an	ensemble	approach	and	by	introducing	247 

poor	performing	solutions	through	mutation	operators.	Since	they	do	not	rely	on	gradient	248 

information,	GAs	can	handle	local	optima	and	discontinuities	in	the	search	space,	unlike	249 

gradient	search.	Since	GAs	require	an	ensemble	that	must	be	run	over	several	generations,	250 

they	are	computationally	expensive.	Running	50	generations	of	the	GA	with	30	ensemble	251 

members	for	three	water	years	over	the	study	domain	requires	a	total	running	time	over	252 

480	hours,	or	over	20	days	of	continuous	simulation,	with	532	processors.		253 

Within	LIS,	the	GA	does	not	provide	estimates	of	parameter	uncertainty.	For	254 

estimating	parameter	uncertainty,	variants	of	Markov	Chain	Monte	Carlo	methods	such	as	255 

Differential	Evolution	Monte	Carlo	(te	Braak	et	al.,	2008)	would	be	required;	however,	256 

algorithms	such	as	these	have	a	high	computational	cost,	with	run	times	an	order	of	257 

magnitude	higher	than	GA	(Harrison	et	al.,	2012),	making	their	implementation	over	a	258 

domain	size	such	as	ours	difficult.	Since	the	primary	objective	of	this	study	is	to	produce	a	259 

better	snow	simulation,	a	thorough	investigation	into	the	parameter	uncertainty	is	omitted.	260 

More	detail	on	GAs	within	the	LIS	framework	is	discussed	by	Kumar	et	al.	(2012).	261 

The	GA	results	in	calibrated	values	for	a	set	of	parameters	that	allow	for	the	best	262 

match	with	observations.	The	range	in	parameter	values	for	calibration	(see	Table	1)	are	263 

either	taken	from	the	literature	or	allowed	to	vary	+/-	20%	of	the	default	value,	following	264 

Cuntz	et	al.	(2016).	As	an	objective	function,	we	consider	the	squared	difference	between	265 

the	observation	and	the	model:		266 
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!! = ($!
"
− $!

#
)
$	 (1)	267 

where	$!
"is	snow	depth	from	the	observations	(UA)	for	grid	cell	'	and	$!

#	is	snow	depth	268 

from	the	model	(Noah-MP)	for	grid	cell	'.	We	minimize	!! 	for	each	grid	cell	'	independently	269 

in	the	calibration,	resulting	in	parameters	that	vary	spatially	(Figure	2).	In	contrast,	Noah-270 

MP-Def	has	spatially	uniform	parameters.	UA,	produced	at	4	km,	is	rescaled	to	match	the	271 

Noah-MP	resolution	through	bilinear	interpolation	during	calibration.	272 

	273 

3.3. Evaluation	Datasets	274 

In	addition	to	comparing	Noah-MP	estimates	to	UA,	we	evaluate	snow	simulations	275 

against	a	suite	of	independent	datasets	using	the	Land	surface	Verification	Toolkit	(LVT;	276 

Kumar	et	al.,	2012).	First,	we	compare	snow	depth	across	the	full	domain	to	the	Snow	Data	277 

Assimilation	System	(SNODAS;	Carroll	et	al.,	2001),	which	is	an	operational	dataset	278 

available	over	the	contiguous	United	States	at	approximately	1	km	spatial	resolution.	Both	279 

Noah-MP	simulations	are	evaluated	against	UA	and	SNODAS	for	the	full	analysis	period	of	280 

water	years	2010-2020.	UA	and	SNODAS	are	both	reprocessed	in	LVT	to	match	the	spatial	281 

resolution	of	Noah-MP.	282 

We	also	compare	to	snow	depth	measurements	from	the	Global	Historical	283 

Climatology	Network	(GHCN;	Menne	et	al.,	2012);	the	western	Colorado	domain	includes	284 

79	GHCN	stations	with	snow	depth	observations.	Stations	within	the	domain	include	a	285 

range	of	elevations	(1467-3422	m)	with	an	average	station	elevation	of	2349	m.	This	286 

compares	to	the	full	Noah-MP	domain	with	elevations	ranging	from	1399-4185	m	and	an	287 

average	elevation	of	2639	m;	approximately	9%	of	GHCN	stations	within	the	domain	have	288 

elevations	>	3000	m,	compared	to	26%	of	the	full	domain.	While	GHCN	stations	289 
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undersample	higher	elevations	within	the	western	Colorado	domain,	they	provide	an	290 

additional	evaluation	dataset	for	snow	depth.	GHCN	data	are	available	for	water	years	291 

2010-2016.	292 

We	also	compare	Noah-MP	to	datasets	collected	from	the	2017	NASA	SnowEx	field	293 

campaign	in	Colorado.	First,	we	evaluate	Noah-MP	against	snow	pit	observations	of	snow	294 

depth	and	SWE	from	SnowEx	(Elder	et	al.,	2018)	at	Grand	Mesa	and	Senator	Beck,	which	295 

were	collected	between	February	6-25,	2017.	For	a	spatial	comparison,	we	evaluate	Noah-296 

MP	snow	depth	against	Airborne	Snow	Observatory	(ASO)	lidar	observations	of	snow	297 

depth,	which	are	produced	at	3	m	spatial	resolution	(Painter,	2018).	Here	we	use	ASO	298 

flights	over	Grand	Mesa	from	February	8	and	February	16;	though	other	flights	are	299 

available	for	the	2017	field	campaign,	other	days	either	included	artefacts	from	the	lidar	300 

collection	or	excluded	portions	of	the	mesa.	301 

In	addition	to	observations	from	SnowEx,	Noah-MP	is	evaluated	against	a	302 

SnowModel	simulation	over	Grand	Mesa	for	the	2017	campaign,	as	described	in	Webb	et	al.	303 

(2020).	SnowModel	is	a	widely	used	snow	model	that	simulates	distributed	snow	304 

properties	in	space	and	time	and	can	be	configured	to	simulate	a	single	or	multi-layer	305 

snowpack	(Liston	and	Elder,	2006a;	Liston	and	Sturm,	1998).	SnowModel	is	designed	to	306 

include	four	interconnected	models:	MicroMet	for	processing	and	downscaling	307 

meteorological	forcing	data	(Liston	and	Elder,	2006b),	EnBal	for	calculating	the	energy	308 

balance	of	the	snowpack,	SnowPack	for	simulating	the	snowpack	in	space	and	time,	and	309 

SnowTran-3D	for	computing	redistribution	of	snow	due	to	wind	(Liston	and	Sturm,	1998;	310 

Liston	et	al.,	2007).	Webb	et	al.	(2020)	configure	SnowModel	to	simulate	a	single	layer	311 

snowpack	over	Grand	Mesa	for	the	2016-2017	water	year	to	coincide	with	the	SnowEx	312 
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field	campaign	in	February	2017.	They	use	station	observations	as	meteorological	forcing	313 

data,	including	data	from	the	Grand	Mesa	Study	Plot	(Skiles,	2018),	four	SnowEx	campaign	314 

weather	stations,	and	three	nearby	Snow	Telemetry	(SNOTEL)	sites.	SNOTEL	sites	provide	315 

temperature	and	precipitation	observations,	and	all	other	stations	provide	temperature,	316 

wind	speed/direction,	humidity,	and	radiation.	No	adjustment	of	precipitation	or	other	317 

forcing	data	were	made,	and	SnowModel	simulations	were	independent	of	any	snow	318 

observations.	Elevation	data	were	from	the	1/3	arc-second	USGS	National	Elevation	319 

Dataset,	while	vegetation	data	were	taken	from	30m	USGS	LANDFIRE	v.1.4	Existing	320 

Vegetation	Type	data	(Rollins,	2009)	and	reclassified	to	SnowModel	vegetation	types.	321 

Webb	et	al.	(2020)	ran	SnowModel	at	multiple	spatial	resolutions,	but	here	we	consider	322 

SWE	and	snow	depth	outputs	from	their	30	m	simulation.	Webb	et	al.	(2020)	provide	323 

additional	information	on	the	SnowModel	configuration	and	evaluation.		324 

For	spatial	evaluations	against	both	ASO	and	SnowModel,	we	calculate	the	Spatial	325 

Efficiency	(SPAEF;	Koch	et	al.,	2018;	Demirel	et	al.,	2018),	which	combines	histogram	326 

matching,	spatial	correlation	coefficient,	and	spatial	variability	error	to	evaluate	spatial	327 

patterns.	SPAEF	is	defined	as:	328 

()*+, = 1 − .(/ − 1)
$
+ (1 − 1)

$
+ (2 − 1)

$			 	 (2)	329 

where	/ = 3(456,84$), 1 =

!"#$
%"#$!#&'
%#&'

,	and	2 =
∑ '()*+(,-(.)
(*+
∑ +()
(*+

.	Here	/	is	the	Pearson	correlation	330 

coefficient	between	the	observation	(ASO	lidar	or	SnowModel	simulation)	and	the	model	331 

(Noah-MP),	1	is	the	fraction	of	the	coefficient	of	variation,	which	represents	spatial	332 

variability,	and	2	is	the	histogram	intersection	for	the	histogram	of	the	observation,	9,	and	333 
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the	histogram	from	the	model,	:	(Swain	and	Ballard,	1991).	SPAEF	has	an	optimal	value	of	334 

1.	335 

For	streamflow,	we	compare	to	natural	flow	estimates	for	four	basins	in	the	Upper	336 

Colorado	River	Basin	(UCRB)	that	lie	completely	within	the	model	domain	(see	Table	6).	337 

Natural	flow	estimates	are	from	the	Bureau	of	Reclamation	and	are	available	monthly	338 

between	1901	and	2018	(Prairie	and	Callejo,	2005).	We	also	compare	to	daily,	unregulated	339 

streamflow	for	two	basins	from	the	Catchment	Attributes	and	Meteorology	for	Large	340 

Sample	Studies	(CAMELS;	Newman	et	al.,	2015;	Newman	et	al.,	2014)	dataset.	We	only	use	341 

streamflow	observations	between	2009	and	2014	for	the	two	CAMELS	basins,	and	the	daily	342 

streamflow	has	been	processed	into	monthly	averages.	Since	Noah-MP	does	not	include	343 

human	management	on	streamflow	networks,	we	cannot	compare	model-simulated	runoff	344 

to	streamgage	observations,	due	to	water	diversions,	dams,	and	other	water	management	345 

practices.	Instead,	we	compare	monthly	grid-cell	generated	runoff	–	the	summation	of	346 

surface	runoff	and	subsurface	runoff	–	to	monthly	observations	over	small	unmanaged	347 

basins	and	to	estimated	natural	flow	(i.e.,	runoff	in	the	absence	of	human	management)	in	348 

larger	basins.	Using	total	runoff	at	monthly	scales	as	a	proxy	to	streamflow	is	a	valid	349 

assumption	(Chow,	1964)	and	a	strategy	used	in	other	studies	(e.g.,	Koster	et	al.,	2010).	We	350 

evaluate	monthly	streamflow	with	Nash-Sutcliffe	Efficiency	metrics	(NSE;	Nash	&	Sutcliffe,	351 

1970),	where	a	perfect	fit	with	observations	has	NSE	=	1,	and	NSE	>	0	indicates	the	model	352 

has	better	predictive	skill	than	the	mean	of	the	observations.	353 

	354 

4. Results		355 

4.1. Calibration	356 
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We	initially	run	point-scale	calibration	tests	with	23	selected	parameters	from	the	357 

snow	modules	within	Noah-MP	(Table	1).	Noah-MP-Cal	generally	improved	the	snow	358 

ablation	timing	in	spring	months	relative	to	Noah-MP-Def.	However,	maximum	snow	359 

conditions	remained	largely	underestimated,	particularly	for	sites	with	deep	snowpack	360 

(not	shown).	After	implementation	of	a	snowfall	scaling	factor,	described	below	in	equation	361 

5,	as	an	additional	calibration	parameter,	test	simulations	resulted	in	snow	depths	in	better	362 

agreement	with	UA	estimates.	Therefore,	for	calibration	over	the	full	domain,	we	include	363 

24	spatially	variable	parameters:	23	from	Noah-MP	and	an	additional	snowfall	scale	term	364 

(Figure	2).		365 

Though	we	include	24	parameters	in	the	GA	procedure,	only	11	were	sensitive	to	366 

calibration.	We	determine	that	13	are	not	sensitive	because	they	do	not	demonstrate	any	367 

noticeable	spatial	patterns	such	as	those	reported	in	Figure	2	and	instead	calibrated	values	368 

have	noisy	spatial	patterns	(see	Supplemental	Figure	S2).	Some	of	the	11	selected	369 

parameters	have	regions	of	noisy	artificial	patterns	in	regions	of	the	domain	that	were	370 

insensitive	to	calibration,	often	in	portions	of	the	domain	where	less	snow	accumulates	371 

(Figure	2).	Despite	these	regions,	we	look	further	into	the	11	sensitive	parameters.	The	first	372 

four	parameters	are	used	within	the	CLASS	snow	albedo	scheme	(Verseghy,	1991)	and	373 

include	minimum	snow	albedo	(;<(<*:=),	maximum	snow	albedo	(;>(<*:=),	the	374 

exponent	in	the	snow	albedo	decay	relationship	((<?+@*A+>)),	and	the	new	snow	mass	375 

required	to	cover	old	snow	((B+;>).	These	parameters	are	used	in	each	time	step	to	376 

calculate	snow	albedo.	First,	the	albedo	of	the	snow	cover	for	the	new	time	step	is	377 

determined	as:	378 

//(C) = ;<(<*:= + [//(C − 1) − ;<(<*:=] ∗ exp J−
0123456378∗:;

<=>>
K				(3)	379 
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where	//	is	snow	albedo	at	time	step	C	or	C − 1	and	ΔC	is	the	model	time	step.	If	new	snow	380 

has	fallen	in	an	amount	larger	than	(B+;>,	snow	albedo	is	refreshed	to	a	value	of	381 

;>(<*:=.		382 

	 The	next	group	of	calibration	parameters	relates	to	the	rain-snow	partitioning	383 

scheme	used	here,	i.e.,	the	Jordan	(1991)	scheme	from	the	SNTHERM	model.	In	this	384 

method,	if	air	temperature	is	above	the	upper	temperature	limit	(M?:N;NM),	all	385 

precipitation	is	rainfall.	At	air	temperatures	below	the	lower	temperature	limit	(M-:N;NM),	386 

all	precipitation	is	snowfall.	For	temperatures	between		M-:N;NM	and	a	middle	threshold	387 

(M@:N;NM),	the	fraction	of	precipitation	that	is	frozen	is	a	function	of	air	temperature.	At	388 

temperatures	between	M@:N;NM	and	M?:N;NM,	the	fraction	of	precipitation	that	is	frozen	is	389 

set	to	0.6.	In	the	calibration	procedure,	M-:N;NM < M@:N;NM <	M?:N;NM.		390 

	 The	remaining	four	parameters	are	from	different	schemes	throughout	Noah-MP,	391 

and	three	were	highlighted	by	Mendoza	et	al.	(2015)	as	key	parameters	for	model	392 

sensitivity.	These	include	the	exponent	used	in	the	snow	depletion	curve	(;,(<Q),	liquid	393 

water	holding	capacity	(((N),	and	snow	surface	roughness	length	(R0(<Q).	;,(<Q	is	used	394 

within	Noah-MP	to	calculate	the	fractional	portion	of	the	grid	cell	that	is	snow	covered,	as	395 

shown	in	equation	4	below	from	Niu	and	Yang	(2007):	396 

T/A" = tanh
B')#

$.DE,-F
.')#
.)/0

G
12345		 	 (4)	397 

where	ℎ/A"	is	snow	depth,	Z>H	is	the	bare	soil	roughness	length,	3/A"	is	bulk	density	of	398 

snow,	and	3AIJ 	is	the	density	of	new	snow,	which	is	set	to	100	kg/m3.	T/A"	is	used	399 

throughout	Noah-MP	to	scale	grid-cell	calculations	into	snow-covered	and	non-snow-400 

covered	fractions,	including	within	surface	radiation	calculations.	401 
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	 ((N	and	R0(<Q	are	each	used	only	once	in	the	Noah-MP	code.	((N	is	included	in	the	402 

calculation	of	snow	layer	liquid	water,	which	determines	the	rate	of	exfiltration	of	403 

snowmelt	release	from	the	bottom	of	the	snowpack.	R0(<Q	is	used	to	calculate	the	surface	404 

roughness	length	for	turbulent	flux	calculations	over	snow	covered	ground.		405 

	 The	final	calibration	parameter	is	the	snowfall	scaling	term,	(<QB,_(@*:+,,	406 

which	was	included	to	address	uncertainty	in	precipitation	forcing	data.	(<QB,_(@*:+,	407 

is	described	as:	408 

( = ) ∗ T!KI ∗ (<QB,_(@*:+,	 	 (5)	409 

where	(	is	snowfall,	)	is	total	precipitation,	and	T!KI 	is	the	fraction	of	the	precipitation	that	410 

is	frozen.		The	snowfall	scale	factor	is	applied	to	frozen	precipitation	to	reduce	the	bias	411 

introduced	from	NLDAS-2.	Other	studies	introduce	a	similar	precipitation	scaling	factor	in	412 

optimization	or	assimilation	experiments.	Smyth	et	al.	(2020),	who	also	used	NLDAS-2	for	413 

model	forcing	data,	use	a	snowfall	correction	factor	to	scale	precipitation	at	their	SNOTEL	414 

study	sites	across	the	western	United	States.	In	their	work,	the	average	snowfall	correction	415 

factor	is	1.64,	indicating	NLDAS-2	underestimates	mountain	snowfall	by	more	than	50%.	In	416 

Smyth	et	al.	(2020)	and	here,	NLDAS-2	snowfall	is	too	low	and	must	be	scaled	to	larger	417 

values	to	produce	realistic	snow	accumulation.	Other	studies	have	also	included	a	418 

correction	factor	to	address	biases	in	snowfall	from	meteorological	data	(Magnusson	et	al.,	419 

2017;	He	et	al.,	2011;	Franz	and	Karsten,	2013).	Errors	in	forcing	data,	particularly	420 

precipitation,	have	a	large	impact	on	snow	modeling	performance	(Raleigh	et	al.,	2015;	421 

Schmucki	et	al.,	2014;	Henn	et	al.,	2018),	and	including	a	snowfall	scaling	term	in	the	422 

calibration	procedure	can	help	address	this	bias.	423 

	424 
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4.2. SWE	and	Snow	Depth	Evaluation	425 

4.2.1. UA	and	SNODAS	Comparisons	426 

4.2.1.1. Full	Domain	Comparison	427 

Figure	3	shows	the	time	series	of	average	SWE	and	average	snow	depth	across	the	428 

domain	for	Noah-MP-Cal,	Noah-MP-Def,	and	the	UA	dataset.	In	nearly	all	cases,	calibration	429 

results	in	more	snow	and	later	snowmelt.	Occasionally,	Noah-MP-Cal	produces	more	snow	430 

accumulation	than	the	UA	dataset,	such	as	in	2015	and	2017	(Figure	3).	Over	the	11-year	431 

simulation,	Noah-MP-Cal	has	larger	magnitudes	of	snow	depth	and	SWE;	average	maximum	432 

SWE	(depth)	from	Noah-MP-Cal	is	166.7	mm	(0.61	m),	while	average	maximum	SWE	433 

(depth)	from	Noah-MP-Def	is	131.8	mm	(0.52	m).		434 

Spatially,	Noah-MP-Cal	produces	greater	April	1	SWE	at	higher	elevations	across	the	435 

domain,	averaged	over	the	water	year	2010-2020	simulation	period	(Figure	4).		Estimates	436 

from	Noah-MP-Def	have	similar	domain-wide	averages	as	Noah-MP-Cal	(Figure	3),	but	the	437 

snow	is	less	spatially	variable.	This	is	contrasted	with	Noah-MP-Cal	where	snow	438 

accumulation	more	closely	follows	local	topography.	We	also	compare	Noah-MP-Cal	and	439 

Noah-MP-Def	to	UA	and	SNODAS	at	six	evaluation	points	throughout	the	domain	that	440 

correspond	to	SnowEx	field	campaign	sites	(Table	2).	At	these	points,	Noah-MP-Cal	441 

generally	has	smaller	biases	and	RMSE	than	Noah-MP-Def	for	the	UA	comparison	(Table	3).	442 

Noah-MP-Cal	also	tends	to	perform	better	than	Noah-MP-Def	when	evaluated	against	443 

SNODAS	(Table	3).	Noah-MP-Cal	has	smaller	bias	and	RMSE	at	all	evaluation	points	except	444 

Fool	Creek	and	Senator	Beck,	the	two	highest	elevations	stations.	For	a	similar	comparison	445 

but	for	SWE,	see	Table	S2.	446 
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To	compare	Noah-MP-Cal	and	Noah-MP-Def	against	UA	and	SNODAS	over	the	full	447 

domain,	we	first	calculate	the	SPAEF	(Equation	2)	to	evaluate	spatial	performance.	448 

Compared	to	UA,	Noah-MP-Cal	has	a	SPAEF	of	0.799	and	Noah-MP-Def	has	a	SPAEF	of	449 

0.508.	For	SNODAS,	Noah-MP-Cal	also	has	a	higher	SPAEF	metric:	0.722	vs	0.460	for	Noah-450 

MP-Def.	For	RMSE	(Figure	5),	higher	elevations	tend	to	have	larger	RMSE	values,	451 

particularly	for	Noah-MP-Def	compared	to	both	SNODAS	and	UA.	Noah-MP-Cal	has	high	452 

RMSE	values	in	the	central	northern	portion	of	the	study	domain.	This	area	has	much	larger	453 

values	of	snow	depth	in	Noah-MP-Cal	than	Noah-MP-Def,	and	the	snowfall	scale	factor	from	454 

calibration	is	high	in	the	area	(up	to	2.5-3,	compared	to	the	domain	average	of	1.16),	455 

leading	to	increased	precipitation	and	higher	snow	accumulations	(discussed	in	Section	5).	456 

Aside	from	this	anomalous	region	and	an	area	in	the	southern	portion	of	the	domain,	Noah-457 

MP-Cal	generally	reduces	the	UA	snow	depth	RMSE	(Figure	5c),	particularly	at	higher	458 

elevations.	Averaged	over	the	domain,	Noah-MP-Cal	has	a	slightly	lower	RMSE	(0.13	m)	459 

than	Noah-MP-Def	(0.15	m)	compared	to	UA	(Table	3).	Performance	between	Noah-MP-Cal	460 

and	Noah-MP-Def	is	similar	for	SNODAS	as	for	the	UA	comparison.	Averaged	over	the	full	461 

domain,	Noah-MP-Def	is	in	better	agreement	with	SNODAS	(RMSE	of	0.18	m)	than	Noah-462 

MP-Cal	(RMSE	of	0.19	m),	though	results	are	generally	similar.	463 

Similar	to	RMSE,	we	also	compare	temporal	bias	over	the	full	domain	(Figure	6).	464 

Noah-MP-Def	has	a	negative	bias	for	higher	elevation	grid	cells	compared	to	both	UA	and	465 

SNODAS.	This	suggests	that	Noah-MP-Def	is	underestimating	snow	accumulation	in	the	466 

mountains,	highlighting	the	known	dry	bias	of	LSMs	(e.g.,	Chen,	Liu	et	al.,	2014;	Holtzman	467 

et	al.,	2020;	Kumar	et	al.,	2019;	Wang	et	al.,	2019;	Xia	et	al.,	2017).	Noah-MP-Cal	bias	spatial	468 

patterns	are	similar	between	both	UA	and	SNODAS,	with	a	large	positive	bias	in	the	central	469 
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northern	portion	of	the	domain	due	to	anomalously	high	values	of	snow	depth.	Averaged	470 

over	the	full	domain,	Noah-MP-Cal	vs.	UA	has	a	bias	of	nearly	zero	(-0.0023	m),	compared	471 

to	Noah-MP-Def	of	-0.036	m	(Table	3).	For	both	UA	and	SNODAS	comparisons,	Noah-MP-472 

Cal	has	more	instances	of	positive	bias	at	higher	elevations	(>3500	m),	while	these	same	473 

grid	cells	in	Noah-MP-Def	tend	to	have	negative	biases.	Noah-MP-Def	underestimates	snow	474 

accumulation	at	high	elevations	and	calibration	somewhat	addresses	these	biases,	though	475 

can	result	in	too	much	snow	in	some	regions.	476 

4.2.1.2. Seasonal	Comparison	477 

During	the	accumulation	season	(December	through	February),	calibration	478 

increases	the	domain	averaged	snow	depth	by	almost	18%,	from	a	-14.0%	difference	with	479 

Noah-MP-Def	to	a	+1.4%	difference	with	Noah-MP-Cal,	relative	to	UA.	RMSE	also	improves	480 

slightly	from	0.162	m	to	0.142	m.	Similarly,	for	the	peak	snow	season	(March	and	April),	481 

calibration	results	in	an	improvement	of	snow	depth	percent	difference	from	-24.8%	482 

(Noah-MP-Def)	to	-5.1%	(Noah-MP-Cal).	RMSE	decreases	from	0.269	m	with	Noah-MP-Def	483 

to	0.215	m	with	Noah-MP-Cal,	a	20%	improvement.	Calibration	results	in	large	484 

improvements	for	the	ablation	season	(May	through	July),	increasing	the	domain	averaged	485 

snow	depth	by	45.4%.	Noah-MP-Def	mean	snow	depth	is	31.6%	less	than	the	UA	estimate,	486 

while	Noah-MP-Cal	is	comparable	to	UA,	only	-0.5%	smaller.	RMSE	decreases	by	over	12%,	487 

from	0.0981	m	with	Noah-MP-Def	to	0.0863	m	with	Noah-MP-Cal.	Across	the	full	domain,	488 

calibration	addresses	the	underestimation	of	snow	throughout	the	full	water	year,	though	489 

with	slightly	too	much	snow	during	the	peak	snow	season.	490 

At	the	grid	cell	scale,	Noah-MP-Cal	generally	has	more	snow	accumulation	and	a	491 

later	end	to	the	snow	season	than	Noah-MP-Def,	as	shown	in	Figure	7	for	Senator	Beck.	492 
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Point	scale	evaluations	have	a	better	agreement	between	UA	and	Noah-MP-Cal,	with	RMSE	493 

declining	by	4.23	cm	for	peak	season.	During	the	accumulation	and	ablation	seasons,	494 

results	are	different,	where	Noah-MP-Def	has	smaller	bias	and	RMSE.	Noah-MP-Cal	495 

overestimates	UA	in	the	spring	for	several	years	(Figure	7a),	with	snow	lingering	longer	496 

than	observed	in	UA	for	water	years	2015,	2017,	and	2019.	Performance	is	similarly	mixed	497 

at	other	study	points	(Table	4),	where	calibration	may	improve	performance	during	all	498 

seasons	(Cameron	Pass,	Niwot	Ridge,	Skyway/Grand	Mesa)	or	may	degrade	performance,	499 

depending	on	the	season	(accumulation	and	peak	for	Fool	Creek,	ablation	for	Rock	Creek,	500 

and	accumulation	and	ablation	for	Senator	Beck).	Comparing	SWE	bias	and	RMSE	over	501 

different	seasons	has	similar	results	(Table	S3).	502 

4.2.1.3. Comparison	over	Vegetation	Class	503 

We	next	aggregate	the	20	LIS	land	cover	classifications	into	five	broader	groups	–	504 

forest,	shrubland,	grassland,	cropland,	and	barren	(see	inset	in	Figure	1	and	see	Table	S4	505 

for	statistics)	–	and	compare	Noah-MP-Cal	vs.	Noah-MP-Def	against	both	UA	and	SNODAS	506 

(Figure	8a,c).	For	average	snow	depth	bias,	Noah-MP-Cal	performs	better	than	Noah-MP-507 

Def	across	land	covers.	Most	comparisons	have	a	negative	bias,	indicating	that	Noah-MP-508 

Cal	and	Noah-MP-Def	have	less	snow	than	either	UA	or	SNODAS,	though	magnitude	of	the	509 

bias	is	generally	smaller	than	0.05	m.	The	exception	is	for	the	barren	land	cover	class,	510 

which	is	the	category	with	the	fewest	grid	cells	(1564	or	1.4%	of	the	domain)	and	the	land	511 

class	with	the	highest	average	elevation	(3178	m	vs.	a	domain	average	of	2639	m).	512 

Comparing	with	SNODAS,	Noah-MP-Def	has	smaller	RMSE	than	Noah-MP-Cal.	In	all	classes	513 

except	cropland,	Noah-MP-Cal	has	a	lower	RMSE	when	compared	to	UA.			514 
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Modeling	in	forested	regions	is	often	challenging	due	to	uncertainty	in	snow-canopy	515 

interactions	(Essery	et	al.,	2009;	Krinner	et	al.,	2018).	Therefore,	we	further	subdivide	the	516 

forest	class	into	elevation	bands	to	single	out	the	impact	of	elevation	on	a	land	cover	class	517 

with	higher	uncertainty	(Figure	8b,d	and	see	Table	S4	for	number	of	grid	cells	within	each	518 

category).	Results	are	similar	to	the	full	land	cover	comparison,	where	Noah-MP	biases	are	519 

negative,	and	Noah-MP-Cal	has	smaller	bias	and	RMSE	than	Noah-MP-Def.	Higher	520 

elevations	have	larger	biases	and	RMSEs.	At	forested	elevations	below	3000	m,	Noah-MP-521 

Cal	and	Noah-MP-Def	have	similar	values	of	RMSE.	Calibration	decreases	errors	in	the	522 

higher	elevation	grid	cells,	which	is	often	where	more	snow	accumulates	due	to	colder	523 

temperatures	coupled	with	orographic	lifting.	We	also	calculate	the	ratio	of	RMSE	to	mean	524 

snow	depth	(not	shown),	and	for	Noah-MP-Cal,	this	metric	decreases	with	elevation,	while	525 

for	Noah-MP-Def,	it	increases	above	2500	m.	Much	of	the	increase	in	Noah-MP-Cal	RMSE	is	526 

due	to	deeper	snowpacks	at	higher	elevation.	SNODAS	and	UA	are	both	based	on	527 

observational	datasets,	which	likely	have	larger	uncertainty	in	forests.	Noah-MP-Cal	is	in	528 

better	agreement	with	the	observation-based	gridded	data	products	than	Noah-MP-Def,	529 

but	the	“true”	accuracy	in	forested	environments	is	limited	by	a	lack	of	observations	in	530 

forests.	531 

	532 

4.2.2	GHCN	Comparisons		533 

Across	79	GHCN	stations,	Noah-MP-Cal	is	less	biased	(0.0049	m)	and	has	a	lower	534 

RMSE	(0.15	m)	than	Noah-MP-Def	(bias	of	-0.04	m	and	RMSE	of	0.20	m).	Noah-MP-Cal	535 

generally	reduces	the	snow	depth	bias	in	Noah-MP-Def	in	the	Front	Range	and	broadly	536 

reduces	RMSE	across	the	full	domain	(Figure	9).	While	results	are	generally	similar	537 
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between	Noah-MP-Cal	and	Noah-MP-Def,	the	evaluation	with	GHCN	demonstrates	an	538 

additional	independent	check	that	calibration	improves	the	performance	of	modeled	snow	539 

depth.	540 

	541 

4.2.3	SnowEx	Comparisons	542 

Finally,	we	also	evaluate	snow	depth	and	SWE	against	264	snow	pit	observations	543 

from	the	NASA	SnowEx	2017	field	campaigns	at	Grand	Mesa	and	Senator	Beck	(Figure	10).	544 

Here	we	include	SnowModel	simulations	in	the	comparison	to	consider	a	snow	process	545 

model.	For	both	Noah-MP	and	SnowModel,	we	select	the	grid	that	contains	each	snow	pit	546 

for	the	comparison.	SnowModel	is	kept	at	its	native	30	m	resolution,	though	we	also	tested	547 

average	SnowModel	grid	cells	to	the	Noah-MP	resolution	and	results	were	similar.	The	548 

majority	of	pit	observations	(n	=	224)	are	from	Grand	Mesa,	where	there	is	better	549 

agreement	after	calibration	for	snow	depth	(Table	5):	mean	bias	decreases	from	-48.2	cm	550 

to	-12.1	cm	(mean	percent	absolute	difference	decreases	from	32.2%	to	20.0%)	and	RMSE	551 

decreases	from	54.4	cm	to	34.9	cm.	Similar	for	SWE,	Noah-MP-Cal	has	a	smaller	SWE	mean	552 

bias	at	Grand	Mesa	than	Noah-MP-Def	(-23.0	mm	vs.	-160.6	mm)	and	a	smaller	RMSE	553 

(132.9	mm	vs	185.4	mm).	For	SWE,	SnowModel	has	better	agreement	with	snow	pits	than	554 

either	Noah-MP	simulation,	though	the	performance	of	SnowModel	and	Noah-MP-Cal	are	555 

comparable	for	snow	depth,	with	Noah-MP-Cal	having	smaller	MAE	and	RMSE.	Similar	556 

performance	for	snow	depth	and	SWE	disagreements	may	be	due	to	different	density	557 

estimates	in	SnowModel	and	Noah-MP-Cal.	At	Senator	Beck	(n	=	40	pits),	where	we	do	not	558 

have	SnowModel	simulations,	Noah-MP-Cal	greatly	improves	upon	Noah-MP-Def	559 

evaluation	metrics	for	both	snow	depth	and	SWE:	for	snow	depth	(SWE),	RMSE	increases	560 
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from	49.7	cm	to	102.5	cm	(167.6	mm	to	413.0).	This	highlights	the	uneven	performance	561 

across	the	domain	after	calibration.	562 

Spatially,	Noah-MP-Def	has	much	lower	values	of	snow	depth	than	measured	in	the	563 

snow	pits	on	a	single	day	(Figure	11).	Noah-MP-Cal,	on	the	other	hand,	has	spatial	patterns	564 

that	better	match	the	snow	pits	observations	throughout	the	Grand	Mesa	study	site,	565 

capturing	the	overall	east-west	gradient	seen	in	the	snow	pit	observations	and	in	the	566 

SnowModel	simulation.	Calibrated	Noah-MP	at	a	1-km	resolution	has	similar	error	metrics	567 

to	an	uncalibrated	snow	process	model	at	a	30-m	resolution,	but	this	evaluation	is	only	568 

possible	over	a	small	portion	of	the	full	domain.		569 

Finally,	we	evaluate	Noah-MP	simulations	against	ASO	lidar	snow	depth	570 

observations	from	SnowEx	flights	on	February	8	and	16	(Painter,	2018).	Spatially,	571 

estimates	from	ASO,	Noah-MP-Cal,	and	Noah-MP-Def	have	somewhat	similar	patterns	on	572 

each	flight	day,	with	snow	depth	tending	to	increase	toward	the	eastern	portion	of	the	573 

domain	(Figure	12).	ASO	and	Noah-MP-Cal	also	show	that	snow	depth	increases	from	the	574 

north	to	the	south	across	the	domain;	Noah-MP-Def,	on	the	other	hand,	has	lower	575 

variability	across	the	domain.	Note	the	deeper	band	of	snow	in	the	ASO	observations	along	576 

the	northern	portion	of	the	domain.	The	deeper	snow	here	is	likely	due	to	snow	577 

accumulating	at	the	base	of	the	cliff.	Snow	persistence	maps	(Figure	S3)	show	that	snow	578 

historically	lingers	longer	along	the	base	of	the	cliff,	suggesting	that	the	deeper	snow	579 

depths	in	ASO	are	plausible.	Noah-MP,	with	grid	cells	orders	of	magnitude	coarser	than	580 

ASO,	cannot	capture	this	fine	scale	spatial	pattern.	For	both	flight	days,	Noah-MP-Cal	has	581 

higher	values	of	SPAEF,	which	indicates	better	spatial	agreement	with	ASO	observations:	582 

on	February	8,	Noah-MP-Cal	has	a	SPAEF	value	of	0.408	and	Noah-MP-Def	has	a	value	of	583 
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0.253;	on	February	16,	Noah-MP-Cal	has	a	SPAEF	of	0.516	compared	to	0.195	from	Noah-584 

MP-Def.	585 

	Originally	collected	at	3	m	spatial	resolution,	ASO	snow	depth	observations	are	586 

aggregated	to	0.01°	resolution	to	match	the	Noah-MP	simulations	by	averaging	together	587 

over	100,000	ASO	3	m	grid	cells.	In	evaluations	of	Noah-MP	grid	cells	against	aggregated	588 

ASO	depth	observation,	Noah-MP-Def	underestimates	ASO,	and	Noah-MP-Cal	589 

overestimates	for	snow	depths	above	1.5	m	(Figure	12).	For	each	flight	day,	Noah-MP-Cal	590 

has	smaller	RMSE,	MAE,	and	bias	magnitude	than	Noah-MP-Def.	From	this	comparison,	591 

calibration	may	lead	to	overestimates	of	snow	depth	in	some	regions,	but	calibration	592 

introduces	more	realistic	spatial	patterns	of	snow	depth,	as	compared	to	ASO	observations.	593 

	594 

4.3. Streamflow	Evaluation	595 

Beyond	impacts	on	snow	depth	and	SWE,	calibration	will	impact	LSM	simulation	of	596 

other	hydrological	variables.	For	six	basins	within	the	Colorado	domain	with	little-to-no	597 

human	management,	calibration	can	improve	streamflow	estimation	(Figure	13).	Of	the	six	598 

basins,	four	have	higher	NSE	values	for	Noah-MP-Cal	than	Noah-MP-Def.	After	calibration,	599 

however,	four	of	the	six	basins	still	have	negative	NSE	values,	though	the	streamflow	bias	600 

may	not	all	be	due	to	snow.	For	the	two	basins	with	NSE>0	(9072500	and	9081600),	601 

calibration	improves	performance,	though	only	9072500	has	a	statistically	significant	602 

difference	in	monthly	streamflow	between	Noah-MP-Cal	and	Noah-MP-Def.	In	two	basins,	603 

both	on	the	Gunnison	River	(9124700	and	9127800),	calibration	leads	to	a	larger	604 

overestimation	in	streamflow	for	some	evaluation	years.	For	the	Colorado	River	at	605 

Glenwood	Springs	(9072500),	Noah-MP-Def	largely	underestimates	streamflow,	and	606 
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calibration	addresses	this	bias	through	increased	runoff.	In	most	years	for	most	basins,	607 

Noah-MP-Cal	has	later	peak	streamflow,	in	agreement	with	the	observations,	which	is	also	608 

noted	in	Figure	13.	In	9107000,	where	Noah-MP-Def	overestimates	observations,	Noah-609 

MP-Cal	decreases	the	magnitude	of	the	bias,	though	Noah-MP-Cal	still	overestimates	610 

slightly;	in	9081600,	Noah-MP-Def	underestimates	observed	streamflow,	and	the	611 

calibrated	runoff	value	is	a	better	match	for	the	observations.	This	demonstrates	that	612 

calibration	does	not	increase	snow	and	runoff	in	one	direction,	but	rather	calibration	can	613 

improve	upon	both	positive	and	negative	biases.	Results	similar	to	the	small	basin	analysis	614 

are	seen	across	the	full	model	domain,	including	higher	springtime	streamflow	in	Noah-615 

MP-Cal	compared	to	Noah-MP-Def	(Figure	S4a,b,c).	Peak	streamflow	in	Noah-MP-Cal	also	616 

generally	occurs	later	in	the	year	than	Noah-MP-Def	(Figure	S4f),	in	agreement	with	later	617 

snowmelt	in	Noah-MP-Cal	(Figures	3	and	8).	618 

	619 

5. Discussion	620 

5.1. Summary	of	results	621 

Here	we	investigate	the	impact	of	model	calibration	on	simulations	of	snow	depth,	622 

SWE,	and	streamflow.	From	this	calibration	exercise,	we	aim	to	answer	the	three	research	623 

questions	posed	in	the	introduction.	First,	calibration	can	address	dry	biases	in	LSMs,	624 

which	often	result	in	underestimation	of	snow.	We	show	improvements	to	not	only	625 

simulated	SWE	and	snow	depth	magnitude	but	also	to	timing,	of	both	accumulation	and	626 

ablation	periods.	Calibration	also	results	in	Noah-MP-Cal	performing	about	as	well	as	an	627 

uncalibrated,	high-resolution	snow	process	model	(Table	5,	Figure	11).	Though	evaluations	628 

of	Noah-MP	and	SnowModel	are	limited	to	Grand	Mesa,	the	spatial	variability	of	snow	629 
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depth	across	the	mesa	are	similar	in	SnowModel	and	Noah-MP-Cal,	though	SnowModel	630 

simulations	produce	more	detail	with	the	finer	spatial	resolution.	When	comparing	both	631 

models	to	snow	pit	measurements,	Noah-MP-Cal	actually	has	better	performance	for	snow	632 

depth,	though	error	Noah-MP-Cal	metrics	are	larger	for	SWE.	Results	are	similar	for	high	633 

resolution	ASO	lidar,	where	Noah-MP-Cal	captures	the	realistic	spatial	variability	in	ASO	634 

estimates,	suggesting	that,	over	Grand	Mesa	at	least,	the	calibration	procedure	largely	635 

improves	the	model	simulation.	636 

Second,	impacts	from	calibration	are	observed	beyond	snow	variables.	For	637 

streamflow,	Noah-MP-Cal	improves	estimates	for	four	of	the	six	study	basins.	Here	we	are	638 

limited	to	small	unmanaged	basins	or	reconstructed	estimates	of	natural	streamflow	since	639 

Noah-MP	does	not	include	human	management.	We	note	that	we	are	not	evaluating	routed	640 

streamflow	here,	but	instead,	we	consider	grid	cell	estimates	of	surface	and	subsurface	641 

runoff.	Future	work	should	consider	dynamically	routed	streamflow	in	order	to	account	for	642 

time	lags	between	the	upper	reaches	of	the	watershed	and	the	evaluation	point	with	the	643 

stream	gage.	Even	with	those	considerations,	improved	NSE	metrics	suggest	that	the	644 

increased	snowpack	in	Noah-MP-Cal	results	in	streamflow	magnitude	and	timing	that	645 

better	matches	observations.		646 

Finally,	the	calibration	highlights	potential	avenues	for	improving	both	model	647 

configuration	and	meteorological	forcing	data,	though	calibrated	parameters	may	be	648 

reflective	of	the	choice	of	forcing	dataset	(Elsner	et	al.,	2014).	The	genetic	algorithm	649 

procedure	produces	spatially	varying	model	parameters,	as	compared	to	the	spatially	650 

uniform	parameters	used	in	the	default	Noah-MP	configuration.	In	particular,	we	highlight	651 

ten	parameters	within	Noah-MP	that	are	likely	candidates	for	further	investigation.	We	652 
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show	that	allowing	these	parameters	to	vary	in	space	results	in	improved	model	653 

performance	compared	to	the	default,	spatially	uniform	values.	Some	of	the	parameters,	654 

such	as	(<QB,_(@*:+_,	appear	to	have	a	relationship	with	elevation	(compare	Figure	2f	655 

with	Figure	1),	while	other	parameters,	such	as	;>(<*:=	and	R0(<Q,	appear	to	be	more	656 

related	to	land	class	category	(compare	Figure	2b,j	with	Figure	1).	Future	efforts	should	657 

determine	new	estimates	for	these	parameters,	perhaps	through	investigation	of	658 

relationships	with	landscape	characteristics,	such	as	elevation,	vegetation	class,	and	soil	659 

type.	660 

Global	maps	of	the	sensitive	parameters	could	likely	improve	simulation	of	snow	661 

without	the	need	for	a	computationally	expensive	calibration	procedure.	In	addition	to	662 

investigating	relationships	for	creating	spatially	varying	parameters,	work	should	consider	663 

whether	parameters	should	also	vary	in	time.	Creating	new	estimates	of	spatially	and	664 

temporally	varying	parameters	could	improve	snow	modeling	without	the	data	665 

requirement	of	calibration,	which	would	have	implications	for	our	ability	to	estimate	global	666 

snow,	regardless	of	data	availability.	Efforts	to	scale	snow	parameters	examined	here	to	667 

larger	domains	are	under	development,	resulting	in	spatially	varying	parameter	estimates	668 

for	all	of	CONUS.		669 

In	addition	to	the	ten	parameters	from	Noah-MP	discussed	above,	results	from	670 

calibration	demonstrate	that	introducing	the	snowfall	scaling	term	has	a	large	impact	on	671 

the	snow	accumulation	magnitude.	This	points	to	the	need	for	better	meteorological	672 

forcing	data,	particularly	for	precipitation	at	high	elevations.	There	is	often	high	variability	673 

between	precipitation	estimates	from	differing	models	and	reanalyses	(Decker	et	al.,	2012;	674 

Essou	et	al.,	2016;	Henn	et	al.,	2018;	Hughes	et	al.,	2017;	Wrzesien	et	al.,	2019),	and	675 
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previous	studies	have	suggested	that	NLDAS-2	precipitation	is	too	low	in	mountain	regions	676 

(Enzminger	et	al.,	2019;	He	et	al.,	2019;	Henn	et	al.,	2018;	Smyth	et	al.,	2020);	such	677 

uncertainty	will	be	propagated	into	the	LSM.	However,	improving	large	scale	precipitation	678 

estimates	is	not	trivial,	and	model-based	precipitation	estimates	often	outperform	679 

observation-based	estimates	in	mountain	areas	(Lundquist	et	al.,	2019),	despite	known	680 

model	biases.	If	we	cannot	improve	estimates	of	precipitation	and	snowfall	in	the	forcing	681 

datasets,	informing	modeled	snowpack	estimates	with	observations	of	SWE	and	snow	682 

depth	is	likely	the	best	option.	This	calibration	procedure	highlights	a	method	for	683 

addressing	biases	in	both	meteorological	forcing	and	the	LSM	itself	and	results	in	improved	684 

simulations	of	snow	in	a	topographically	complex	region.	685 

	686 

5.2. Implications	for	Snow	OSSE	687 

As	discussed,	the	Noah-MP-Cal	simulation	presented	here	will	be	used	as	the	nature	688 

run	(NR)	in	a	snow-focused	Observing	System	Simulation	Experiment	(OSSE),	where	the	689 

NR	is	designed	to	approximate	the	“truth”,	i.e.,	actual	snow	conditions.	Though	calibration	690 

is	not	a	panacea	for	reducing	all	model	uncertainty,	the	improved	performance	from	Noah-691 

MP-Def	to	Noah-MP-Cal	provides	compelling	support	for	Noah-MP-Cal	to	be	the	NR	for	the	692 

OSSE.	Of	particular	concern	when	designing	the	OSSE	was	whether	the	NR	could	address	693 

the	common	underestimation	of	snow	at	higher	elevations,	which	is	necessary	for	694 

understanding	how	proposed	sensors	will	observe	realistic	ranges	of	snow	conditions.	695 

Calibrating	Noah-MP	against	UA	SWE	estimates	reduces	the	negative	bias	for	SWE	and	696 

snow	depth	and	results	in	snow	spatial	heterogeneity	that	better	matches	both	UA	and	697 

SNODAS.	698 
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While	Noah-MP-Cal	is	not	without	error,	a	NR	is	not	expected	to	perfectly	replicate	699 

actual	conditions,	and	no	true	observations	are	used	in	an	OSSE.	Therefore,	the	spatial	and	700 

temporal	variability	in	Noah-MP-Cal	is	adequate	for	approximating	realistic	snow	701 

conditions	for	the	western	Colorado	domain.	The	main	drawback	of	Noah-MP	as	the	NR	–	702 

whether	the	default	or	calibrated	configuration	–	is	that	Noah-MP	does	not	provide	703 

estimates	of	snow	grain	size.	Understanding	how	satellite	observations	are	impacted	by	704 

snow	grain	size	and	metamorphism	is	a	fundamentally	important	question	(Durand	et	al,	705 

2018;	Nolin,	2010;	Foster	et	al.,	2005).	However,	no	models	within	the	current	LIS	706 

framework	provide	estimates	of	snow	grain	size,	though	work	is	ongoing	to	implement	707 

new	snow	models	into	LIS.	While	Noah-MP-Cal	will	be	used	in	the	OSSE	described	here,	708 

future	work	will	consider	a	follow	on	OSSE	that	incorporates	a	model	that	does	include	the	709 

simulation	of	grain	size.			710 

	711 

5.3. Challenges	with	Calibration	712 

With	a	calibration	exercise	such	as	this	one,	there	are	a	few	notable	challenges.	713 

While	calibration	can	lead	to	domain-averaged	improvements	in	the	targeted	variable,	as	714 

presented	here	for	SWE	and	snow	depth,	it	can	cause	degraded	performance	in	individual	715 

regions	across	the	domain.	We	see	this	in	the	northern	portion	of	the	domain	(Figure	4a)	to	716 

the	west	of	the	Cameron	Pass	evaluation	site	(Figure	1).	After	the	genetic	algorithm	717 

optimization,	the	snowfall	scale	term	is	high	in	this	region	(Figure	2k),	resulting	in	snow	718 

depths	and	SWE	values	that	much	larger	than	either	UA	or	SNODAS.	In	the	calibration	719 

period,	SWE	estimates	from	UA	were	particularly	large,	where	the	2007-2009	average	peak	720 

SWE	value	for	this	area	from	UA	is	higher	than	the	average	peak	SWE	value	for	2010-2020,	721 
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causing	the	calibration	to	be	trained	on	higher-than	average	SWE.	Anomalies	such	as	this	722 

from	calibration	are	often	unavoidable.	723 

Another	challenge	with	our	calibration	setup	is	that	the	parameters	are	constant	in	724 

time.	Therefore,	even	if	Noah-MP-Def	performs	well	compared	to	UA,	the	calibrated	725 

parameters	will	still	be	applied.	For	example,	in	water	years	2017,	2019,	and	2020,	726 

domain-averaged	SWE	and	snow	depth	from	Noah-MP-Def	is	similar	to	UA	(Figure	3).	727 

Applying	the	calibrated	parameters	generally	results	in	increased	snow	values,	and	as	a	728 

result,	Noah-MP-Cal	overestimates	SWE	in	these	years.	Calibration	improves	performance	729 

over	the	full	study	period	(Table	3),	but	it	does	not	always	result	in	better	performance	for	730 

an	individual	year	or	season.	As	discussed	above	with	the	spatial	anomalies,	calibration	will	731 

not	result	in	uniformly	improved	performance.	732 

For	all	calibration	procedures,	such	as	the	genetic	algorithm	used	here,	a	“truth”	733 

dataset	is	required	to	calibrate	against,	and	data	availability	is	limited	in	many	regions,	734 

especially	in	high	elevations	and	high	latitudes	where	much	of	the	global	snow	735 

accumulates.	Therefore,	while	the	calibration	procedure	presented	here	is	a	critical	step	for	736 

the	ongoing	OSSE	and	for	improving	the	representation	of	the	truth,	calibrating	over	a	well-737 

observed	Colorado	domain	may	not	necessarily	improve	the	model	performance	of	global	738 

snow.	Results	presented	here	may	not	reflect	other	regions	with	differing	snow	conditions,	739 

such	as	maritime	snow	in	the	Pacific	Northwest	or	tundra	snow	in	the	high	latitudes	(e.g.,	740 

Kim	et	al.,	2021).	Future	work	will	investigate	similar	calibration	methods	in	other	regions.	741 

We	hypothesize	that	in	regions	with	high	precipitation	uncertainty,	such	as	mountainous	742 

regions,	the	snowfall	scaling	term	will	have	similar	impacts	on	snow	magnitude	as	743 

presented	here.	744 
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Since	we	only	calibrate	against	SWE	and	do	not	include	additional	constraints	in	the	745 

objective	function,	such	as	for	streamflow,	the	calibration	cannot	directly	address	biases	in	746 

other	model	processes.	In	the	streamflow	analyses,	we	see	that	Noah-MP-Def	does	not	have	747 

good	agreement	with	the	observed	runoff	(Figure	13	and	Table	6).	However,	further	748 

observational	constraints	or	model	improvements	(possibly	unrelated	to	snow	processes)	749 

are	required	to	address	runoff	biases	that	we	show	here.	In	operational	modeling,	it	is	750 

standard	to	calibrate	snowmelt	rates	to	runoff	(e.g.	Hay	et	al.,	2006;	Franz	and	Karsten,	751 

2013;	Turcotte	et	al.,	2017),	in	order	to	constrain	snow	ablation.	Here,	though,	we	do	not	752 

calibrate	against	runoff.	Degradation	in	unconstrained	variables,	such	as	runoff,	are	not	753 

uncommon	during	calibration	efforts	(e.g.	Franz	and	Karsten,	2013;	Nemri	and	Kinnard).	754 

Future	efforts	could	consider	multi-criteria	objective	functions	to	reduce	biases	in	both	755 

snow	variables	and	streamflow.	756 

Beyond	the	calibration,	evaluating	gridded	data	with	point	observations	presents	757 

additional	challenges.	There	are	significant	differences	in	what	an	~1	m	observation,	such	758 

as	a	snow	pit	or	a	GHCN	station,	measures	and	what	a	~1000	m	model	grid	cell	simulates.	759 

Since	snow	depth	and	SWE	measurements	are	typically	point	observations,	this	imperfect	760 

comparison	is	often	necessary	for	evaluating	models.	However,	during	extensive	field	761 

campaigns,	such	as	SnowEx	2017,	numerous	observations	are	made	in	a	small	domain	over	762 

a	short	period	of	time.	While	the	result	is	still	point-to-grid	comparisons,	the	high	density	of	763 

observation	allows	for	a	more	complete	evaluation,	if	over	a	limited	domain.	Though	we	do	764 

acknowledge	the	uncertainty	from	scale	differences,	we	aim	to	provide	as	thorough	an	765 

evaluation	as	we	can	for	demonstrating	evidence	of	the	improved	performance	of	Noah-766 

MP-Cal	over	Noah-MP-Def	through	the	numerous	independent	comparison	datasets.			767 
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	768 

6. Conclusion	769 

The	Noah-MP-Cal	and	Noah-MP-Def	evaluation	demonstrates	that	calibrating	a	land	770 

surface	model	against	an	observation-based	SWE	dataset	(e.g.,	the	University	of	Arizona	771 

dataset),	improves	model	performance	of	snow,	though	not	uniformly	across	the	domain.	772 

The	calibration	procedure	was	motivated	by	an	ongoing	Observing	System	Simulation	773 

Experiment	(OSSE)	to	evaluate	the	utility	of	proposed	snow	satellite	sensors,	and	Noah-774 

MP-Cal	will	be	used	as	the	nature	run	for	the	OSSE.	That	is,	the	improved	Noah-MP	775 

simulation	will	act	as	the	“truth”	for	the	OSSE,	upon	which	synthetic	observations	will	be	776 

created.	However,	results	presented	here	have	important	implications	beyond	the	OSSE.	777 

We	demonstrate	a	method	for	improving	spatiotemporal	estimates	of	snow,	and	we	show	778 

that	spatially	uniform	values	of	key	model	parameters	result	in	worse	performance.	779 

Allowing	parameters	to	vary	spatially,	as	we	do	in	the	Noah-MP-Cal	simulation	after	a	780 

genetic	algorithm	optimization	procedure,	results	in	improved	model	performance	of	both	781 

snow	depth	and	SWE.	Future	model	development	could	consider	implementing	distributed	782 

values	of	sensitive	parameters,	which	might	improve	LSM	simulations	without	the	need	for	783 

an	initial	calibration	step.	784 
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10. Tables	1197 
	1198 
Table	1.	Calibration	parameters	including	default	values,	calibration	range,	and	average	1199 
calibrated	value.	The	calibration	range	reference,	when	applicable,	is	noted.	Otherwise,	the	1200 
calibration	range	is	+/-	20%	of	the	default	value.	1201 
	1202 
Parameter	 Description	

[units]	
Default	

Value	
Calibration	

Range	
Calibrated	

Average	

Value	

Reference	

ALBDRY1	 Dry	soil	
albedos	(VIS)	[-
]	

0.10-
0.27	

0.08-0.32	 0.200	 --	

ALBDRY2	 Dry	soil	
albedos	(NIR)	
[-]		

0.20-
0.54	

0.16-0.65	 0.404	 --	

ALBICE1	 Albedo	land	ice	
(VIS)	[-]	

0.55	 0.44-0.66	 0.552	 --	

ALBICE2	 Albedo	land	ice	
(NIR)	[-]	

0.80	 0.64-0.96	 0.795	 --	

ALBSAT1	 Saturated	soil	
albedos	(VIS)	[-
]	

0.05-
0.15	

0.04-0.18	 0.110	 --	

ALBSAT2	 Saturated	soil	
albedos	(NIR)	
[-]	

0.10-
0.30	

0.08-0.36	 0.224	 --	

BETADS	 Two	stream	
parameter	βd	
for	snow	[-]	

0.5	 0.4-0.6	 0.498	 --	

BETAIS	 Two	stream	
parameter	βi	
for	snow	[-]	

0.5	 0.4-0.6	 0.501	 --	

EG1	 Emissivity	soil	
surface	(soil)	[-
]	

0.97	 0.78-1.0	 0.895	 --	

EG2	 Emissivity	soil	
surface	(lake)	
[-]	

0.98	 0.78-1.0	 0.891	 --	

MFSNO	 Snowmelt	
parameter	[-]	

2.5	 0.5-3.0	 1.158	 Niu	&	Yang	
(2007)	
	

MNSNALB	 Minimum	snow	
albedo	[-]	

0.55	 0.45-0.65	 0.596	 Aguado	
(1985);	
Dirmhirn	&	
Eaton	
(1975)	
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MXSNALB	 Maximum	
snow	albedo	[-]	

0.84	 0.75-0.95	 0.853	 Aguado	
(1985);	
Essery	&	
Etchevers	
(2004)	

OMEGAS1	 Two	stream	
parameter	
omega	for	
snow	[-]	

0.8	 0.64-0.96	 0.802	 --	

OMEGAS2	 Two	stream	
parameter	
omega	for	
snow	[-]	

0.4	 0.32-0.48	 0.402	 --	

RSURF_SNOW	 Surface	
resistance	for	
snow	[s/m]	

50.0	 40.0-60.0	 49.851	 --	

SNDECAYEXP	 Exponent	in	
snow	decay	
albedo	
relationship	[h-
1]	

0.01	 0.001-0.10	 0.0338	 Essery	&	
Etchevers	
(2004)	
	

SSI	 Liquid	water	
holding	
capacity	for	
snowpack	
[m3/m3]	

0.03	 0.01-0.08	 0.0398	 Amorocho	&	
Espildora	
(1966);	
Anderson	
(1973)	

SWEMX	 New	snow	
mass	to	fully	
cover	old	snow	
[mm]	

1.0	 0.5-5.0	 2.280	 Xia	et	al.	
(2012)	

T_LLIMIT	 Lower	
temperature	
limit	in	rain-
snow	
partitioning	[C]	

0.5	 0.0-2.0	 0.707	 --	

T_MLIMIT	 Middle	
temperature	
limit	in	rain-
snow	
partitioning	[C]	

2.0	 0.5-3.0	 1.724	 --	

T_ULIMIT	 Upper	
temperature	
limit	in	rain-
snow	
partitioning	[C]	

2.5	 1.0-5.0	 3.393	 --	
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Z0SNO	 Snow	surface	
roughness	
length	[m]	

0.002	 0.0001-0.01	 0.00298	 Marks	&	
Dozier	
(1992);	Reba	
et	al.	(2014)		

SNOWF_SCALEF	 Snowfall	scale	
factor	[-]	

N/A	 0.1-10.0	 1.159	 --	

	1203 
	1204 
	1205 
Table	2.	Details	of	six	evaluation	points,	including	location,	elevation,	and	percent	tree	1206 
canopy	cover.		1207 

Evaluation	Point	 Latitude	 Longitude	 Elevation	(m)	 Tree	Canopy	
Cover	(%)*	

Senator	Beck	 37.91°	N	 107.73°	W	 3721	 14	

Niwot	 40.03°	N	 105.58°	W	 3185	 79	

Fool	Creek	 39.87°	N	 105.87°	W	 3400	 89	

Cameron	Pass	 40.52°	N	 105.89°	W	 3129	 83	

Rock	Creek	 38.98°	N	 107.03°	W	 3395	 19	

Skyway/Grand	Mesa	 39.05°	N	 108.06°	W	 3245	 71	

*	Tree	canopy	cover	calculated	from	Landsat	7	ETM+	data	at	30	m	spatial	resolution	1208 
(Hansen	et	al.,	2013).	1209 
	1210 
	1211 
	1212 
	1213 
	1214 
	1215 
	1216 
	1217 
	1218 
	1219 
	1220 
	1221 
	1222 
	1223 
	1224 
	1225 
	1226 
	1227 
Table	3.	Snow	depth	bias	and	RMSE	for	calibrated	and	uncalibrated	Noah-MP	simulations	1228 
compared	to	UA	and	SNODAS	for	six	SnowEx	field	site	locations	and	the	full	western	1229 
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Colorado	domain.	Bold	indicates	better	performance,	and	for	the	overall	domain	1230 
comparisons,	an	asterisk	(*)	indicates	a	statistically	significantly	difference	between	the	1231 
two	model	performances	1232 
Evaluatio
n	Point	

UA	 SNODAS	

Noah-
MP-Cal	
Snow	
Depth	
Bias	
(m)		

Noah-
MP-Def	
Snow	
Depth	
Bias	
(m)		

Noah-
MP-Cal	
Snow	
Depth	
RMSE	
(m)	

Noah-
MP-Def	
Snow	
Depth	
RMSE	
(m)	

Noah-
MP-Cal	
Snow	
Depth	
Bias	
(m)		

Noah-
MP-Def	
Snow	
Depth	
Bias	
(m)		

Noah-
MP-Cal	
Snow	
Depth	
RMSE	
(m)	

Noah-
MP-Def	
Snow	
Depth	
RMSE	
(m)	

Senator	
Beck	

0.247	 -0.183	 0.418	 0.315	 0.163	 -0.267	 0.349	 0.428	

Niwot	 -

0.0663	

-0.245	 0.211	 0.387	 -

0.0398	

-0.218	 0.279	 0.397	

Fool	
Creek	

-0.131	 -

0.0769	

0.229	 0.207	 -0.327	 -0.119	 0.484	 0.227	

Cameron	
Pass	

-0.104	 -0.142	 0.211	 0.254	 -

0.0267	

-0.0647	 0.170	 0.197	

Rock	
Creek	

-0.180	 -0.251	 0.308	 0.400	 -0.187	 -0.259	 0.346	 0.428	

Skyway/
Grand	
Mesa	

-

0.0229	

-0.176	 0.173	 0.320	 -0.100	 -0.253	 0.246	 0.425	

Overall	
Domain	

-

0.0022

9*	

-0.0362	 0.131*	 0.146	 -

0.0098

0*	

-0.0437	 0.186	 0.179*	

	1233 
	1234 
	1235 
	1236 
	1237 
	1238 
	1239 
	1240 
	1241 
	1242 
	1243 
	1244 
	1245 
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Table	4.	Comparison	of	seasonal	bias	and	RMSE	of	snow	depth	for	evaluation	points	from	Noah-MP-Def	and	Noah-MP-Cal	for	1246 
the	accumulation	(December-February),	peak	snow	(March-April),	and	ablation	(May-July)	seasons.	Bold	indicates	better	1247 
performance.	1248 
Point	 Simulation	 Accumulation	

Season	Bias	
(cm)	

Accumulation	
Season	RMSE	
(cm)	

Peak	
Season	Bias	
(cm)	

Peak	
Season	
RMSE	(cm)	

Ablation	
Season	Bias	
(cm)	

Ablation	
Season	
RMSE	(cm)	

Cameron	
Pass	

Noah-MP-Def	 -15.51	 19.43	 -30.35	 33.86	 -19.63	 37.66	

Noah-MP-Cal	 -11.15	 16.17	 -24.77	 29.12	 -14.14	 30.49	

Fool	
Creek	

Noah-MP-Def	 7.05	 15.10	 15.60	 29.76	 11.73	 29.71	

Noah-MP-Cal	 -17.89	 23.37	 -31.59	 39.20	 -11.55	 22.69	

Niwot	
Ridge	

Noah-MP-Def	 -34.03	 40.62	 -51.37	 57.61	 -26.02	 45.72	

Noah-MP-Cal	 -8.08	 21.59	 -11.68	 30.11	 -10.71	 26.11	

Rock	
Creek	

Noah-MP-Def	 -40.47	 47.98	 -64.26	 68.27	 -15.64	 31.85	

Noah-MP-Cal	 -22.79	 30.72	 -46.41	 51.51	 -17.59	 32.96	

Senator	
Beck	

Noah-MP-Def	 -28.24	 35.50	 -49.51	 54.09	 -12.79	 27.68	

Noah-MP-Cal	 27.11	 36.84	 32.71	 49.86	 41.22	 61.32	

Skyway	
(Grand	
Mesa)	

Noah-MP-Def	 -15.82	 20.26	 -48.90	 55.45	 -19.85	 40.17	

Noah-MP-Cal	 4.42	 12.22	 -11.97	 25.51	 -6.20	 24.41	

	1249 
	1250 
	1251 
	1252 
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Table	5.	Error	metrics	for	snow	depth	and	SWE	comparing	Noah-MP-Cal	and	Noah-MP-Def	1253 
with	snow	pit	observations	from	Grand	Mesa	and	Senator	Beck	SnowEx	study	sites	from	1254 
the	February	2017	field	campaign.	Bold	indicates	better	performance	between	the	two	1255 
Noah-MP	configurations.	1256 
	1257 	

Snow	Depth	 SWE	
Study	
Site	

Simulation	 Mean	
Bias	
(cm)		

MAE	
(cm)	

Mean	
%	diff	
(abs.	
value)	

RMSE	
(cm)	

Mean	
Bias	
(mm)		

MAE	
(mm)	

Mean	
%	diff	
(abs.	
value)	

RMSE	
(mm)	

Grand	
Mesa	

Noah-MP-
Cal	

-12.1	 28.1	 20.0%	 34.9	 -23.0	 106.4	 23.6%	 132.9	

Noah-MP-
Def	

-48.2	 48.8	 32.2%	 54.4	 -160.6	 162.9	 32.6%	 185.4	

SnowModel	 -25.3	 34.6	 23.8%	 41.1	 -35.5	 88.5	 20.2%	 112.2	

Senator	
Beck	

Noah-MP-
Cal	

92.6	 92.6	 84.4%	 102.5	 386.9	 388.4	 111.5
%	

413.0	

Noah-MP-
Def	

-13.1		 43.1	 34.0%	 49.7	 -32.1	 142.5	 37.6%	 167.6	

	1258 
	1259 
	1260 
	1261 
	1262 
	1263 
	1264 
	1265 
	1266 
	1267 
	1268 
	1269 
	1270 
	1271 
	1272 
	1273 
	1274 
	1275 
	1276 
	1277 
	1278 
	1279 
	1280 
	1281 
	1282 
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Table	6.	Nash-Sutcliffe	Efficiency	values	for	calibrated	and	uncalibrated	Noah-MP	1283 
simulations	for	six	subbasins,	as	described	by	their	USGS	streamgage	ID.	Included	in	the	1284 
number	of	Noah-MP	grid	cells	within	each	subbasin.	Bold	indicates	better	performance.	1285 
Asterisk	indicates	where	monthly	streamflow	difference	between	Noah-MP-Cal	and	Noah-1286 
MP-Def	is	statistically	significant	at	the	95%	confidence	level.	1287 
Basin	 Basin	ID	 Noah-MP-Cal	

NSE	
Noah-MP-Def	
NSE	

Basin	Area	
(km2)	

Colorado	River	at	
Glenwood	Springs,	
CO	

9072500	 0.56*	 -0.065	 11784	

Taylor	River	
below	Taylor	Park	
Reservoir,	CO	

9109000	 -1.03	 -1.96	 656	

Gunnison	River	
below	Blue	Mesa	
Dam,	CO	

9124700	 -3.62	 -0.71	 8933	

Gunnison	River	
below	Crystal	
Reservoir,	CO	

9127800	 -2.95	 -0.59	 10264	

Crystal	River	
above	Avalanche	
Creek,	CO	

9081600	
(CAMELS)	

0.72	 0.43	 436	

Taylor	River	at	
Taylor	Park,	CO	

9107000	
(CAMELS)	

-0.13	 -1.14	 331	

	1288 
	1289 
	1290 
	1291 
	1292 
	1293 
	1294 
	1295 
	1296 
	1297 
	1298 
	1299 
	1300 
	1301 
	1302 
	1303 
	1304 
	1305 
	1306 
	1307 
	1308 
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	1309 
11. Figures	1310 

	1311 
	1312 

	1313 
Figure	1.	Elevations	of	western	Colorado	Noah-MP	domain.	Black	box	indicates	the	Grand	1314 
Mesa	intensive	observation	period	field	site	from	the	NASA	SnowEx	2017	field	campaign.	1315 
Triangles	mark	the	six	evaluation	points	and	are	labeled	with	the	evaluation	site	name.	The	1316 
inset	map	shows	the	western	Colorado	domain	with	respect	to	the	western	United	States.	1317 
The	bottom	right	plot	shows	the	land	classes	for	the	model	domain.	1318 
	1319 
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	1320 
Figure	2.	Calibrated	parameters	after	the	genetic	algorithm	procedure.	Shown	here	are	the	1321 
11	parameters	that	are	most	sensitive	to	calibration.	1322 
	1323 
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	1324 
	1325 
	1326 
	1327 

	1328 
Figure	3.	Time	series	of	average	SWE,	in	mm,	and	average	snow	depth,	in	m,	over	the	full	1329 
domain	for	calibrated	(blue),	uncalibrated	(orange),	and	UA	(black)	estimates.	Note	that	at	1330 
the	time	of	this	analysis,	UA	ends	in	2017	but	the	Noah-MP	simulations	continue	through	1331 
2020.	1332 
	1333 
	1334 
	1335 
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	1336 
Figure	4.	Average	April	1	SWE,	in	mm,	for	the	calibrated	(a)	and	uncalibrated	(b)	1337 
simulations.	(c)	April	1	SWE	difference,	where	blue	indicates	grid	cells	where	the	calibrated	1338 
simulation	has	larger	SWE	and	red	indicates	where	the	uncalibrated	simulation	has	larger	1339 
SWE.	1340 
	1341 
	1342 
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	1343 
Figure	5.	(top	row)	Snow	depth	RMSE	for	Noah-MP-Cal	and	Noah-MP-Def	compared	to	UA	1344 
for	the	full	analysis	period.	The	right	column	shows	the	difference	in	RMSE	values	between	1345 
Noah-MP-Cal	and	Noah-MP-Def.	(bottom	row)	Same	as	top	row	except	compared	against	1346 
SNODAS.	1347 
	1348 
	1349 
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	1350 
Figure	6.	As	for	Figure	5	but	for	snow	depth	bias.	1351 
	1352 
	1353 
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	1354 
Figure	7.	Evaluation	of	calibrated	and	uncalibrated	Noah-MP	over	a	single	point	in	the	1355 
Senator	Beck	basin.	(a)	Time	series	of	daily	snow	depth	over	the	grid	cell	that	contains	the	1356 
Senator	Beck	study	site.	(bottom	row)	Scatter	plot	of	Noah	MP	simulated	snow	depth	1357 
verses	UA	snow	depth	for	both	calibrated	(blue)	and	uncalibrated	(orange)	simulations,	1358 
separated	in	accumulation	(b;	December-February),	peak	(c;	March-April),	and	ablation	(d;	1359 
May-July)	seasons.	1360 
	1361 
	1362 
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	1363 
Figure	8.	Snow	depth	bias	(a)	and	RMSE	(c)	from	Noah-MP-Cal	and	Noah-MP-Def	compared	1364 
to	UA	and	SNODAS	for	five	aggregated	land	cover	categories.	Snow	depth	bias	(b)	and	1365 
RMSE	(d)	for	the	forest	land	cover	category	separated	into	elevation	bands.	Bias	and	RMSE	1366 
values	are	temporal	averages	from	the	full	analysis	period.	1367 
	1368 
	1369 
	1370 
	1371 
	1372 
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	1374 
Figure	9.	Snow	depth	bias	(top	row)	and	RMSE	(bottom	row)	from	Noah-MP-Cal	and	Noah-1375 
MP-Def	compared	to	GHCN	station	observations.	The	right	column	shows	the	difference	1376 
between	Noah-MP-Cal	and	Noah-MP-Def	for	bias	and	RMSE.	1377 
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	1381 
Figure	10.	Comparison	of	SWE	and	snow	depth	between	Noah-MP	and	SnowModel	1382 
simulations	and	observations	from	snow	pits	during	the	SnowEx	2017	field	campaign.	In	all	1383 
plots,	blue	squares	are	calibrated	Noah-MP,	orange	squares	are	default	Noah-MP,	and	1384 
yellow	squares	are	SnowModel	(at	native	30	m	resolution).	Plots	(a)	and	(b)	compare	snow	1385 
pit	measurements	for	Grand	Mesa	and	plots	(c)	and	(d)	compare	for	Senator	Beck.	1386 
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	1392 
Figure	11.	Comparison	of	Noah-MP-Cal	(a),	Noah-MP-Def	(b),	and	SnowModel	(c)	snow	1393 
depth	estimates	with	snow	pit	observations	for	February	22,	2017,	over	the	SnowEx	Grand	1394 
Mesa	field	campaign	site.	SnowModel	is	shown	at	30	m	spatial	resolution.	Snow	pit	depths	1395 
and	model	depths	are	on	the	same	color	scale.	1396 
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	1401 
Figure	12.	Comparison	of	snow	depth	from	ASO	flights	with	Noah-MP-Cal	and	Noah-MP-Def	1402 
over	Grand	Mesa	for	February	8	and	16,	2017.	Spatial	maps	are	all	at	native	resolution:	3	m	1403 
for	ASO	and	0.01°	for	Noah-MP	simulations.	Scatter	plots	compare	Noah-MP	simulations	to	1404 
ASO	observations,	where	ASO	has	been	upscaled	to	0.01°	resolution.	1405 
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	1415 
Figure	13.	(a-d)	Comparison	of	runoff,	in	m3/month,	between	Noah-MP	simulations	and	1416 
estimates	of	naturalized	flow	for	four	subbasins	in	the	Upper	Colorado	River	Basin.	(e-f)	1417 
Comparison	of	runoff,	in	m3/month,	between	Noah-MP	simulations	and	observed	1418 
streamflow	from	USGS	streamgages	for	small	unmanaged	subbasins,	selected	from	the	1419 
CAMELS	database.	Streamgage	locations	are	shown	on	Figure	S4.	Dashed	lines	in	all	plots	1420 
show	basin	snow	water	storage,	in	km3.	1421 


