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Abstract 
This work was motivated by the needs of the emerging Urban Air Mobility (UAM) concept. Guided 

by analyses of concept vehicles, electric motor winding insulation reliability was identified as a 
subsystem limiting the vehicle reliability. This paper covers NASA’s understanding of the current state-
of-the-art for electric motor winding insulation reliability, life modeling and qualification testing in the 
context of UAM. The needed improvements to the accepted practice for qualification of high reliability 
UAM motors are highlighted. NASA’s Revolutionary Vertical Lift Technologies Project strives to 
develop new testing methods to support the rating and qualification of UAM motor winding insulation. 
We describe assumptions used to frame a research approach, and we outline a NASA RVLT research plan 
for motor winding insulation.  

Introduction 
This reported work was motivated by the research goals and focus of NASA’s Revolutionary Vertical 

Lift Technologies (RVLT) Project. The vision of the project is the creation of a future where vertical take-
off and landing (VTOL) configurations operate quietly, safely, efficiently, affordably, and routinely as an 
integral part of everyday life. Toward that vision, the project seeks to develop and validate concepts, 
technologies, testing methods, and analysis tools to overcome key barriers. Currently, the RVLT project 
is focused on the Urban Air Mobility (UAM) concept, which is a subset of the NASA Advanced Air 
Mobility (AAM) Mission. UAM is projected to have the greatest economic impact and the most difficult 
technological challenges of the concepts in AAM (Ref. 1).  

Urban Air Mobility (UAM) is a developing market for electric and hybrid-electric vertical take-off 
and landing vehicles (eVTOL). For UAM to realize its expected potential, eVTOL will need to achieve a 
safety and reliability record comparable to today’s commercial airliners. To that end, the NASA RVLT 
Project sponsored a hazards and failure analysis of four NASA-developed UAM concept vehicles 
(Ref. 2). Results of that analysis identified electromechanical drivetrains as being a limiting subsystem for 
the overall reliability of the concept vehicles. In particular, the reliability of electric motors and generators 
was shown to be a major contributor to lower than desired reliability estimates for the electromechanical 
drivetrain subsystems. Guided by these results, NASA’s RVLT project established a “Reliable Electric 
Propulsion Components for UAM Vehicles” Technical Challenge. The goal of the technical challenge is 
to improve the reliability of electric propulsion for UAM vehicles by improving design tools and test 
methods and providing component technology demonstrations addressing vehicle propulsion system 
electrical power quality, thermal management, and component reliability. Results will support standards 
development for certification needs. The exit criteria of the Technical Challenge is to demonstrate 2 to 4 
orders of magnitude improvement in electric motor reliability.  
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Past surveys of electric motor failure modes identified electric motor winding insulation and bearings 
as the dominant causes of motor failure (Refs. 3 to 13). This paper covers NASA’s understanding of the 
current state-of-the-art for electric motor winding insulation reliability, life modeling and qualification 
testing relative to UAM. The needed improvements to accepted winding insulation lifetime testing 
practices are highlighted relative to qualification of high-reliability motors for UAM. In this report, a plan 
to develop new testing methods to support the rating and qualification of UAM motor winding insulation 
is outlined.  

The subsequent sections treat the following topics in sequence:  
 

1. Assumptions relative to defining the needed research for winding insulation in the UAM motor 
context 

2. Key aging and failure mechanisms for UAM motor windings 
3. Combined stress winding aging models 
4. Present methods for motor winding life testing per standards 
5. NASA’s research plans to improve winding insulation testing and ratings for UAM eVTOL 

propulsion systems 

Assumptions and UAM Context 
Due to the vast design space that exists for electric motors, motor windings, and winding insulation 

systems, it is impractical to address every possible scenario for motor winding reliability in one research 
program. To that end, assumptions were made to frame motor winding reliability in the context of 
propulsion motors for UAM vehicles and their expected missions. The following subsections outline the 
assumptions and provide the corresponding rationale. With the assumptions established, the remainder of 
this paper outlines the needed research for the development of methods for characterizing the capabilities 
of insulation systems and quantifying high reliability motor winding lifetimes. 

Motor Driven by Frequency Converters 

For an electric motor to produce a given torque at a certain speed, electric power is supplied to the 
motor with an appropriate magnitude, waveform, and frequency. For UAM vehicles, power converters 
transform power from the vehicle power grid to the required power form at the motor terminals. Most 
power converter technologies used for vehicle motors are based on some form of switching device 
(Ref. 14). Pulse Width Modulated (PWM) voltage source inverters are expected to be the dominant form 
of motor drive for electric aircraft applications (Ref. 15). These devices operate by applying high-
frequency square-wave-form voltage to the motor winding circuit. Wide band gap switching devices with 
switching frequencies between 20 and 100 kHz are expected to become the prominent switching devices 
for electric aircraft motor drives because their high switching frequencies and operating temperatures 
enable higher overall motor drive power density and efficiency (Ref. 16). The use of high-frequency wide 
band gap devices creates new and difficult challenges for the insulation technologist and motor designer 
(Ref. 17). The new challenges include:  Nonlinear voltage distributions through the motor windings and 
significant turn-to-turn electrical stresses caused by the short switch rise times (Ref. 18); Changes in how 
electrical stress is distributed through the insulation due to high voltage gradients (dV/dt’s) (Ref. 19); and 
short life times of insulation in the presence of repetitive partial discharges (PD) at the converter 
switching frequency. Herein it is assumed that the motor windings will be powered by a PWM voltage 
source inverter with switching frequencies in the 20 to 100 kHz range and voltage waveform rise times on 
the order of 10’s of nanoseconds. In general, insulation systems and motor winding coils should be tested 
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with appropriate waveforms consistent with the specifications for the motor drive that will power the 
motor.  

Type 1 Insulation 

International Electrotechnical Commission (IEC) standards categorize motor winding insulation into 
two types (Refs. 20 and 21). Type 1 insulation is defined as winding insulation that is required to be free 
of PD throughout its operating life due to its rapid degradation in the presence of PD (Refs. 19, 20, and 
22). Prominent examples of Type 1 insulation are common magnet wire organic film insulation like 
polyimide or polyethylene. Type 2 insulation is defined as insulation which is PD resistant and therefore 
can have suitable design life or “safe life” in the presence of PD (Ref. 21). The prominent example of 
Type 2 insulation is mica-based insulation tape (Ref. 19). 

The lower design electrical stress capability of Type 2 insulation relative to Type 1 insulation results 
in thicker insulation layers for Type 2 insulation. Correspondingly, the use of Type 2 insulation for motor 
windings limits the achievable motor specific power as compared to Type 1 insulation (Ref. 23). A simple 
comparison of mica-based insulation dielectric strength at ~20 kV/mm to the dielectric strength of 
polyimide insulated magnet wire at >130 kV/mm illustrates the required insulation thickness difference 
(Ref. 19). Type 1 insulation is therefore selected as the insulation type of interest for this research 
program. Polyimide magnet wire films and vacuum pressure impregnated resins will be used as the 
insulation system in the research effort. 

If desired, the NASA RVLT winding reliability research effort for characterizing insulation and 
certifying motor windings could be extended to include Type 2 insulation. Characterization with Type 2 
insulation will be conservative since Type 2 insulation will have longer lifetimes in the presence of PD.  

Voltage Magnitude 

Commonly, Type 1 insulation is limited to voltages less than 750 V to achieve desired PD-free 
operation (Refs. 19, 20, 22, and 24). Increasing the operating voltage of Type 1 insulation would have 
significant benefits to overall aircraft mass and is the target of ongoing research (Ref. 25). The objective 
of this proposed research effort however is to develop modeling and testing methods for improved 
reliability of motor winding insulation systems and not necessarily to advance the state-of-the-art for 
motor winding technology. Therefore, 750 V is assumed as the maximum motor power supply voltage for 
the research effort. Extending voltage beyond this magnitude is being studied by the broader research 
community and may be an objective of future NASA work. 

Motor Requirements for UAM Missions 

The NASA RVLT project defined several UAM reference vehicle concepts to aid in the development 
of technologies and certification processes for UAM vehicles (Refs. 1, 26, and 27). One assumed design 
mission for these vehicles is shown graphically below with the mission profile broken into hover, climb, 
and cruise mission segments. The design mission consists of two 37.5 nmi flights with a short time in 
between for unloading and loading. After the second flight it is assumed a longer down time is needed for 
refueling and/or recharging. 

The assumed mission in Figure 1 is only one potential UAM mission case that was defined for the 
vehicle sizing studies in (Ref. 26). The motor power required for each of the design mission segments and 
the length of each mission segment is valuable information for understanding the thermal loading electric 
motors will experience in UAM applications. From the vehicle design study results, motor power 
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requirements during cruise are approximately 50 percent of the peak power required for either hover or 
climb. Since motor winding resistive losses trend proportionally with the square of torque, the power 
requirements can result in four times the heat load in hover or climb relative to cruise. NASA has been 
assessing motor designs for the mission of Figure 1 (Ref. 28). A predicted motor winding hotspot thermal 
profile from those studies is shown in Figure 2 as an example of the thermal transient that UAM motor 
windings might experience in hover/climb and the winding temperature difference between cruise and 
hover/climb conditions. In addition to the winding thermal profile in Figure 2, short-term motor power 
requirements for flight maneuvers and control such as response to wind gusts will create additional, but 
smaller motor winding thermal cycles within a given mission segment. 

 
 

 
Figure 1.—NASA RVLT UAM vehicle design mission. 

 
 

 
Figure 2.—Example motor winding hotspot temperature mission profile. 
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Cleanliness 

Harsh chemicals, e.g., acids or ozone, can chemically react with the insulation systems to cause 
degradation of the insulation system and premature breakdown. Similarly, conductive material contacting 
motor windings and electrically coupling to the windings can lead to PD and premature winding failure 
(Ref. 19). To achieve high electric motor reliability, this document assumes that cleanliness concerns 
have been mitigated by motor design features and manufacturing quality processes that appropriately seal 
the motor and keep the windings clean during manufacturing and flight operations. Methods to mitigate 
the effects of harsh chemicals and conductive debris is therefore considered beyond the scope of the near-
term RVLT research efforts. Harsh chemicals that are the byproduct of winding insulation degradation, 
for example ozone produced by PD, will be included in this research efforts.  

Humidity and Altitude 

Humidity and altitude both affect the initiation of PD for a given electrical stress condition in a motor 
winding insulation system (Ref. 19). Humidity and water in general can adversely affect some insulations, 
and epoxy resins that are susceptible to water absorption. The expected altitude of operation for UAM 
motors is modest compared to many fixed-wing missions, i.e., approximately 1.2 km (4,000 ft) above 
ground level. The proposed research efforts will include considerations for how to account for air pressure 
and humidity conditions for a target UAM mission.  

Aging and Failure Mechanisms of Winding Insulation 
Four primary stresses affect the aging of insulations systems:  1) Electrical through partial discharge 

and insulation breakdown; 2) Thermal through thermal-chemical aging; 3) Mechanical through 
mechanical fatigue and crack initiation; and 4) Environmental/contamination effects as was previously 
discussed. The following subsections discuss electrical, thermal, and mechanical stresses individually in 
the context of the above assumptions and the UAM mission. The effects of each stress are highly-
interactive with each other, and it is the combination of stresses that can lead to failure of UAM motor 
insulation systems.  

Electrical Stress 

Electrical insulators prevent the flow of electrical current along undesired paths. The electric field 
stress to which an insulating material is subjected to is numerically equal to the voltage gradient across 
the material. Galvanic isolation of conductive components in a motor stator is the primary purpose of 
motor winding insulation. Correspondingly, motor insulation design and failure are strongly influenced 
by electrical stress. Abnormal and very high voltage surges can produce immediate breakdown and failure 
of healthy motor winding insulation. More commonly however, failure of insulation is preceded by 
electrical aging caused by a series of PD’s burning “electrical trees” through the insulation material 
(Ref. 19). 

For electrical aging, the traditional life models are the inverse power model 

𝐿𝐿 = 𝑐𝑐𝐸𝐸−𝑛𝑛 

and the exponential model 

𝐿𝐿 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏  
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where L is lifetime, E is electrical field, and a, b, c, and n are constants obtained from experimental data. 
Many materials exhibit an electrical stress threshold below which electrical stress degradation can be 
neglected. The power laws can be written with the threshold term Et included as 

𝐿𝐿 = 𝐿𝐿0 �
𝐸𝐸 − 𝐸𝐸𝑡𝑡
𝐸𝐸𝑡𝑡 − 𝐸𝐸0

�
−𝑛𝑛

 

where 𝐿𝐿0 and 𝐸𝐸0 are constants corresponding to an insulation’s estimated life, 𝐿𝐿0, at a given electrical stress 
𝐸𝐸0. The exponential power law can be expressed with a threshold as 

𝐿𝐿 =
𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏

𝐸𝐸 − 𝐸𝐸𝑡𝑡
 

where 𝐿𝐿0 is the life at E = 𝐸𝐸0 (Ref. 29). 
Under the assumptions of this paper, for UAM motors that are inverter fed and use Type 1 insulation, 

IEC 60034-18-41 (Ref. 20) requires that the motor windings be designed and qualified such that they are 
PD-free throughout their operating life. Put another way, IEC 60034-18-41 requires that the electrical 
stress remain below the insulation system’s electrical stress threshold value. This requirement is primarily 
due to Type 1 insulation being susceptible to damage and extremely short life in the presence of PD, 
especially when it occurs as the result of high-frequency PWM voltage waveforms (Refs. 19 and 24). 
Example lifetimes for Type 1 insulation in the presence of PD can be found in (Refs. 18, 24, and 30). The 
life values are on the order of 1 to 10 million cycles. At inverter PWM frequencies anticipated for UAM 
vehicles, the time to failure for these insulation materials in the presence of PD is on the order of a few 
minutes. Correspondingly, the onset of PD can be considered the end-of-life for inverter fed Type 1 
insulation windings, and electrical aging degradation can be neglected in the prediction of UAM motor 
lifetimes or maintenance intervals. 

Understanding electrical aging of Type 1 insulation is important for high reliability UAM electric 
motor drivetrains for two reasons. First, since the onset of repetitive PD signals the approaching end-of-
life for a UAM motor’s electrical insulation, understanding the time from repetitive PD initiation to actual 
breakdown can be a factor in defining emergency landing requirements and procedures. Second, 
abnormal voltage events due to fluctuations in the power quality of the aircraft electrical system or 
abnormal motor-inverter interactions are likely to occur at some point in the life of a UAM motor. PD 
may occur due to either of these events. However, if the PD is not repetitive then the motor may continue 
to have substantial remaining life. A suitable method for predicting remaining insulation life after a single 
abnormal PD event may be important for managing unnecessary maintenance (Refs. 23 and 31).  

Accurate prediction of the electrical stress in a UAM motor’s insulation is important for designing a 
PD-free system. For inverter fed windings, electrical stress prediction is not a straightforward task. The 
short voltage waveform rise time associated with high-frequency PWM switching can result in significant 
voltage overshoot at the motor terminals and produce nonlinear voltage distribution through the motor 
winding turns (Refs. 18, 22, 32 to 34). Additionally, as mentioned above, high dV/dt’s associated with 
these high switching-frequency short rise times alter the electrical stress distribution in the insulation 
system (Ref. 19). Correspondingly, motor windings must be tested and modeled with voltage waveforms 
appropriate for the power converter that will power the motor. 
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Thermal-Chemical Stress 

Thermal stresses in insulation systems refer to the temperature of the insulation and the boundary 
conditions provided by the surrounding environment. Thermal stresses cause gradual degradation of 
insulation systems by accelerating chemical reactions. The rate of degradation of the insulation is 
dependent on both the temperature and the chemical composition of the environment.  

The traditional model (Ref. 35) for thermal degradation of insulation is Arrhenius’s law: 

𝐿𝐿 = 𝐴𝐴𝑒𝑒
𝐵𝐵
𝑇𝑇 

where L is insulation life, T is temperature, and A and B are constants obtained from experimental data. 
Stone et al. (Ref. 19) point out two flaws with using Arrhenius’s law for winding thermal degradation. 
The first flaw is that degradation only occurs at temperatures high enough for the dominant chemical 
reactions to occur. Similar to electrical aging thresholds, temperature thresholds exist for materials below 
which certain chemical aging reactions do not occur, but a threshold is often not included in this model. 
The second flaw is that the model is meant for only one chemical reaction while often multiple reactions 
are ongoing between the insulation and the environment. The model has, however, been the basis for 
accelerated aging testing and rating of insulation systems for many years. For example, it is the basis for 
the testing procedures and data analyses in (Refs. 36 to 38). 

Thermal-chemical aging of insulators in air environments is the most well documented and studied 
form of thermal-chemical degradation. Most insulators are assigned a thermal classification based on the 
temperature in air at which they are estimated to have 20,000 h of life. The NEMA publication (Ref. 39) 
on magnetic wire defines the thermal classification of common magnet wire film insulations. The test 
method used to define the thermal classification of the insulation is ASTM D2307 (Ref. 36). ASTM 
D2307 specifies a process for accelerated thermal aging of multiple samples of twisted wire pairs in air. 
Arrhenius’s law and statistical methods are applied to estimate the temperature at which the insulation 
will have 20,000 h of life. The 20,000 h lifetime is a measure of the central tendency of the probabilistic 
nature of insulator lifetime data. In this rating process, an electrical stress of roughly 12 kV/mm is used to 
proof test the insulation after each aging cycle. Breakdown at this electrical stress is used to define end of 
life. The common thermal classification of insulators is therefore a temperature index of insulation life as 
measured using electrical stresses of 12 kV/mm for aging in air environments. The temperature rating is 
an index for design but is not a direct measure of motor winding temperature capability or temperature 
limit. 

In air environments, oxidation is the dominant thermochemical degradation mechanism for most 
insulators. Oxidation causes most insulations to become brittle and, correspondingly, more readily 
cracked or delaminated by mechanical action (Ref. 19). These cracks or delaminations act as defects for 
initiation of PD, and eventually final electrical breakdown of the insulation. In the absence of sufficient 
mechanical stress, thermal aging can still cause insulation failure. For example, recent work by Madonna 
et al. (Ref. 40) and Cavallini (Ref. 17) have suggested that oxidation alone leads to loss of the insulation 
thickness and associated loss of dielectric strength that eventually leads to electrical breakdown. Wang et 
al. (Ref. 41) measured reductions of insulation thickness during thermal cycling experiments and 
proposed the idea that creep phenomena may contribute to the measured reductions. Researchers at 
University of Nottingham have been developing thermal aging correlations based on normalized 
insulation capacitance as a correlating marker of the thermal age of insulation (Refs. 40 and 42). Such a 
marker may be valuable as a tool for accelerated life test ratings of an insulation material as well as for 
insulation health monitoring.  



NASA/TM-20220004926 8 

In the absence of oxygen, as would be the case for direct liquid-cooled stators or inert gas 
environments, the thermochemical life of the insulator will be driven by a chemical reaction other than 
oxidation, and as a result the thermomechanical life is likely longer at a given temperature. Khazaka et al. 
(Ref. 43) aged polyimide films in air and nitrogen environments at 360 °C. The films in air degraded 
completely in 100’s of hours. No notable degradation in film thickness occurred for the films in nitrogen 
after 1,000 h. The use of direct liquid cooling or other methods of putting a motor winding in a 
nonreactive environment may be a path to enabling longer motor lives or increasing motor specific power. 

Accelerated aging tests and extrapolation to estimate life based on Arrhenius’s Law is the current 
accepted and practical approach for winding insulation thermal chemical life prediction (Ref. 19). 
However, the UAM mission presents a unique and challenging thermal profile relative to ground-based 
generators which motivated and influenced the development and application of current insulation test 
standards. In Reference 28, motor design for the example UAM mission profile in Figure 1 was studied, 
and the design was constrained by thermo-chemical aging. It was found that the high-power, short-
duration hover and climb portions of the mission profile dominated the thermal chemical aging of the 
insulation. The lower-power, long duration cruise portion of the mission had only a minimal contribution 
to the thermal chemical aging of the insulation. Correspondingly, depending on the motor, its mission, 
and its corresponding winding thermal profile, it may be practical to complete thermal-chemical aging for 
the full life of a UAM motor at temperatures representative of the peak temperatures of the motor during 
hover/climb. The accelerated-life-test approach and the uncertainties and approximations associated with 
extrapolation of such experimental data may be unnecessary for the UAM motor application.  

Mechanical Deformation Cycling and Stress 

Mechanical deformations and associated stresses of insulation systems can cause cracks, wear, or 
delamination of the insulation system. These then act as defects in an insulation system and allow PD 
activity to occur in an insulation system that was originally PD-free. Mechanical stresses in UAM motor 
windings can be caused by electromagnetic forces, vehicle-maneuver accelerations, vibrations from both 
within the motor and other sources on the aircraft, and thermal-mechanical stresses caused by differing 
coefficients of thermal expansion between materials in the system, or nonuniform temperature 
distributions in the stator. As mentioned in the subsection above, thermo-chemical degradation of 
insulation typically causes the insulation to deteriorate in strength and to become more brittle. 
Thermochemical aging correspondingly lowers the threshold for the mechanical stresses to create PD-
initiating defects in an insulation system. 

No commonly accepted or traditional model exists for mechanical degradation of insulation systems 
(Ref. 19) and rarely is data reported for the PD-initiation voltage (PDIV) of insulation systems as 
functions of both thermal and mechanical aging (Ref. 17). IEC 60505 (Ref. 44) suggests a power law 
could be used as an initial prediction for mechanical degradation of insulation, but from our literature 
review such an approach does not seem to be a widely utilized framework for degradation modelling. 

Thermo-mechanical stress cycling of electric motors due to the relatively short high-power hover and 
climb segments of UAM missions are potentially significant influences on electric motor life. Thermal 
cycling may limit UAM and other aerospace motor specific power more so than thermo-chemical aging 
effects (Refs. 28 and 45). Some recent research, mostly motivated by electric aircraft, has begun to 
investigate the modeling of thermomechanical stresses and the resulting degradation and fatigue of motor 
windings (Refs. 46 to 50).  

Mechanical stresses can also be caused by electrical stress in dielectrics. These stresses are of 
particular importance in DC insulation systems where space charge accumulates in defects (Ref. 51). 
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Space charge is not likely to accumulate in AC motor windings; however, inclusion of mechanical 
stresses caused by electrical stresses may be necessary to accurately predict motor winding failure.  

Additional research is needed for the development of motor winding mechanical aging/degradation 
models. 

Combined Stress Winding Aging Models 
Very few aging insulation models for windings under combined stress states exist that include 

mechanical stress in their formulation. A detailed review of winding life models pre-2002 by Montanari 
(Ref. 29) indicates only models with combined electrical and thermal stresses. Mechanical stress models 
for the degradation of insulations systems have largely been neglected to date, and correspondingly 
combined stress models for mechanical and thermo-chemical degradation models are rare in the literature. 
Mazzanti et al. (Ref. 52) proposed a combined electrical-thermal-mechanical stress model. In their 
modelling approach, rate theory was used to combine three single factor aging models (Arrhenius and two 
power laws for electrical and mechanical) into a single empirical model for insulation degradation. 
Thermodynamics-based models for void growth in insulation that include a mechanical stress term can be 
found in Reference 51. The mechanical stress term in these models is written only for mechanical stress 
caused by electrical stress. However, the models outlined are a potential starting point for development of 
a combined thermochemical and mechanical stress aging model. 

Present Stator Rating Processes 
IEC 60034-18 (Ref. 53) specifies the qualification testing of motor winding insulation systems. IEC 

60034-18-21 (Ref. 54) specifies thermal ratings based on thermal aging of windings. IEC-60034-18-41 
(Ref. 20) covers the relevant electrical proof tests to use for Type 1 inverter fed insulation systems. IEC 
60034-18-34 (Ref. 55) covers thermo-mechanical stress cycle testing for form wound motor windings and 
is the only part of the standard that covers mechanical aging testing. In all cases the standard requires that 
the test system be compared to a reference system with a known service life in the relevant target 
environment and application. This requirement presents a barrier for application of these standards to 
UAM motors as there exists no appropriate benchmark reference system for a UAM motor’s insulation 
system. To enable the first UAM motors a new methodology for qualification of motor windings is 
needed.  

Other limitations in applying the IEC standards for the UAM motor application are: 
 
• IEC-60034-18-21 (Ref. 54) specifies thermal aging cycles based on assumption that Arrhenius’s 

law applies for thermal aging of the insulation. This assumption, as mentioned above, may not be 
accurate because Arrhenius’s Law considers only one chemical reaction, while UAM motors may 
experience multiple chemical reactions acting on a winding at a given time. This concern about 
multiple chemical reactions is more likely relevant for UAM motors than for some other 
applications given the expected elevated temperature operation resulting from the high-power 
density requirements for UAM motors.  

• IEC-60034-18-34 (Ref. 55) specifies relatively slow thermal ramp rates for machines (between 
30-60 min) and the minimum cycle count is 500 cycles. Both of these test procedure 
specifications are likely not relevant for UAM motors. The methodology would require 
significant adjustment for UAM motors.  
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• IEC 60034-18-41 (Ref. 20) provides enhancement factors for motor winding PD testing. These 
enhancement factors are specified for different categories of winding voltage overshoot. The 
numeric values selected for the enhancement factors can cover a fairly broad range depending on 
the experience and judgment of the individuals applying the standard. More precise and rigorous 
specification of the enhancement factors could enable either less overdesign or more reliable 
motor windings. 

 
IEEE 117 (Ref. 37) provides a procedure for qualification of motor winding insulation systems in 

which thermal-chemical aging is the dominant aging mechanism. It lays out a method of sequential 
accelerated thermochemical aging, mechanical stress cycling, humidity exposure, and electrical proof 
testing. Thermochemical aging tests are conducted on motorettes or full-stators based on Arrhenius’s law. 
Heating is conducted via a furnace environment. Mechanical stress is applied to the motorettes or full-
stators via a 60 Hz shaker table with 0.2 mm of peak-to-peak displacement. The method, similar to the 
IEC method, requires a reference system and contains the qualifying statement that the test method does 
not enable an accurate prediction of an insulation systems life. The method provides only a relative 
comparison of capability to that of an insulation system already in use. 

NASA Winding Reliability Research Plan 
The current processes for motor winding qualification as presented in IEC and IEEE standards need 

modifications and enhancements for UAM motor qualification. The current standards’ requirement of a 
reference motor with known life in the target application is a barrier for emerging UAM motors. Even if 
reference motors existed, the standards only enable a relative and comparative estimate of motor winding 
life and do not establish actual life or reliability estimates for the windings. Additionally, the current 
qualification processes have been primarily targeted toward ground-based generator type machines that 
typically have a more continuous duty cycle than UAM motors. The standards therefore do not provide 
methodologies for testing motors that experience frequent thermal transients and corresponding high 
thermal mechanical stress cycles, both of which are expected to be present in UAM motors. Furthermore, 
mechanical aging of motor windings may be the life limiting mechanism for winding life of some UAM 
motors. This aging mechanism has not received the degree of research and experimentation attention that 
thermochemical and electrical aging have. Current insulation material data and qualification processes 
assume thermochemical aging is the dominant aging mechanism.  

To achieve high reliability UAM motor windings, two new processes need to be developed. First, a 
new process for characterizing the combined thermochemical and mechanical aging of insulation 
materials needs to be developed to enable design of high-reliability UAM motors. Second, a process for 
qualifying a UAM motor winding for a given life under combined thermochemical and mechanical aging 
needs to be developed to replace the current comparison-based lifing methods for motor windings. If 
possible, these processes must improve on the timeliness of the current processes for insulation and motor 
winding qualification to allow for faster and less costly development and certification of UAM motors 
(Ref. 56). NASA’s RVLT project focuses on the development of these two processes to enable 
accomplishment of the corresponding RVLT technical challenge.  

For the first process, an insulation system characterization test that incorporates mechanical, thermal-
chemical, and electrical stress all applied to the same specimen (either simultaneously or sequentially) 
needs to be developed. The state-of-the-art for insulation characterization testing targeted at motor 
windings is a twisted wire-pair configuration. However, the twisted wire-pair specimen geometry does 
not allow mechanical loads to be applied to the insulation in a cyclic fashion (fatigue testing) and in a 
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controlled manner. A new specimen configuration and testing method is under development that enables 
combined thermochemical and mechanical aging of insulation systems as well as PD testing. The 
proposed new method will enable UAM motor designers to consider and incorporate the information they 
need to design reliable electric machine windings for UAM applications.  

The second process is a methodology for qualification of full machine-windings for UAM 
applications. This test configuration is intended to closely resemble current standard motorette testing 
with the added adaptation for the loading that motors will experience during UAM missions. Novel 
methods must be developed to enable qualification of windings for the frequent thermo-mechanical stress 
cycles anticipated during UAM motor operations. A key advancement that must be made is enabling the 
prediction of motor winding life in more absolute terms, perhaps with accelerated-rate test approaches 
and/or methods that enable more direct extrapolation of experimental findings rather than providing a 
relative rating comparison to an established reference system. 

NASA’s RVLT propulsion team is working towards development of these two processes to 
demonstrate a methodology for reliable UAM electric motor winding design.  
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