Optical Communications for Human Space Exploration– Status of Space Terminal Development for the Artemis II Crewed Mission to the Moon

Bryan S. Robinson^a

F. I. Khatri^a, M. Padula^a, S. Horowitz^b, M. Bay^b, J. King^c

IN REVIEW

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the National Aeronautics and Space Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

IEEE ICSOS 2022

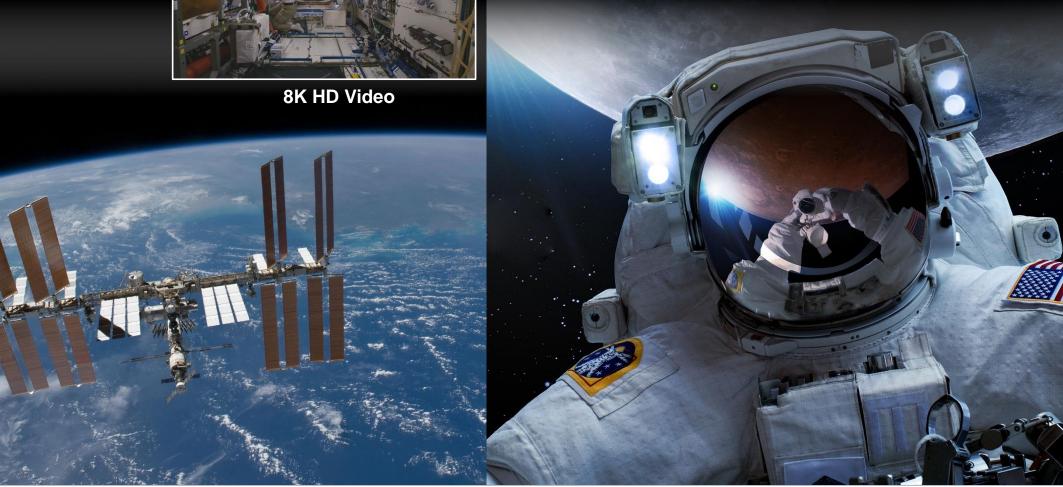
29 March 2022 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

^aMIT Lincoln Laboratory ^bNASA Goddard Space Flight Center ^cNASA Johnson Space Center

IN REVIEW

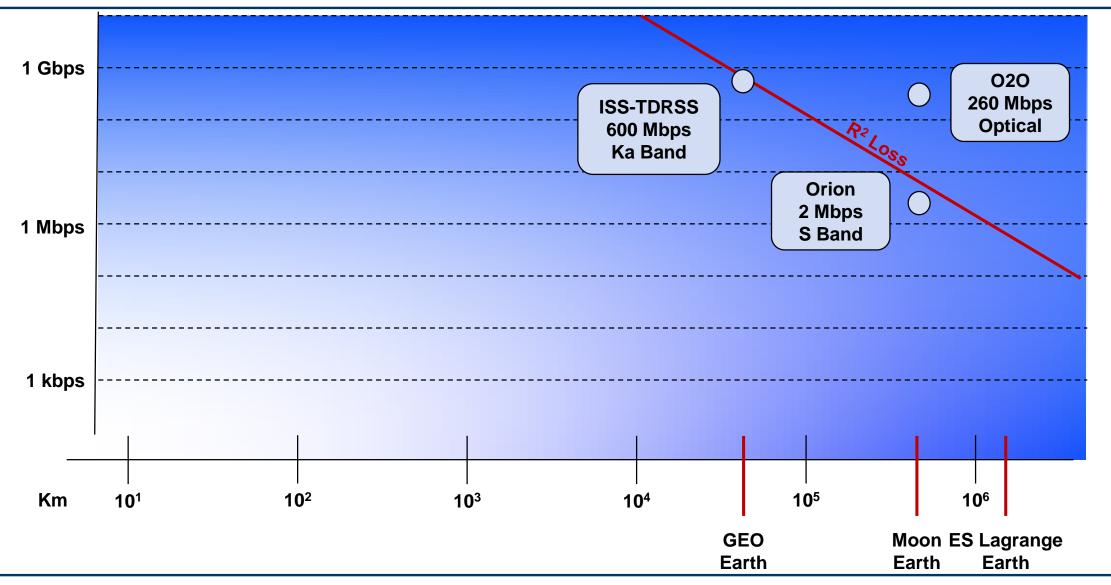
© 2022 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.


Human Exploration

Today... **ISS in Low Earth Orbit**

Tomorrow... Moon, then Mars



LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Space Communications

Artemis Phase 1: To the Lunar Surface by 2024

MARS 2020

ARTEMIS 2: FIRST HUMANS TO THE MOON IN THE 21st CENTURY

ARTEMIS 1: FIRST HUMAN SPACECRAFT TO THE MOON IN THE 21st CENTURY FIRST HIGH POWER SOLAR ELECTRIC PROPULSION (SEP) SYSTEM FIRST PRESSURIZED CREW MODULE DELIVERED TO GATEWAY

1-1-1

ARTEMIS 3: CREWED MISSION TO GATEWAY AND LUNAR SURFACE

Commercial Lunar Payload Services - CLPS delivered science and technology payloads

Early South Pole Crater Rim Mission(s)

- First robotic landing on eventual human lunar return and ISRU site
- First ground truth of polar crater volatiles

Large-Scale Cargo Lander

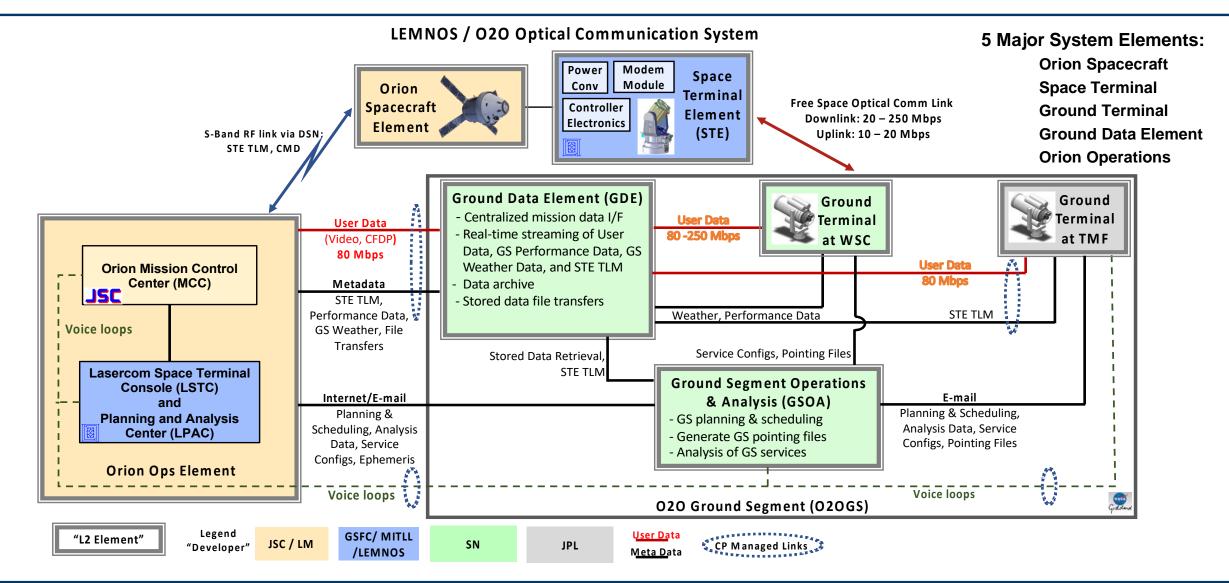
 Increased capabilities for science and technology payloads

Humans on the Moon - 21st Century First crew leverages infrastructure left behind by previous missions

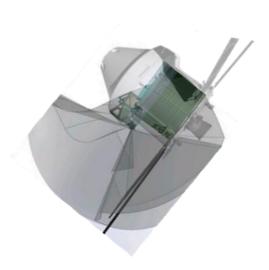
LUNAR SOUTH POLE CRATER TARGET SITE

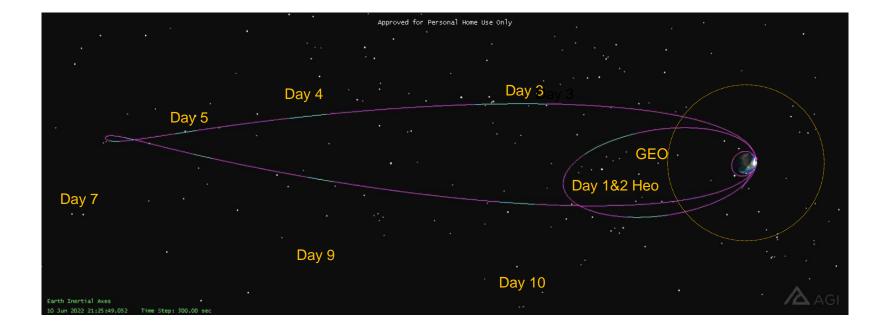
2019

Source: https://www.nasa.gov/sites/default/files/atoms/files/nac_budget_charts_final_updated_pfp.pdf

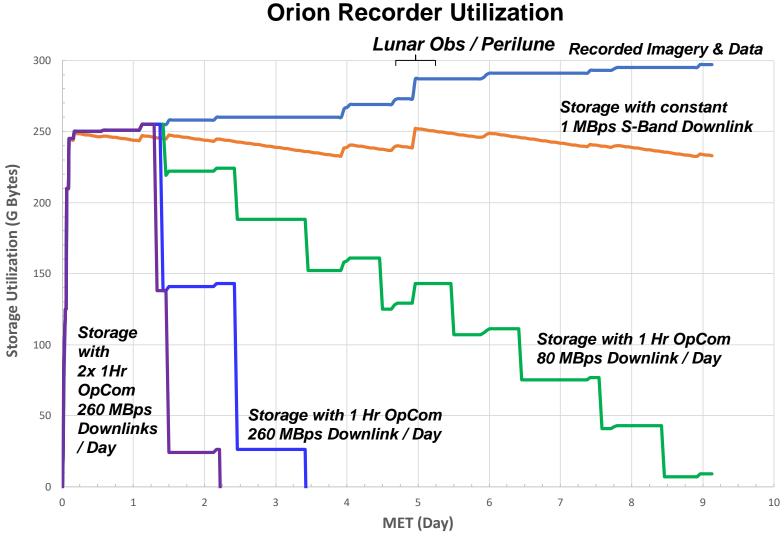

NASA Artemis/Orion

- Orion comm capability
 - S-band phased array transmitters
 - Up to ~2 Mb/s from lunar ranges to NASA Deep Space Network
- O2O* to provide
 - Up to 260 Mbps return
 - -20 Mbps forward
- Moon provides staging ground for eventual missions to Mars


O2O: Orion Artemis-2 Optical Comm

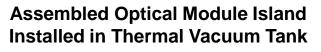

O2O Mission Level Architecture Diagram

Orion Orientation (Tail to Sun)

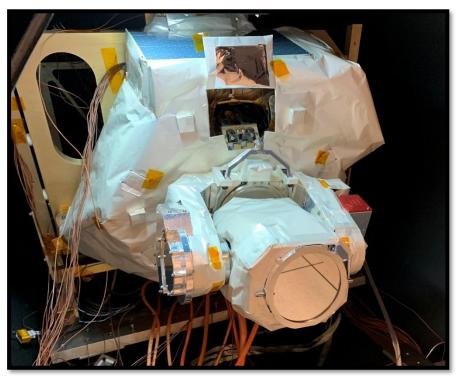


Orion Storage and Data Rates

- Orion subsystems expected to generate ~250 GB of data in first day of mission and ~300GB by end of mission
- Using S-Band alone, Orion limited to ~ 7GB of data downlink per day. Can not downlink all recorded data.
 230GB remains on board at landing
- With just 1 hour/day of Optical Comm, Orion could downlink ~ 36GB of data per day, a 6x increase per day!
- At the 260MBps link capacity, Orion could downlink 117GB per day almost 20x increase
- Two 1 Hr 260MBps contacts per day, Orion could downlink 234GB per day, and all of the recorded data on the second day



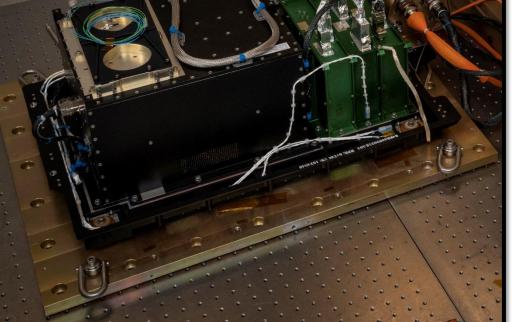
O2O Space Terminal Element


Optical Module Island

- Industry and MITLL-built optical module 🛞 L3HARRIST
 - 10-cm off-axis telescope
 - Hemispherical field of regard
 - Coudé-path to small optics bench
 - Star tracker for attitude knowledge
 - Multiple fine-steering optics for simplifying alignment process and maintaining alignment during mission
- Island structure allows mounting to Orion exterior panels
 - Includes isolation system for mitigation of launch loads
- Island provides self-contained thermal control system
 - Radiator for small optics
 - Controller Electronics controls multiple operational heater zones

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

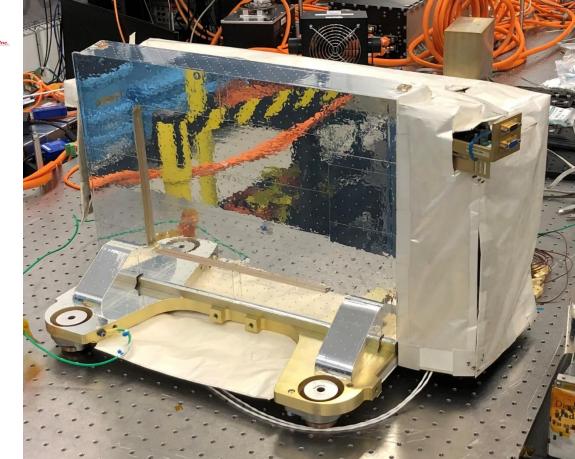

Inner Wall Assembly

- Industry-developed modem provides
 - Data interfaces to spacecraft
 - Data encoding and modulation onto transmit laser
 - Pulse position modulation (CCSDS standard)
 - Downlink data rates of 20-260 Mbps
 - High power transmit signal amplifier (1W)
 - Low-noise optically-preamplified receiver
 - Pulse position modulation (CCSDS standard)
 - Uplink data rates of 10, 20 Mbps
 - Fiber interfaces to optical module
- NASA GSFC-developed power converter converts between spacecraft and module power interfaces
- Avionics mounted on isolated plate inside **Crew Module Adapter**
- Limited thermal control
 – operations duration may be driven by modem temperature limits, depending on thermal conditions

Inner Wall Assembly

LINCOLN LABORATORY

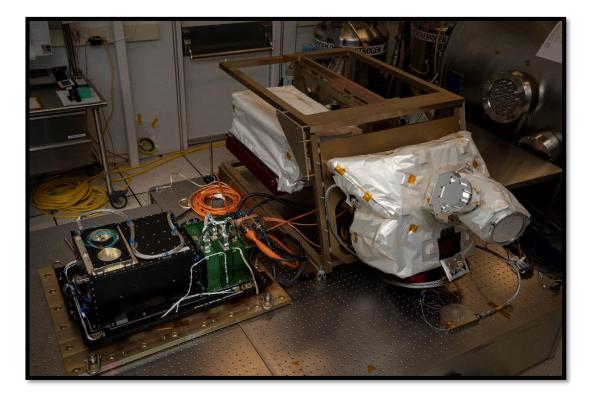
MASSACHUSETTS INSTITUTE OF TECHNOLOGY



Controller Electronics

 Industry-developed general purpose processor avionics provides

- Control of pointing mechanisms in optical module
- Command and telemetry interfaces to spacecraft
- Control and monitoring of modem
- Temperature control of optical module
- Mounted on exterior of spacecraft
 - Includes radiator and heaters for thermal control
 - Includes isolation for launch loads



- "Test As You Fly" approach used for terminal control
- Ground operations software deployed and used with spacecraft simulator for all phases of terminal testing
- Ground control and monitoring software will be installed in annex to Mission Control Center at Johnson Space Center for mission operations

- Island-level vibration testing completed
- Terminal-level thermal vacuum testing completed
- Final software integration and testing in progress
- Completion expected in Spring 2022
- Installation onto Orion spacecraft in early 2023
- Launch and mission operations in 2024

Summary

- Optical communications can extend the reach of high-rate communications in support of human exploration
- O2O will demonstrate this capability for the upcoming Artemis 2 crewed mission to the Moon
- O2O space terminal development is nearing completion
- Terminal to be integrated onto Orion later in 2022 in preparation for 2024 launch and operations

Source: https://www.nasa.gov/sites/default/files/thumbnails/image/gcd_pcm_feature_photo1_0.jpg

ARTEMIS II

First Crewed Test Flight to the Moon Since Apollo

1 LAUNCH Astronauts lift off from pad 39B at Kennedy Space Center.

9

2 JETTISON ROCKET BOOSTERS, FAIRINGS, AND LAUNCH ABORT SYSTEM

> CORE STAGE MAIN ENGINE CUT OFF With separation.

PERIGEE RAISE MANEUVER

Prox Ops Demonstration

APOGEE RAISE BURN Begin 24 hour checkout of spacecraft.

PROX OPS DEMONSTRATION **Orion proximity** operations

demonstration and manual handling qualities assessment for up to 2 hours.

- INTERIM CRYOGENIC **PROPULSION STAGE**
- TO HIGH EARTH ORBIT 🕕 HIGH EARTH ORBIT

Life support, exercise, and habitation equipment evaluations.

TRANS-LUNAR INJECTION (TLI) BY ORION'S MAIN ENGINE

Lunar free return trajectory initiated with European service module.

(ICPS) DISPOSAL BURN

CHECKOUT

0 OUTBOUND TRANSIT TO MOON

ICPS Earth disposal

4 days outbound transit along free return trajectory.

LUNAR FLYBY 4,000 nmi (mean) lunar farside altitude.

12 TRANS-EARTH RETURN **Return Trajectory Correction** (RTC) burns as necessary to aim for Earth's atmosphere; travel time approximately 4 days.

- CREW MODULE SEPARATION FROM SERVICE MODULE
- ENTRY INTERFACE (EI) Enter Earth's atmosphere.
- 15 SPLASHDOWN Ship recovers astronauts and capsule.

PROXIMITY **OPERATIONS** DEMONSTRATION SEQUENCE

Source: https://www.nasa.gov/sites/default/files/atoms/files/nac budget charts final updated pfp.pdf

Potential Applications of Lasercom in Cis Lunar Space

10-cm Optical Module 10-W Modem

Lasercom Network

High-Rate Trunking

Connecting Lunar / near-lunar assets to Earth / near-Earth assets Long ranges, highest rates, fairly stable

> 1-m Ground Aperture 20W Coherent Modem

Return

Lunar Proximity Operations

Connecting lunar surface and orbiting assets Relay / backbone services: Medium ranges, high rates End user equipment: low SWAP, medium rates

All links provide range and PNT assistance in addition to communications

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ICSOS 2022- 17 BSR 03/29/22

LEMNOS

(Laser Enhanced Mission Communications Navigation and Operational Services)

ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal)

> 1.2 Gbps return 51-155 Mbps forward To ground via LCRD* relay

Launch on SpaceX Dragon: January 2023

~ 6 months mission

*LCRD=Laser Communications Relay **Demonstration, launched Dec 2021**

020 (Orion AM-2 Optical Comm)

80 Mbps return 20 Mbps forward Direct to ground (WSC, TMF**)

Launch on Orion/SLS: May 2024

8-21 day mission

****White Sands Complex & Table Mountain Facility**

NASA Johnson LOCKHEED MARTIN

NASA Space Center Marshall Space Flight Cente

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ICSOS 2022-18 BSR 03/29/22

Goddara

NASA Johnson

Space Center

(Un-crewed) Science User Communications Needs

Link Purpose	Туре	Un-crewed/ Science Bandwidth
Science Data Delivery	Return/Downlink	~ Mbps – Gbps
S/C Command & Control	Forward/Uplink	~ 50 Kbps
S/C Health Telemetry	Return/Downlink	~ 50 Kbps
S/C Software Updates	Forward/Uplink	?

(Cis-Lunar) Human User Communications Needs


Astronauts Scott Kelly and Kjell Lindgren prepare for EVA.

- S/C Life Support & Human Cmd & Control
 Haptics
- S/C Life Support & Human Health Telemetry
 - Basic astronaut health monitoring
- S/C + Human device software updates
- Human User Streaming "Real-time" Data
 - Weekly medical / psychiatric evaluations
 - Medical procedures
 - EVA support (haptics)
 - Twice daily video calls with MCC
 - Troubleshooting
 - Basic internet functionality (Superbowl!)
- Human User Store & Forward "Burst" Data
 - Internet downloads (Netflix, etc.)
 - Detailed health/safety S/C monitoring
 - Detailed astronaut health monitoring

(CisLunar) S/C + Human User Communications Needs

Link Purpose	Туре	Human/ Crewed & Some Science Bandwidth
Science Data Delivery	Return/Downlink	~ Mbps - Gbps
S/C, S/C Life Support + Human Cmd & Control	Forward/Uplink	50 Kbps <mark>- ?</mark>
S/C, S/C Life Support + Human Health Telemetry	Return/Downlink	50 Kbps <mark>- ?</mark>
S/C + Human device software updates	Forward/Uplink	<mark>?</mark>
Human User Streaming "Real-time" Data	Bi-directional	<mark>?</mark>
Human User Store & Forward "Burst" Data	Bi-directional	<mark>?</mark>

NASA's Commercial Crew Program is a partnership to develop and fly human space transportation systems.

Boeing Updates SpaceX Updates Commercial Crew's Flickr Gallery Our Public-Private Approach Commercial Crew Press Kit Children's Artwork Calendar

