

Influence of High-Intensity Ultrasound on Ti-6AI-4V Microstructure During Laser Powder Bed Fusion Solidification Conditions

Brodan Richter¹, <u>brodan.m.richter@nasa.gov</u> Samuel J.A. Hocker¹ Wesley A. Tayon¹ Erik L. Frankforter¹ Ji Su¹

¹NASA Langley Research Center, Hampton, VA, USA

MRS 2022 Spring Meeting 5/10/2022

Powder Bed Fusion Additive Manufacturing

Spread powder, melt, & repeat...

[1] C. Zhao, et al., "Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction." Sci Rep 7, 3602 (2017), https://doi.org/10.1038/s41598-017-03761-2 Video S2 used under CC BY 4.0 license, http://creativecommons.org/licenses/bv/4.0/

MRS 2022 Spring Meeting

Microstructure developing during PBF

Powder

3

Repeated melting and solidification events

Causes the formation of large, columnar grains oriented in the build direction

[2] Microstructure Development Mechanism

Build Direction Wall ase (a) (b) (d) (e) (C)

[2] Examples of reconstructed β -grain structures for (b) 1 mm, (c) 1.5 mm, (d) 2.0 mm, and (e) 5 mm wide walls in Ti64

[2] A.A. Antonysamy et al., "Effect of build geometry on the βgrain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting." *Materials characterization* 84 (2013): 153-168., <u>https://doi.org/10.1016/j.matchar.2013.07.012</u> Figures 3 and 7 used under CC BY 3.0 license, <u>https://creativecommons.org/licenses/by/3.0/</u>, Figures cropped, rearranged, and relabeled vs. original

AM Microstructure – Why is it important?

(%)

- Columnar grains cause location-dependent variability in properties
- Makes qualification and certification (Q&C) of aerospace parts difficult
- What can be done to refine/prevent this microstructure?

[3] A.R. Balachandramurthi, "Anisotropic fatigue properties of Alloy 718 manufactured by Electron Beam Powder Bed Fusion," Int. J. Fatigue 141 (2020) Figures 10 & 13 used under CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/

MRS 2022 Spring Meeting

Ultrasonic-Induced Grain Refinement

Powder stream

40

30

20

Frequency (%)

[4] Ultrasonic Cavitation Grain

 $2.1 \pm 0.9 \,\mu\text{m}$ (*n* = 1366)

Aspect ratio

Without ultrasound

[4] Grain

aspect ratio

w/ and w/o

ultrasound

13

With ultrasound

 $4.0 \pm 2.2 \, \mu m \, (n = 325)$

11

Refinement Mechanism

- Recent work has demonstrated the viability of ultrasonic (US) cavitation for in-situ microstructure refinement during AM of alloy Ti-6AI-4V [4]
- Limited to Directed-Energy-Deposition (DED) Processing
- Is this compatible with PBF?

[4] C.J. Todaro et al., "Grain structure control during metal 3D printing by high-intensity ultrasound." *Nature communications* 11.1 (2020): 1-9. <u>https://doi.org/10.1038/s41467-019-13874-z</u> Figures 1, 2f, & 6e used under CC BY 4.0 license <u>http://creativecommons.org/licenses/by/4.0/</u>

MRS 2022 Spring Meeting

Overview and Objective of Current Work

Three linked research areas

Objective is to test feasibility of using ultrasonic induced grain refinement for PBF

Thermal Simulations of the DED & PBF Processes

- What temp. gradients are imposed?
- What is the solidification rate?

Columnar-To-Equiaxed Transition (CET) Predictions

- How does PBF compare to the DED process?
- What amount of nucleation is required?

Ultrasonic Cavitation Experiments

- Does the technique work for PBF?
- What are the ultrasonic tip conditions?

Thermal Simulations of the DED & PBF Processes

Position (mm)

- Rosenthal Equation point source model
 - Used effective thermophysical values to account for variation with temperature
- Simulated with experimental PBF and reported DED processing parameters
- Extracted

temperature gradient and solidification rate

Prediction of Morphology & CET Curves

Estimated columnar vs. equiaxed using experimentally-calibrated Hunt's criterion curves [5]

♦ 0.34 & 1.00 α for DED due to uncertainty

Equiaxed:
$$G < 0.617 N_0^{1/3} \left(1 - \frac{\Delta T_N^3}{\Delta T_c^3} \right) \Delta T_c \qquad \Delta T_c = \left(\frac{v_d C_0}{A} \right)^{1/2}$$

Columnar: $G > 0.617 \ (100N_0)^{1/3} \left(1 - \frac{\Delta T_N^3}{\Delta T_c^3}\right) \Delta T_c$

- PBF has higher thermal gradients and solidification rates
- Upon layering, PBF microstructure returns to the columnar region

[5] S.L. Kuntz, "Feasibility of attaining fully equiaxed microstructure through process variable control for additive manufacturing of Ti-6AI-4V." (2016), M.S. Thesis, Wright State University MRS 2022 Spring Meeting

Increasing Nucleant Particles

- Ultrasonic-induced grain refinement mechanism: fracture of dendrite tips
- Leads to increase in heterogenous nucleant particles
- Columnar: $G > 0.617 (100 N_0)^{1/3} \left(1 \frac{\Delta T_N^3}{\Delta T_c^3}\right) \Delta T_c$ Need to increase nucleant particles by a factor of $10^2 - 10^4$ times
- If suitable for DED, should also be compatible with PBF

Experimental Setup

- Configurable Architecture Additive Testbed (CAAT) at NASA LaRC
- 1070 nm TEM00 laser (179 W effective power used for processing)
- 500, 850, 1200 mm/s scanning velocities

Experimental Setup

Measurement of Ultrasonic Tip Displacement

- Velocity measured via Doppler vibrometer (LDV)
 - ♦ Velocity → displacement → acoustic intensity
- 12.7 mm diameter Ti-6AI-4V sonicator probe at 12.4 µm sinusoidal displacement amplitude
- Ultrasonic intensity $I = 3350 W/cm^2$, >30 times higher than $100 W/cm^2$ approximate cavitation threshold [4] for light metal alloys

$$I = \frac{1}{2}\rho c (2\pi f A)^2$$

[4] Todaro, C. J., et al. "Grain structure control during metal 3D printing by high-intensity ultrasound." *Nature communications* 11.1 (2020): 1-9.

Sonicator probe velocity measurement via LDV

12.7 mm probe velocity measured via LDV

Evidence of Cavitation

NASA

- Evidence of cavitation in 500 mm/s & 850 mm/s
- ✤ Time-scales with bubble formation & collapse ~100 µs
- Slow velocity = longer melt pool = more time for cavitation

Effect on Microstructure

- Evidence suggests that 850 mm/s velocity modifies reconstructed grain aspect ratio
 - ✤ No effect observed at 1200 mm/s velocity
- Increased residence time seems to promote more cavitation

Conclusions

- Ultrasonic cavitation-induced grain refinement appears to be compatible with PBF solidification conditions
- Evidence indicates that cavitation occurred between 500 mm/s and 850 mm/s
- Modification to reconstructed grain aspect ratio was observed under 850 mm/s velocity conditions

This work was supported by NASA Langley Research Center's Internal Research & Development (IRAD) program

