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Background

• Explore the notion of stationary probability distribution i.e., Markov 

Random Fields (MRF):

– Different windows on a 2D microstructure ‘look-alike’

– Different sections on a 3D microstructure ‘look-alike’

• Reconstruction of 3D synthetic microstructural unit cells from 

orthogonal 2D images taken along 𝑥-, 𝑦-, and 𝑧- directions

• Applications:

– Generation of larger synthetic images from small experimental exemplars

– Reconstruction of large-scale Computer Aided Design (CAD) models with 

microstructural information using knowledge of grain formation 

– Analysis of process-property-microstructure relationships
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Overview

LEGOMAT: Locally-Extracted Globally-Organized

Markovian Material Models

1. Experimental EBSD 
imaging

2. Unit cell reconstruction 
algorithm: 3D 
reconstruction from 
orthogonal surface 
images

3. LEGOMAT algorithm: 
embedding unit cell 
microstructure in part-
scale geometries
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Unit Cell Reconstruction

LEGOMAT: Locally-Extracted Globally-Organized

Markovian Material Models
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Large-Scale Generation

LEGOMAT: Locally-Extracted Globally-Organized

Markovian Material Models
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W-Ag Composite from S. Umekawa (1965) 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

𝑋6 𝑋7 𝑋8 𝑋9 𝑋10

𝑋11 𝑋12 𝑋13 𝑋14 𝑋15

𝑋21 𝑋22 𝑋23 𝑋24 𝑋25

𝑋16 𝑋17 𝑋18 𝑋19 𝑋20

2D Markov Random Field

• Microstructures represented as MRF models (i.e., 

undirected graphs):

– A set of 𝑛 neighbors ‘adequately’ determines the 

probability of the unknown/center pixel

ℙ 𝑋13 𝑋8, 𝑋12, 𝑋14, 𝑋18 ≈ ℙ 𝑋13 𝑋1, 𝑋2, … , 𝑋𝑁2

– Building explicit probability tables from experimental 

exemplars is intractable, especially for higher-order 

interactions

Ising Model (1st Order Interaction)

• Harder problem: given the experimental

exemplar, generate a new synthetic image of

the same size:

– Start from a small ‘seed image’ and ‘fill in’ the

unknown pixel based on its known neighbors:

ℙ 𝑋𝑖 known neighbors =?

– Iterate until convergence i.e., colors remain

unchanged
Experiment Exemplar

sampling window size 
𝟑 × 𝟑

Synthetic Image
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Sampling Window Size

Exemplar Window Size 5x5Window Size 3x3

Window Size 11x11Window Size 9x9Window Size 7x7



8IMAN JAVAHERIICME 2022

• The 3D microstructure is to be synthesized by solving the following ℓ2
optimization problem:

– Where 𝜔𝑣,𝑢
𝑖 , 𝑽𝜈,𝑢

𝑖 , and 𝑺𝑣,𝑢
𝑖 denote the weight, color of voxel 𝑢 in neighborhood of 𝑽𝝂

𝒊 , and

color of pixel 𝑢 in neighborhood of 𝑺𝒗
𝒊 , respectively

• Each iteration for the optimization problem is carried out in two steps:
– Searching Step: Minimize the cost function w.r.t. the set of input neighborhoods, 𝑺𝑣

𝑖 .

Here, the best-matching neighborhood of voxel 𝑣 , along each orthogonal

direction is identified by solving the following:

– Expectation Step: Minimize the cost function w.r.t. 𝑽𝒗. In this step a unique value for the

voxel 𝑣 is found:

3D Reconstruction Formulation

Synthetic Unit Cell 

(Output)

Orthogonal Exemplars 

(Input)

𝐸 𝑽 = ෍

𝑖∈{𝑥,𝑦,𝑧}

෍

𝑣

෍

𝑢

𝜔𝑣,𝑢
𝑖 𝑽𝑣,𝑢

𝑖 − 𝑺𝑣,𝑢
𝑖 2

𝑺𝑣
𝑖 = argmin

𝑺𝑖,𝑤
෍

𝑢

𝜔𝑣,𝑢
𝑖 𝑽𝑣,𝑢

𝑖 − 𝑺𝑢
𝑖,𝑤

2

𝑉𝑣 = ൙( ෍

𝑖∈{𝑥,𝑦,𝑧}

෍

𝑢

𝜔𝑢,𝑣
𝑖 𝑺𝑢,𝑣

𝑖 ) ( ෍

𝑖∈{𝑥,𝑦,𝑧}

෍

𝑢

𝜔𝑢,𝑣
𝑖 )

Javaheri et al., CAD, 120 (2020) 
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• Histogram matching modifies the MRF algorithm’s color density such that the cumulative distribution

function (CDF) of each color channel matches with the input exemplars after every iteration

Histogram Matching
• The Expectation Step tends to shrink the Red-Green-Blue

(RGB) color levels. Histogram matching is performed after

every iteration such that color levels are stretched back

properly

Input Exemplar
Al-Mg-Fe-Si alloy (cross-

polarized light microscopy)
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Without histogram matching, 

the color space shrinks, phase 

information is lost

With histogram matching,

the color space remains 

consistent with input exemplar

0

1st iteration:
255

0

2nd iteration:
255

e.g., blue color channel
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Additive Manufacturing (AM)

Orthogonal EBSD 

exemplars obtained 

by SEM:

Laser Powder-Bed Fusion (LPBF) manufacturing process

• Process: Selective Laser Melting (SLM)

• Material: 316L stainless steel

• Process Parameters:

- Effective laser power: 200𝑊
- Layer thickness: 30 𝜇𝑚

- Scan velocity: 800
𝑚𝑚

𝑠

- Hatch spacing: 120 𝜇𝑚
- Zig-zag rastering pattern



11IMAN JAVAHERIICME 2022

3D Reconstruction of AM

3D reconstructed 

MRF model

Orthogonal EBSD exemplars

Cross-sections of MRF model
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Grain Size Distribution
• Remove incomplete grains along the external borders of the image

• Aspect ratio computed by measuring the ratio of major over minor

diameters

• Ratios near 1 represent near-circular (i.e., equiaxed), while values

close to ∞ mimic needle-like cross-sections

3D MRF 

synthesized

Experimental
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Modeling Crystal Orientation

• Textures colored according to the nearest nodes in the orientation space (i.e.,

Rodrigues space)

• Nearest node may not be independent, so a symmetry map is used

• Number of colors in an Electron Backscatter Diffraction (EBSD) image

controlled by the discretization of the fundamental region

Fundamental Rodrigues space 

for cubic lattice structure
399 nodes, 254 

independent nodes

Texture coloring based on distances

in fundamental region
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Orientation Distribution

𝟏𝟏𝟏 𝟏𝟏𝟎 𝟏𝟎𝟎

𝐒𝐃

𝐁𝐃

𝐒𝐃

𝐁𝐃

𝐒𝐃

𝐁𝐃

Texture (experiment)

Texture (MRF reconstruction)

3D MRF 

synthesized

Experimental
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Misorientation Distribution
• Misorientation angle is defined as the required angle 𝜙 to bring the two

neighboring grains into coincidence about an axis common to both lattices

• High-Angle Grain Boundary (HAGB) angle values are 𝜙 ≥ 15𝑜

2 cos𝜙 + 1 = tr(𝑴)

3D MRF 

synthesized

Experimental



16IMAN JAVAHERIICME 2022

Large-Scale Generation

LEGOMAT: Locally-Extracted Globally-Organized

Markovian Material Models
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1. Experimental EBSD 
imaging

2. Unit cell reconstruction 
algorithm: 3D 
reconstruction from 
orthogonal surface 
images

3. LEGOMAT algorithm: 
embedding unit cell 
microstructures in part-
scale geometries
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• Patch-based MRF algorithm:

- Discretization of geometrical space via Delaunay tetrahedralization

- Growing each patch while minimizing difference vectors for all 𝑇𝑖 elements

• Approach:

- Utilize grain size scaling and growth direction to simulate microstructural formation in AM

LEGOMAT Technique

Microstructure space

Mapping, 𝚿

Geometrical space

ℱ = ෍

𝑖=0

𝑁−1

𝒅𝑝
𝑖 + 𝒅𝑞

𝑖 + 𝒅𝑅
𝑖
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Grain Size Scaling 

• Small grains along laser path tend to nucleate during solidification while

transitioning to larger grains in between each laser path

Rodgers et al., CMS, 78 (2017)
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Columnar Growth Direction

• Preferred crystallographic growth direction tend to align columnar grains in the

direction of increasing temperature

Rodgers et al., CMS, 78 (2017)
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Large-Scale Reconstructions

Javaheri et al., CMS, 206 (2022)
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Method
Computational 

Cost
Benefits Challenges

Phase-field Extremely high Physics-based
Small-scale 
prediction

Cellular Automata High Texture prediction
Accuracy depends on 

cell size

Kinetic Monte Carlo 
(e.g., SPPARKS)

Intermediate
Allows large-scale 

prediction
Texture prediction

LEGOMAT Low
Allows large-scale 

prediction

Data-driven and 
requires knowledge 

of grain growth 
directions

Microstructure Simulations
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LEGOMAT vs. SPPARKS

Javaheri et al., CMS, 206 (2022)
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Grain Size Statistics

• Comparison of grain size distributions for SPPARKS (top) and LEGOMAT

(bottom) against experiments in three directions
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Summary

• MRF approach reconstructs 3D microstructures from 2D EBSD images

• Grain size distribution, crystal orientations (e.g., ODFs and pole figures), and

misorientation angles for 3D reconstructions are consistent with experiment

• LEGOMAT embedding process simulates real-time descriptions of additively-

manufactured microstructures by combining flow fields and grain size scaling

• Future work:

– Utilize thermal field predictions for flow field generation

– Create microstructural libraries and use machine learning for adaptive

microstructure selection based on laser parameters
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