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Abstract 

The Air Traffic Management (ATM) TestBed is an air traffic management modeling and 
simulation platform and framework developed by the National Aeronautics and Space 
Administration (NASA) to help design, configure, integrate, run, and monitor air traffic 
simulations. The communication middleware, implemented in the TestBed framework layer, is a 
core feature for data message exchange. The feature provides an abstraction layer called 
Messaging Support to allow switching one middleware to another without a need to rebuild the 
simulation components. Messaging performance such as latencies, run durations, and 
throughputs are important factors. Low latencies can produce accurate results in high-fidelity 
and visualization models. Short run durations are preferred because better run efficiency can be 
achieved. High throughputs allow more runs to be executed concurrently. This technical 
memorandum studies and compares the messaging performance by running a full-day, fast-
time simulation using three communication middleware as well as tweaking the default 
communication middleware settings used by the TestBed. Results indicate that the messaging 
performance could be improved by disabling either compression or persistence settings, while 
the run duration and throughput could be further improved by disabling both settings with a 
tradeoff of the message latencies increased by a factor of ten. 
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1. Nomenclature 

This section lists all the symbols used in this technical memorandum. 
 

B = Message Broker 

D = Decoder in the subscriber 

E = Encoder in the publisher 

𝑓 = Encoder function 

𝑓-1 = Decoder function 

i = i-th measurement (message length, latency, frequency, or percentile) 

M = Message to be published 

MT = Message being transmitted 

n = Number of measurements 

P = Publisher module in the publisher component 

S = Subscriber module in the subscriber component 

TB = Duration required to transmit an encoded message MT via the message broker 

TD = Duration required to decode a message MT to M 

TE = Duration required to encode a message M to MT 

TM = Duration required to transmit a message from the publisher to the subscriber 

TP = Publication time when a message is published 

TS = Subscription time when a message is received 

𝑣𝑖 = Value of the i-th measurement 

�̅� = Mean of the measurement values 

σ = Standard deviation 

X = Publisher component 

Y = Subscriber component 

 

In addition, Table 1.1 lists the units of measurement used in the messaging performance data 

collection and analysis. 

 

Table 1.1. Units of Measurement 

Symbol Unit Unit Of Description 

% Percentage -- The dimensionless unit of a fraction of 100. 

One percentage equals one-hundredth, i.e., 

1% = 1 100⁄ . 

B Byte Data One byte has eight bits, or binary digits. 

GB Gigabyte Data One gigabyte equals 1,0003 bytes, or 

1,000,000,000 bytes. 

MB Megabyte Data One megabyte equals 1,0002 bytes, or 

1,000,000 bytes. 

Mbit Megabit Data One megabit equals 1,0002 bits, or 

1,000,000 bits. 

ms Millisecond Time The unit of time. One millisecond equals 

one-thousandth of a second, i.e., 1𝑚𝑠 =
1 1,000 𝑠⁄ . 

msg Message Count The number of messages. 

s Second Time The unit of time. One second equals 1,000 

milliseconds. 
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2. Introduction 

 
The Air Traffic Management (ATM) TestBed, or TestBed in short, is a platform for running air 

traffic simulations by providing a standard way for exchanging data messages among simulation 
components [1]. The platform is developed by the National Aeronautics and Space 
Administration (NASA) to accelerate the concept and technology development by running 
realistic simulations of current and proposed future air traffic concepts. The envisioned way to 
achieve effective simulations is to provide access to components, namely realistic air 
transportation data, air traffic control operational systems, and simulation tools. Simulation 
layouts can be created via a web-accessible drag-and-drop graphical user interface tool. 
Simulation components represented by blocks in the layouts can be started up at local, remote, 
or both facilities. Message flows between publisher components and subscriber components are 
represented by directed links. Individual simulations can be monitored via a frontend web portal. 
In addition, data messages published by individual components during a simulation can be 
recorded and then played back in subsequent simulations. Figure 2.1 shows the simulation 
layout used in the Boeing 2018 ecoDemonstrator [2] flight test. 

 

 

 
Figure 2.1. Boeing 2018 ecoDemonstrator Flight Test Simulation Layout 

The communication middleware, implemented in the TestBed framework layer, is a core 
feature for data message exchange. The feature provides an abstraction layer called Messaging 
Support to allow switching one middleware to another one without a need to rebuild the 
simulation components called plugin adapters. Network load and bandwidth affect the 
communication latency and throughput. For example, a high-loaded network will reduce the 
bandwidth for exchanging messages, and a poor network connection will have packet drop and 
message loss. To understand the messaging performance between a publisher component and 
a subscriber component, there is a need to measure performance metrics without the 
networking factors. Simulation performance usually includes message count, message latency, 
and throughput [3, 4, 5]. The measurements can serve as a basis for further messaging 
performance evaluation using network infrastructure including laboratory networks, virtual 
private networks, and cloud computing as well as communication features including data 
encoding and message encryption. 
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Figure 2.2. Message Flow Diagram 

Figure 2.2 depicts a flow diagram of a data exchange model [6] message, M, published from 

a publisher Component X to a subscriber Component Y: 

1. X passes M to Publisher P. 

2. P converts M into a transmissible form, MT, via Encoder E. 

3. P then publishes MT to Message Broker B. 

4. Subscriber S receives MT from B. 

5. S converts MT back into the original form, M, via Decoder D. 

6. S then passes M to Y. 

From a user’s perspective, X→B→Y represents the message flow from one component to 
another component, and the internal parts, including P, E, S, and D, are considered hidden; 
from a component’s perspective, P→B→S indicates the message flow from a publisher to a 
subscriber as components do not directly connect to the message broker but via the TestBed’s 
Messaging Support application programming interfaces (APIs). 

Since both Components X and Y communicate with a message having the same data 
representation, the decoder is an inverse function of the encoder. Assume the encoder applies 
a series of functions, 𝑀𝑇 = (𝑓1 ∘ 𝑓2 ∘ … ∘ 𝑓𝑛)(𝑀), to convert a message into a transmissible form. 
To correctly convert a received message back into the original form, the decoder must apply a 

series of inverse functions, 𝑀 = (𝑓𝑛
−1 ∘ … ∘ 𝑓2

−1 ∘ 𝑓1
−1)(𝑀𝑇). For example, if the encoder performs 

three functions in sequential order: serialization, compression, and encryption, then the decoder 
must perform these three functions in sequential order: decryption, decompression, and 
deserialization. 

In a simulation, factors affecting messaging performance include message processing time, 
network latency, and network bandwidth. The message processing time includes durations 
required to encode a message (TE) published by a publisher and decode a message (TD) 
received by a subscriber. The network latency includes durations required to transmit a 
message as one or multiple data packets from the publisher to the subscriber via the message 
broker (TB). The network throughput determines the number of messages that can be 
transmitted in a given period of time. The message latency (TM) is a sum of the three duration-
related factors, i.e., TM = TE + TB + TD. Network bandwidth affects the network latency, hence 
the message latency. 

This technical memorandum studies and compares the performance of the TestBed 

messaging system by measuring message latencies and run durations, as well as calculating 

throughput between a publisher component and a subscriber component. The experiment setup 

is presented in Section 3. Results are discussed in Section 4. Finally, Section 5 concludes the 

messaging performance findings. 
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3. Experiment Setup 

This section describes the experiment setup used for this study. Historical traffic data on 

Wednesday, March 23rd, 2016, a day of good weather and high traffic volume, were obtained 

from the Federal Aviation Administration’s (FAA’s) System Wide Information Management 

(SWIM) via the NASA’s Sherlock ATM Data Warehouse [7]. Track messages were published to 

the subscriber every second in fast-time simulations. 

The hardware used in the experiment runs was a MacBook Pro (2019 model) with a 2.6 

GHz 6-Core Intel Core i7 processor. The machine had 16 GB (2×8 GB) 2,400 MHz DDR4* 

memory manufactured by SK Hynix. Two graphics processing units are available: (a) Radeon 

Pro 560X 4 GB manufactured by Advanced Micro Devices and (b) Intel UHD Graphics 630 1536 

MB. In addition, the network interface is an Apple Wi-Fi with 304.2 Mbit/s link speed. 

The machine had the macOS Catalina version 10.15.7 installed. The software used in the 

experiment runs included TestBed version 2.2, OpenJDK version 11.0.2 (2019-01-15) with 

Runtime Environment 18.9 (build 11.0.2+9). The Java virtual machine is configured as 

OpenJDK 64-Bit Server VM 18.9 (build 11.0.2+9, mixed mode). 

To measure messaging latency, metadata including publication time, encoding time, 
decoding time, and subscription time were added to each message. Latency, TM, of a message 
M is defined by the duration between the publication time, TP, when a message is published and 
the subscription time, TS, when a message is received, i.e., TM = TS - TP. 
 

 

Figure 3.1. Fast-time Simulation Layout 

Figure 3.1 depicts a notional diagram of the fast-time simulation layout. The “ATAC Data” 
blocks were configured to play back, at one-second granularity, historical traffic data processed 
by Airborne Tactical Advantage Company (ATAC) and stored in the NASA’s Sherlock ATM Data 
Warehouse. Each ATAC data file stores historical track messages of a single day. To play back 
historical track messages in the United States on Wednesday, March 23rd, 2016, two ATAC 
Data blocks were used. The first block was configured to play back track messages between 
2016/03/23 07:00Z (03/23 00:00 PDT†) and 2016/03/24 07:00Z (03/24 00:00 PDT). The second 
block was configured to play back track messages between 2016/03/24 00:00Z (03/23 17:00 
PDT) and 2016/03/24 07:00Z (03/24 00:00 PDT). Table 3.1 lists the properties of the blocks 
configured in the fast-time simulations. 

Three message-oriented middleware used in this study are briefly described in Section 3.1. 
Section 3.2 lists seven experiments in this study. The data exchange model used in the TestBed 
is mentioned in Section 3.3. Finally, Section 3.4 documents the approach to collect 
measurement data. 

 

 

 

 

 
* Double Data Rate 4 
† Pacific Daylight Time is seven hours behind the Zulu Time. 
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Table 3.1. Properties of Blocks 

Block Group Name Value 

ATAC Data:1 User Scheduled Period 1 s 

  Scheduled Delay 0 s 

  Traffic Start Time 2016-03-23T07:00:00Z 

  Traffic End Time 2016-03-24T07:00:00Z 

  Data Category USA 

  Publish Flight Plan (not selected) 

  Publish Track ✔️ 

 Component Fast Time ✔️ 

 Component Manager Host Key localhost 

ATAC Data:2 User Scheduled Period 1 s 

  Scheduled Delay 61200 s 

  Traffic Start Time 2016-03-24T00:00:00Z 

  Traffic End Time 2016-03-24T07:00:00Z 

  Data Category USA 

  Publish Flight Plan (not selected) 

  Publish Track ✔️ 

 Component Fast Time ✔️ 

 Component Manager Host Key localhost 

Network 
Performance 

Component Fast Time ✔️ 

 Component Manager Host Key localhost 

 

3.1. Message-Oriented Middleware 

Three message-oriented middleware software were used to measure the performance: 
Apache ActiveMQ [8], TestBed Base Architecture for Simulation Integrated Communication 
(Basic), and Neural Autonomic Transport System (NATS) [9]. 

Apache ActiveMQ is a widely used open-source messaging server written in Java 
programming language [10]. Version 5.15.8 is currently used in the TestBed and in this study. It 
is also bundled in the TestBed Software Development Kit. 

TestBed’s Basic Server is a native socket-based publish-subscribe system, also written in 
Java programming language, to provide a lower-latency, higher-throughput performance than 
the ActiveMQ by implementing a minimal set of features and capabilities, specific for testing the 
network connectivity among assets. The implementation uses server and client socket 
connections based on data input and output streams. 

NATS is an open-source messaging server written in the Go programming language [11]. 
NATS is designed for modern distributed systems and performance due to its high sender and 
receiver throughput. Version 2.1.8 is used in this study. 

3.2. Experiments 

Table 3.2 and Table 3.3 list the experiment runs in this study. The default runs used the 
TestBed’s existing settings; the ActiveMQ runs used the ActiveMQ middleware with the default 
and tweaked settings. The Run column indicates the name of the experiment runs. The 
Middleware column indicates the middleware application to be used in the experiment runs. The 
baseline experiment (Run 1A) did not use middleware to transmit the Track messages. 
Messages were transmitted using Java calls and callbacks. Broker B was not used, and both 
the components X and Y were running within the same Java Virtual Machine. Thus, the 
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message flowed from X to Y was X→P→E→S→D→Y (without B). For the other runs, 
middleware is used. The ActiveMQ (Run 2A) is the middleware bundled in the TestBed 
Software Development Kit. The Basic (Run 3A) leverages the Basic middleware implemented 
by the TestBed team. The NATS (Run 4A) uses the NATS middleware written in a non-Java 
programming language. 
 

Table 3.2. Experiment Runs (Default Runs) 

Run Middleware Remarks 

1A -- Baseline, no middleware 

2A ActiveMQ Default TestBed settings 

3A Basic Default TestBed settings 

4A NATS Default TestBed settings 

 
The ActiveMQ connection settings in TestBed enable both message compression and 

persistence settings. Both the Basic and the NATS do not have such settings. Message 
compression reduces the message size by using a compression algorithm. Message 
persistence allows transmitting messages to be recovered in case of the middleware restarts by 
writing each message to a permanent storage device such as a hard drive. The settings are 
useful under certain circumstances. However, they may degrade the messaging performance in 
other circumstances. Enabling the compression setting is desired when there is a need to 
transmit large messages with redundant information, e.g., element names in an Extensible 
Markup Language (XML) text appear in both start and end tags. On the other hand, disabling 
the compression setting is desired when the messages being transmitted are short or contain 
highly compressed data such as image data. Similarly, enabling the persistence setting is 
desired when there is a need to recover messages upon hardware or software failure; disabling 
the persistence setting is desired when middleware redundancy is used, or simulations are 
running in a local environment without using distributed systems. 

 
Table 3.3. Experiment Runs (ActiveMQ Runs) 

Run Middleware Remarks 

2A ActiveMQ Default TestBed settings 

2B ActiveMQ No message compression:  

• jms.useCompression=false 
2C ActiveMQ No message persistence: 

• delivery_mode=non_persistent 
2D ActiveMQ No compression and persistence: 

• jms.useCompression=false 

• delivery_mode=non_persistent 

 
In this study, combinations of the two settings controlling the ActiveMQ were also explored. 

Thus, a total of seven runs were executed in this study. The first four runs (1A, 2A, 3A, and 4A) 
used in-memory and three middleware, while the last three runs (2B, 2C, and 2D) used the 
ActiveMQ middleware with non-default settings. 

3.3. Message Type 

The TestBed Data Exchange Model (SNDEM) is a standardized format of the information to 
be exchanged among the components [6]. In this study, Track messages are measured 
because of their dominance in the ATAC data files. A Track message represents a single, three-
dimensional location of a vehicle on the ground or in the airspace. Each track message has a 
vehicle identifier such as callsign; location such as latitude, longitude, and altitude; time when 
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the track was recorded in the system; and vehicle states such as groundspeed, flight course, 
and vertical speed. Note that information could be missing in a Track message. Missing numeric 
values are recorded as NaN‡. 

Each SNDEM message also has a section storing metadata and information about the 
message, including the name of its publisher, a format version, a run name, a publication 
timestamp recorded when the message was published, and a subscription timestamp when the 
message was received. 

Currently, SNDEM messages are serialized using JavaScript Object Notation (JSON) [13] 
strings. Future versions will support additional data serialization including a variable-length 
quantity encoding. 

3.4. Data Collection 

During an experiment run, the publication and subscription timestamps defined in the 
message’s metadata section are used to calculate the messaging latency. To reduce the 
overhead of recording the message lengths and latencies, the measurement values are 
recorded in a compact, pre-memory allocated (about 43.5 MB) data structure residing in the 
Java Virtual Machine, i.e., computer memory. Upon the completion of an experiment run, the 
data structure is written to a file for post-processing and performance analysis. 

Running TestBed simulations requires three service managers:  
1. Simulation Manager manages all simulation runs. 
2. Execution Manager manages one simulation run. 
3. Component Manager manages individual plugin adapters. 

The TestBed service managers and individual plugin adapters log progress information to log 
files. The progress information includes timestamps of seven simulation states—deployment, 
startup, initialization, execution, shutdown, archival, and retirement. These timestamps are used 
for measuring the run durations. Finally, the message lengths and run durations are used to 
calculate the throughput metrics. 

4. Performance Analysis 

The fast-time simulation covered a 24-hour period of historical traffic data. The “ATAC 
Data:1” and “ATAC Data:2” components played back 41,255,168 and 2,053,751 track 
messages, respectively. Thus, a total of 43,308,919 track messages were handled. Each track 
message contains two parts: (a) a key which is an identifier (callsign) of a vehicle; and (b) a 
payload that is in the SNDEM format. The length of a track message is the sum of the lengths of 
the key and the payload. Table 4.1 lists a sample track message with a length of 207 bytes (7 
bytes key and 200 bytes payload) published during a simulation. 
 

Table 4.1. Sample Track Message 

 Content Length (bytes) 

Key UAL1967 7 

Payload {"vid":"UAL1967","latDeg":37.62231,"lonDeg":-122.3 
8169,"altFt":6.0,"time":1458716400000,"gsKt":20.0, 
"crsDeg":286.0,"vsFpm":NaN,"meta":{"src":"ATAC Dat 
a.1","ver":"2.3","run":"1A","tpub":1603483450633}} 

200 

 

 

 

 

 
‡ Not a Number 
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The message frequencies of the setup are described in Section 4.1. Section 4.2 discusses 
the message latencies among different runs. The run durations are listed in Section 4.3. Finally, 
the calculated throughputs are presented in Section 4.4. 

4.1. Message Frequency 

Message frequencies measure the lengths and frequencies of the messages published by 
the ATAC Data components. The messages are grouped by the simulated time at a one-second 
granularity level. In addition, ATAC Data recorded track data at a one-minute granularity level.  
Figure 4.1(a) shows the number of flights in the United States on the chosen simulated day. The 
maximum number of flights (4,744) was observed at both 20:44:43Z and 20:44:44Z on March 
23rd, 2016. Figure 4.1(b) shows the number of published messages per second (blue) and the 
one-minute rolling average of the published messages (orange). The maximum number of 
published messages per second (1,779) was observed at 20:35:47Z on March 23rd, 2016. 

 

 

 

 
(a)  (b) 

Figure 4.1. Flight and Message Counts 

Table 4.2 lists the statistics of the messages with respect to the message lengths and 
message frequencies. Given a series of 𝑛 collected measurement values, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}, the 
Min and Max columns represent the minimum and the maximum values recorded, 𝑣𝑚𝑖𝑛 and 

𝑣𝑚𝑎𝑥, respectively: 

𝑣𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑉} 
𝑣𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑉} 

𝑤ℎ𝑒𝑟𝑒 𝑉 ∈ {𝑣1, 𝑣2, … , 𝑣𝑛} 
 

The P25%, P50%, and P75% columns represent the 25th, 50th, and 75th percentiles, respectively. 
Note that the P50% values are also the medians. The formula to calculate the i-th percentile is 

𝑃𝑖% = 𝑣𝑗 , 

𝑤ℎ𝑒𝑟𝑒 𝑖 = [1, 100] 

𝑎𝑛𝑑 𝑗 = min {max {1, ⌈
𝑖

100
∙ 𝑛⌉} , 𝑛} 

 
The Mean column represents the average measurement values: 

�̅� =
∑ 𝑣𝑖

𝑛
𝑖=1

𝑛
 

 
The SD column represents the corrected sample standard deviations: 
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𝜎 = √
1

𝑛 − 1
∙ ∑(𝑣𝑖 − �̅�)2

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 �̅� 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛. 

 
The Unit column represents the units of measurement. The Count column represents the 
number of measurements collected, i.e., 𝑛., and the count values are always greater than one in 
this study. 

In each experiment run, 43.3 million messages were published, and these messages 
generated 9.09 billion bytes (or 9.09 GB) for data transfer. The mean and standard deviation of 
the message lengths were 209.63 bytes and 3.15 bytes, respectively. When the messages were 
grouped by the simulated time at one-second granularity level, a total of 86,400 (=24 hours × 60 
minutes × 60 seconds) message frequencies were collected. The mean and standard deviation 
of the message frequencies were 501.26 msg/s and 281.79 msg/s, respectively. 

 
Table 4.2. Message Statistics 

Message Min P25% P50% P75% Max Mean SD Unit Count 

Lengths 193 207 210 212 219 209.63 3.15 bytes 43,308,919 

Frequencies 24 247 525 704 1779 501.26 281.79 msg/s 86,400 

 

Figure 4.2(a) shows the distribution of the lengths of the published messages throughout the 
simulated day. The message lengths are not fixed because the data exchange model uses the 
JSON format and numeric values are represented in variable-length characters rather than 
fixed-length bytes. The chart shows that the message lengths follow a normal distribution. More 
than half (54.9%) of the messages contained 208-212 bytes of data. In addition, the distribution 
of the message frequencies is depicted in Figure 4.2(b). During the simulation, half (50.5%) of 
the simulated seconds published 400-800 messages. 
 

 
 

(a) Histogram of Message Lengths (b) Histogram of Message Frequencies 

Figure 4.2. Histograms of Track Messages Grouped by: (a) Lengths and (b) Frequencies 

4.2. Message Latency 

Latency of a message is the duration between the time when the message was published 

by the publisher and the time when the message was received by the subscriber. Each SNDEM 

message has a metadata section recording the message’s publication time, TP, and subscription 

time, TS. Thus, latency, TM, is defined as TM = TS - TP. Note that the system clocks on the 
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publisher and subscriber must be synchronized. In this study, since the publishers (ATAC Data) 

and subscriber (Network Performance) are running on the same machine, the components are 

using the same system clock. 

Ideally, message latency values are zero or a low fixed value so that simulated 

components can receive messages in a regular time interval. Fixed latency values are important 

for algorithms and visualizations that require interpolation or extrapolation based on consecutive 

data points [13, 14]. 

4.2.1. Message Latencies among Default Runs 

Table 4.3 lists the statistics of the message latency values among the first four runs. The 

baseline (Run 1A) has the shortest latency. This is expected as middleware is not used in this 

run. Thus, Track message exchanges are performed in memory instead of via middleware. 

When middleware is used, the ActiveMQ (Run 2A) has minimal message latency. Both the 

Basic (Run 3A) and NATS (Run 4A) have message loss and the final message counts 

(43,304,541 and 43,308,917) do not match the message count (43,308,919) in the baseline. 

The message loss might be due to the shutdown of simulation components while the message 

queue in the middleware is not empty. The table also shows that the Basic (Run 3A) has the 

largest averaged latency (19.7 ms) and standard deviation (11.5 ms). 

 

Table 4.3. Latency Measurements (Default Runs) 

Run Min P25% P50% P75% Max Mean SD Unit Count 

1A 0 0 0 0 70 0.0113 0.119 ms 43,308,919 

2A 0 0 0 0 38 0.134 0.342 ms 43,308,919 

3A 0 5 26 27 57 19.7 11.5 ms 43,304,541 

4A 0 0 1 2 139 1.49 3.144 ms 43,308,917 

 
Among the default runs, the histograms of the message latency are shown in Figure 4.3(a) 

and the percentiles of message latency are shown in Figure 4.3(b). The percentile chart 
indicates the percentages of messages with at most 1 ms latency among the runs are: 99% 
(Run 1A), 87% (Run 2A), 8% (Run 3A), and 35% (Run 4A). When middleware is used, in terms 
of the message latency, the ActiveMQ is the best option among the three tested middleware 
because of its low and stable latency. 
 

  
(a) Histogram (b) Percentile 

Figure 4.3. Message Latency (Default Runs) 

0

10

20

30

40

50

0 1 2 3 4 ≥5M
es

sa
ge

 C
o

u
n

t 
(m

ill
io

n
s)

Message Latency (ms)

1A 2A 3A 4A

0

20

40

60

80

100

0 4 8 12 16 20 24 28 32 36 40

P
er

ce
n

ti
le

 (
%

)

Message Latency (ms)

1A 2A 3A 4A



 

17 

4.2.2. Message Latencies among ActiveMQ Runs 

Table 4.4 lists the statistics of the message latency values among the ActiveMQ runs. 
Disabling the message compression setting (Run 2B) reduces the average latency from 0.134 
ms to 0.0996 ms (25.7% reduction). Disabling the message persistence setting (Run 2C) 
increases the average latency from 0.134 ms to 0.159 ms (19.9% increment). In addition, when 
both the message compression and persistence settings are disabled (Run 2D), the average 
latency increases from 0.134 ms to 1.09 ms (713% increment). The behavior is observed 
because the reduction of the run durations increases the load and utilization of the computer’s 
central processing units (CPUs). That means the frequency of the messages increases due to 
reduced message processing time, so the subscriber activities result in higher CPU utilization 
reducing simulation run time. As a result, more messages are queued in the middleware 
delaying delivery of a higher percentage of messages. 
 

Table 4.4. Latency Measurements (ActiveMQ Runs) 

Run Min P25% P50% P75% Max Mean SD Unit Count 

2A 0 0 0 0 38 0.134 0.342 ms 43,308,919 

2B 0 0 0 0 35 0.0996 0.301 ms 43,308,919 

2C 0 0 0 0 43 0.159 0.373 ms 43,308,919 

2D 0 0 1 2 50 1.09 1.03 ms 43,308,919 

 

Among the ActiveMQ runs, the histograms of the message latency are shown in Figure 
4.4(a) and the percentiles of the message latency are shown in Figure 4.4(b). The percentile 
chart indicates the percentages of messages with at most 1 ms latency among the runs are: 
87% (Run 2A), 91% (Run 2B), 85% (Run 2C), and 32% (Run 2D). When the ActiveMQ 
middleware is used, in terms of the message latency, disabling the message compression 
setting is the best option because of its low and stable latency. 
 

  
(a) Histogram (b) Percentile 

Figure 4.4. Message Latency (ActiveMQ Runs) 
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1. Deployment: Downloads and extracts the component archive file to a component-

specific directory. 

2. Startup: Starts up the component by calling the operating system-specific run script. 

3. Initialization: Prepares the component for execution. For example, an ATAC Data 

component reads and parses the data files. 

4. Execution: Executes the component. For example, an ATAC Data component publishes 

track messages associated with the current simulation time, and a Network Performance 

component collects statistics from the incoming track messages. 

5. Shutdown: Stops the component and releases resources. 

6. Archival: Archives all the files that are generated or modified by the component. 

7. Retirement: Does nothing in the current experiments. 

The duration for each experiment run is presented in this section. A shorter run time is preferred 

for efficiency. Durations associated with deployment, startup, and initialization states depend on 

the hard drive and CPU performance. In addition, the durations associated with the shutdown, 

archival, and retirement states are short and within ten seconds. These six states are not 

related to the messaging performance. On the other hand, the duration of the execution state 

heavily depends on the messaging performance. Thus, execution durations of the experiment 

runs will be analyzed in the following subsections. 

4.3.1. Run Durations among Default Runs 

Table 4.5 lists the run durations among the default runs. Note that the durations are 
measured in seconds. The baseline (Run 1A) has the shortest execution time. This is expected 
as track message exchanges are performed in memory instead of via middleware. Note that the 
baseline run has the longest archival time (9.4 s) due to the inclusion of writing message length 
statistics. The NATS (Run 4A) has the best middleware performance since its execution time is 
the shortest among the non-baseline runs. 
 

Table 4.5. Durations of Default Runs, in seconds 

Run 1A 2A 3A 4A 

Deployment 2.874 3.281 3.454 3.374 

Startup 1.534 1.791 1.645 1.620 

Initialization 117.521 98.085 105.340 108.598 

Execution 663.702 4786.092 854.402 673.550 

Shutdown 0.655 0.301 0.278 0.281 

Archival 9.403 1.776 1.359 1.036 

Retirement 0.011 0.012 0.010 0.009 

Total 795.700 

(13’16”) 

4,891.338 

(81’31”) 

966.488 

(16’06”) 

788.468 

(13’08”) 

 

The data messaging exchanges happened in the execution phase. Figure 4.5 shows the 
execution durations among runs. The first and last Track messages were published at the 0% 
and the 100% mark, respectively. When middleware is used, in terms of the run durations, the 
NATS is the best option among the three tested middleware because of its shortest run 
duration. 
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Figure 4.5. Execution Durations (Default Runs) 

4.3.2. Run Durations among ActiveMQ Runs 

Based on the results presented in Section 4.3.1, the simulation using the ActiveMQ (Run 
2A) was the slowest. Fine-tuning the settings, including message compression and persistence, 
would improve the messaging performance. Table 4.6 shows the run durations of the ActiveMQ 
middleware with the default settings (Run 2A), the compression setting disabled (Run 2B), the 
persistence setting disabled (Run 2C), and both the settings disabled (Run 2D). 
 

Table 4.6. Durations of ActiveMQ Runs, in seconds 

Run 2A 2B 2C 2D 

Deployment 3.281 3.506 3.339 3.492 

Startup 1.791 2.245 2.290 2.281 

Initialization 98.085 108.170 117.378 113.919 

Execution 4786.092 3582.173 2651.574 1468.028 

Shutdown 0.301 0.275 0.272 0.330 

Archival 1.776 1.546 1.366 1.847 

Retirement 0.012 0.011 0.012 0.013 

Total 4,891.338 

(81’31”) 

3,697.926 

(61’38”) 

2,776.231 

(46’16”) 

1,589.910 

(26’30”) 

 

First, disabling the compression setting reduces the execution time by 25.2%, from 4,786 
seconds (Run 2A) to 3,582 seconds (Run 2B). Compression reduces the message size with 
CPU cost for compression and decompression operations. If messages being transmitted are 
short or have compressed data, compression would reduce the overall messaging performance. 

Second, disabling the persistence setting reduces the execution time by 44.6%, from 4,786 
seconds (Run 2A) to 2,652 seconds (Run 2C). Persistence allows data to be recovered in case 
of hardware and software failure. However, persistence requires both CPU cycles and disk 
access. 

Third, disabling both the message compression and the message persistence settings the 
execution time reduces by 69.3%, from 4,786 seconds (Run 2A) to 1,468 seconds (Run 2D). 
This allows the ActiveMQ server to run without spending extra cycles on the CPU and disk 
access. Even though this run requires the shortest run time, the latency presented in Section 
4.2.2 increases. 
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Figure 4.6. Execution Durations (ActiveMQ Runs) 

Figure 4.6 shows the execution durations among the ActiveMQ runs. When the ActiveMQ 
middleware is used, in terms of the run durations, disabling both the message compression and 
persistence settings is the best option because of its shortest run duration. 

4.4. Throughput Rate 

In the actual networked simulation environment, network bandwidth is a critical factor to the 

data throughput. The baseline (Run 1A) has the shortest duration to execute (663.702 seconds) 

because message transmission does not involve local network connectivity. As described in 

Section 4.1, track messages with 9.09 billion bytes were transmitted between the publishers and 

the subscriber without any network connectivity. Thus, the throughput of the baseline run was 

9,078,643,231 bytes × 8 bits/byte / 663.702 s = 109.43 Mbit/s. As mentioned in Section 3.2, the 

maximum Apple Wi-Fi speed is 304.2 Mbit/s, the local network bandwidth is not saturated on 

the machine. 

Since the network bandwidth is not saturated and all the other runs are slower than the 
baseline, the local network bandwidth is not affecting the performance of the runs. Thus, the 
throughput of the middleware can be defined as 

 

throughput =
𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
. 

 
 

Table 4.7. Throughput of Runs, in Mbit/s 

Run 1A 2A 2B 2C 2D 3A 4A 

Middleware -- ActiveMQ Basic NATS 

Throughput  109.430 15.175 20.275 27.391 49.474 85.006 107.831 

 

Table 4.7 lists the calculated throughput values among the seven runs. Using the ActiveMQ 
(Runs 2A, 2B, 2C, and 2D) does not produce high throughput values due to the longer 
execution durations. Using the NATS (Run 4A) produces a high throughput value that is near 
the baseline’s value. This indicates that the NATS middleware has the highest performance 
among the three selected middleware in this study. 
  

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

 D
u

ra
ti

o
n

 
(m

in
u

te
s)

Execution Progress (%)

2A

2B

2C

2D



 

21 

5. Concluding Remarks 

The Air Traffic Management (ATM) TestBed is an air traffic management modeling and 
simulation platform and framework developed by NASA to help design, configure, integrate, run, 
and monitor air traffic simulations. The communication middleware, implemented in the TestBed 
framework layer, is a core feature for data message exchange. This technical memorandum 
studies and compares the messaging performance by running a full-day, fast-time simulation 
using three communication middleware as well as tweaking the default communication 
middleware settings used by the TestBed. Results indicate that the messaging performance 
could be improved by disabling either compression or persistence settings, while the run 
duration and throughput could be further improved by disabling both settings with a tradeoff of 
the message latencies increased by a factor of ten. 

The TestBed provides a core feature for switching a communication middleware without 
rebuilding the simulation components. A baseline without using middleware is performed to 
gather the minimum messaging latency due to message encoding and decoding. Three 
middleware are selected: the ActiveMQ, Basic Server, and the NATS. Two selected features, 
message compression and persistence, in the ActiveMQ, are also explored. Messaging 
performance for all three middleware including latency, run durations, and throughput rates are 
analyzed. Low latency values are preferred when running simulations with high-fidelity and 
visualization models because more accurate data can be presented. On the other hand, short 
run durations are preferred when evaluating concepts with low-fidelity models. High throughput 
rates allow simulations to be run concurrently. 

Different parameters should be considered when selecting the middleware. If the latency is 
a concern, then the ActiveMQ would be a better choice. If the run duration is a concern, then the 
NATS would be a better choice. 

When using ActiveMQ middleware, latency and run duration are important. If the latency is a 
concern, then disabling the message compression setting is a better choice. If the run duration 
is a concern, then disabling both the message compression and persistence settings would be a 
better choice. If both the latency and run duration are important factors, then disabling the 
message persistence would be a better choice. 

This study focuses on the local network environment. Future works may focus on network 
infrastructures such as laboratory networks, virtual private networks, and cloud computing. In 
addition, communication features such as data encoding and message encryption may also be 
explored. 
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