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Cows

Proposition: All cows in a field are the same color

[1] “Are induction and well-ordering equivalent?" Lars-Daniel Ohman, 2019 https://link.springer.com/content/pdf/10.1007/500283-019-09898-4.pdf


https://link.springer.com/content/pdf/10.1007/s00283-019-09898-4.pdf

Cows

Proposition: All cows in a field are the same color

Principle of weak induction

For a proposition on positive natural numbers P, if
1. P(1) and
2. P(N) implies P(N + 1) for each positive natural number N,
then
P(N) is true for all positive natural numbers N

[1] “Are induction and well-ordering equivalent?" Lars-Daniel Ohman, 2019 https://link.springer.com/content/pdf/10.1007/500283-019-09898-4.pdf


https://link.springer.com/content/pdf/10.1007/s00283-019-09898-4.pdf

Cows

Proposition: All cows in a field are the same color

Principle of weak induction

For a proposition on positive natural numbers P, if
1. P(1) and
2. P(N) implies P(N + 1) for each positive natural number N,
then
P(N) is true for all positive natural numbers N

Proof: Let P(N) ='N cows in a field are the same color’
Apply weak induction:

1. All cows in a field of one cow has the same color

[1] “Are induction and well-ordering equivalent?" Lars-Daniel Ohman, 2019 https://link.springer.com/content/pdf/10.1007/500283-019-09898-4.pdf


https://link.springer.com/content/pdf/10.1007/s00283-019-09898-4.pdf

Cows

Proposition: All cows in a field are the same color

Principle of weak induction

For a proposition on positive natural numbers P, if
1. P(1) and
2. P(N) implies P(N + 1) for each positive natural number N,
then
P(N) is true for all positive natural numbers N

Proof: Let P(N) ='N cows in a field are the same color’
Apply weak induction:

1. All cows in a field of one cow has the same color

2. Assume N cows in a field are the same color, and suppose there is a field with NV + 1
COWS...

[1] “Are induction and well-ordering equivalent?" Lars-Daniel Ohman, 2019 https://link.springer.com/content/pdf/10.1007/500283-019-09898-4.pdf


https://link.springer.com/content/pdf/10.1007/s00283-019-09898-4.pdf

Inductive step
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Inductive step

N + 1 cows
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Inductive step?

N + 1 cows
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Inductive step? Not a correct one

N + 1 cows
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Because of
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Safe polynomial airspace




Polynomial airspace
e Aircraft pathp: Rso — R3

® z,y,z:Rs9 — R polynomials in t
® Obstacle (geofence, well-clear volume) defined by the conjunction (ands) of
polynomial inequalities

G={[:v y z t]T\gl(xyy,w)SOA'”/\gn(x,y,z,t)SO}

® g, is polynomial of z, 3, 2z, and ¢
® Violation att € R>g

[2] “PolySafe: A Formally Verified Algorithm for Conflict Detection on a Polynomial Airspace” BK Colbert, | Tanner Slagel, LG Crespo, S Balachandran, 2020
https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf


https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf

Polynomial airspace

e Violation att € R<g

p(t) € G =

® Detect when a violation occurs
® Avoid a violation by producing a resolution p(t)

[2] “PolySafe: A Formally Verified Algorithm for Conflict Detection on a Polynomial Airspace” BK Colbert, ] Tanner Slagel, LG Crespo, S Balachandran, 2020
https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf


https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf

Polynomial airspace

e Violation att € R<g

p(t) € G =

® Detect when a violation occurs

[2] “PolySafe: A Formally Verified Algorithm for Conflict Detection on a Polynomial Airspace” BK Colbert, ] Tanner Slagel, LG Crespo, S Balachandran, 2020
https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf


https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf

Unsafe polynomial airspace

Violation!




Detecting a violation

e Violation att € R<g

gl(x(t)vy(t)7z(t)vt) <0
p(t) € G <~ :

® g;(x(t),y(t),z(t),t) is a single-variable polynomial in ¢ for each i < n
® No violation at the roots of g; for all i < n = no violation anywhere

Given a single evaluation of each polynomial and the roots with
multiplicity information

® The existence of a violation can be determined
® The first instance t* of a violation can be determined




Detecting a violation, example

Example: Path
pty=[1t 2t 3t]"

Geofence G defined by



Detecting a violation, example

Example: Path

pty=[1t 2t 3t]"
Geofence G defined by
z >3 33—z
z <12 — z—12

(z—2)2+(3y—9)2 <25 (z—2)2+B3y—9)2—-25



Detecting a violation, example

Example: Path
pty=[1t 2t 3t]"

Geofence G defined by

z >3 33—z
z <12 — z—12
(z—2)%2+ By—9)? <25 (z—2)2+

Checking for violations:

33t <0
3t — 12 <0
(t—2)2+(3(2t) —9)2—25 <0

finding roots

with multiplicities

<0
<0
(By—9)?—25 <0

t — 30dd
t — 40dd
t = 2Odd7 t = 60dd



Detecting a violation, example (continued)

0 10dd
< I >t
3-3t<0
0 40dd
< : I >t
3t —12<0
0 ZOdd 60dd
< I | | >t

| 1
(t—2)2+R2t—-9?%2-25<0



Detecting a violation, example (continued)

0 10dd
:=+= >t
3-3t<0
40dd
0
:: — I >t
3t —12<0
0 ZOdd 60dd
;I t | | >t

| 1
(t—2)2+R2t—-9?%2-25<0



Detecting a violation, example (continued)

0 10dd
:=+= — >t
3-3t<0
40dd
0
:: — I >t
3t —12<0
0 ZOdd 60dd
;I t | | >t

| 1
(t—2)2+R2t—-9?%2-25<0



Detecting a violation, example (continued)

0 10dd
< =+= — >t
3-3t<0
0 40dd
< : | I >t
3t —12<0
0 20dd 60dd
4 I Tt — I —> {

(t—2)%+ (2t — 9)?

- 25 9

Violationatt* = 2




Detecting a violation, example (continued)

0 10dd
< =+= — >t
3-3t<0
0 Aodd
< : | + »t UV =
3t —12<0
0 20dd 60dd
P | + 0 | + —t
< I 1 »

(t—2)%+ (2t — 9)?

- 25 9

Violation from t* = 2 to t°Ut = 4




Detecting a violation, example (continued)

tout — 4
z dd
0, 1°
1 sl — ¢
I T
3-3t<0
t* - 2 0 Aodd
| — + cv=|—
3t —12<0 —
y 0 20dd 60dd
.t = | + ¢
T 1
(t—2)2+ @t -9)2}25 4Violation fromt* = 2 to t°U = 4 ‘




Detecting a violation, example (continued)

tout — 4
z dd
0, 1°
1 sl — ¢
I T
3-3t<0
t* - 2 0 Aodd
! 1 + t V=
3t -12<0
y 0 20dd 60dd
.t = | + ¢
I T
(t—2)2+ @t -9)2}25 4Violation fromt* = 2 to t°U = 4 ‘
> X

How can we know if this always works?



Another example

0 10dd
P | | .
“T1 >t
g,(t) <0
0 1even 4_odd 50dd
— — -t
g(t) <0
0 1_50dd 3even geven
P | | —
1 i i | >



Another example

0 10dd
T o
] 1 >
g,(t) <0
0 1even 4_odd 50dd
ol + | | | >t
L I | | -
g(t) <0
0 1.50dd  geven  geven
P | + 1 1 | —
] >

| | |
g3(t) <0



Another example

0 10dd
P | + | — ot
] 1 >
g,(t) <0
0 1even 4_odd 50dd
ol + | | | >t
L | | | -
g(t) <0
0 1.50dd  geven  geven
P | + 1 1 | —
] >

| |
g3(t) <0



Another example

0 10dd
P | + | — ot
] 1 >
g,(t) <0
0 1even 4_odd 50dd
ol + | | >t
D | | | .
g(t) <0
0 1_50dd 3even
P | + | 1 —t
] >

| |
g3(t) <0



Another example

0 10dd
P | + | — ot
] 1 >
g,(t) <0
0 1even 4_odd 50dd
ol + | | >t
D | | | .
g(t) <0
0 1_50dd 3even
P | + | 1 - —
] >

| |
g3(t) <0



Another example

0 10dd
P | + | — ot
] 1 >
g,(t) <0
0 1even 4_odd 50dd
ol + | L — 1 >t
L | | | -
g(t) <0
0 1.50dd  geven  geven
P | + | 1 — | —t
D | | |

g3(t) <0



Another example

0 10dd
P | + | T ot
1 ] >
g,(t) <0
0 1even 4odi 50dd
s : T I + i »t UV =
g(t) <0
0 1.50dd  gevery  5even
P | + | 1 — | —t
D | | | |
g3(t) <0

First violation at t* = 4




Safety- and mission-critical operations

Software
e Aircraft, satellite, space shuttle

e Cybersecurity
® Medical equipment
Banking, blockchain

Hardware
e Computer processors

® Fingerprint readers
® Avionics
Systems
® National airspace / urban airspace
® Autonomous vehicles
® Power plants

Mission defense systems

[3]: Why is Formal Methods Necessary? https://shemesh.larc.nasa.gov/fm/fm-why-new.html|


https://shemesh.larc.nasa.gov/fm/fm-why-new.html

Formal methods

* ‘Applying mathematically rigorous techniques for specification and verification of
software and/or hardware’
® Formal specifications are well-formed statements in a mathematical logic
® Formal verification uses a set of inference rules to prove properties of formal
specifications
e Experimentation is not enough in safety-critical applications

Real world

Formal world
Requirements ‘ ’ > -
@

Formal
verification

Program

[ IR | ==

(SW + HW)

[4]: What is Formal Methods? https://shemesh.larc.nasa.gov/fm/fm-what.html


https://shemesh.larc.nasa.gov/fm/fm-what.html

Formal methods

Real WOrId

Formal world

Formal
verification

ReqUiFEments

Algorithm

[4]: What is Formal Methods? https://shemesh.larc.nasa.gov/fm/fm-what.html

Program
execution

(SW + HW)



https://shemesh.larc.nasa.gov/fm/fm-what.html

Levels of formal methods

Example:

Level O

o [5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663
17/21 _“ t

“tanner.slagelCnasa.gov


https://dl.acm.org/doi/pdf/10.5555/886663

Levels of formal methods

Example:

“If one aircraft is always slower than

another aircraft, they will never get
too close."

Level O

o [5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663
17/2 j-t

nner.slagel@nasa.gov


https://dl.acm.org/doi/pdf/10.5555/886663

Levels of formal methods

Example:

Level 1

Level O

o [5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663
18/2 j-t

anner.slagel@nasa.gov


https://dl.acm.org/doi/pdf/10.5555/886663

Levels of formal methods

Example:

“Let the path of two aircraft be
given by

p1,p2 i R>g = R
such that

Pi(t) < ph(t),

i

Ko} forall t € R>g. If p1(0) < p2(0) and

3 [p1(0) = p2(0)| > Dsare then for all
te Rzo,

o

E p1(0) = p2(0)] = Dsate.”

Q

-

o [5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663
18/26 jta

nner.slagel@nasa.gov


https://dl.acm.org/doi/pdf/10.5555/886663

Levels of formal methods

Example:

(@]

< B Specification completely in formal language
Pl © Verification same as level 1, possibly with some mechanized
Q

— support tools (syntax checker, type checker)
i

o

>

()

4

o

o

>

()

i}

[5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663
j tan

ner .



https://dl.acm.org/doi/pdf/10.5555/886663

Levels of formal methods

Level 1 Level 2

Level O

Specification completely in formal language

Verification same as level 1, possibly with some mechanized
support tools (syntax checker, type checker)

* Specification in logical and mathematical language
 Verification with informal hand-written proofs, at level of
mathematics textbook

e Specification in natural language, pseudocode, or computer
language
* Verification ‘by eye’ and experimentation

Example:

follow_safe:
(pl,p2:position, Dsafe:nnreal,
tl: nnreal):
abs(p1(0)-p2(0)) < Dsafe
p2(0) < p1l(o)]

(t:nnreal):
deriv(pl)(t) < deriv(p2)(t)

LL(t:nnreal):
abs(pl(t)-p2(t)) < Dsafe

[5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663


https://dl.acm.org/doi/pdf/10.5555/886663

Level1 Level2 Level3

Level O

Levels of formal methods

Example:

Specification completely in formal language
Verification done with mechanized theorem proving and proof
checker

Specification completely in formal language

Verification same as level 1, possibly with some mechanized
support tools (syntax checker, type checker)

e Specification in natural language, pseudocode, or computer
language
* Verification ‘by eye’ and experimentation

[5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663


https://dl.acm.org/doi/pdf/10.5555/886663

Level1 Level2 Level3

Level O

Levels of formal methods

Example:
follow_safe: LE
* Specification completely in formal language RALL(p1,p2:position, Dsafe:nnreal,
* Verification done with mechanized theorem proving and proof g mREle
abs(p1(0)-p2(0)) < Dsafe
checker D p2(0) < p1l(e]
LL(t:nnreal):

e deriv(p1) (t) < deriv(p2)(t)

Specification completely in formal language T —

Verification same as level 1, possibly with some mechanized abs(p1(t)-p2(t)) < Dsafe

support tools (syntax checker, type checker) follow_safe : PROOF

( 1 (skeep)
(spread (lemma "monotonic_antideriv_gt[nnreal]™)

+ Specification in logical and mathematical language (el (ese M=)
* Verification with informal hand-written proofs, at level of 4t R SE(D £

(SR 0. @IE (St [0, E1 ISE © (expand "Safe?") (propax))

mathematics textbook (then (expand "Safe?")(skeep) (expand

(expand "violation?")(inst -1 'p2") (ass
(spread (split -1)

» Specification in natural language, pseudocode, or computer {(thenS(novesterms S2RINT)(expand fabstioi1) (asse

[— (tf (skeep) (expand "slower?" -2)(inst -2 "x")

g' : g - , . . [(expand "vel" -2)|(assert)))))))

» Verification ‘by eye” and experimentation (t (assert) (lemma “connected_nnreal") (propax)))))

QED follow_safe

[5]: John Rushby. 1993. Formal Methods and Digital Systems Validation for Airborne Systems. Technical Report CSL-93-7. https://dl.acm.org/doi/pdf/10.5555/886663


https://dl.acm.org/doi/pdf/10.5555/886663

Specification (.pvs) Interactive theorem prover

half(a:real,b:real | b>a):
{r:real | abs(a-r) = abs{b-r)} =
(a+b)/2

[1] half(a, b) < half(a ~ 2, b ~ 2)

(expand "half")J]

prove | show-prooflite
half_sq:
(a:real,b:real | b>a):
(n:posnat):
b>n
half(a,b) < half(a~n,b"n)

— Ctrl+SPACE shows the full list of commands.
— TAB autocompletes commands. Double click expands definitions.

[6]: PVS 7.1 official webpage: https://pvs.csl.sri.com/
[7]: VScode-PVS https://github.com/nasa/vscode-pvs


https://pvs.csl.sri.com/
https://github.com/nasa/vscode-pvs

Proof (.prt) Interactive theorem prover

half_sq : PROOF
(then (skeep)(inst 1 "2")(flatten)
(spread (case "a<a™2")
((spread (case "b<b™2")

({then (expand "half")(mult-by 1 "2")(assert))
(then (div-by 1 "b")(grind))))
(then (div-by 1 "a")(grind)))))
QED half_sq

[1] half(a, b) < half(a ~ 2, b ~ 2)

(expand "half")J]

— Ctrl+SPACE shows the full list of commands.
— TAB autocompletes commands. Double click expands definitions.

[6]: PVS 7.1 official webpage: https://pvs.csl.sri.com/
[7]: VScode-PVS https://github.com/nasa/vscode-pvs


https://pvs.csl.sri.com/
https://github.com/nasa/vscode-pvs

® ‘Prototype Verification System'’ - developed by SRI International
® Interactive theorem prover

® Higher order logic

® Completely typed, dependent types
® Automation

e Customizable tactics and strategies

® Floating point analysis tool PRECISA
® Real-number proving

® [nterval arithmetic

® Affine arithmetic

® Numerical integration

® Tarski/Storm

e Animation and rapid prototyping - PVSio
VS-Code PVS

[8]: NASA Langley Formal Methods: https://shemesh.larc.nasa.gov/fm/


https://shemesh.larc.nasa.gov/fm/

NASAlib

e Collection of 53 PVS libraries, around
35,000 lemmas

Real numbers

Real and complex analysis
Linear algebra

Graph theory

Number theory

Topology

Floating point reasoning
Term rewriting systems
...and more!

e Always looking to extend and add
libraries

[9] NASAlib is available at https://github.com/nasa/pvslib



https://github.com/nasa/pvslib

Back to PolySafe

Violation!




Formal analysis of PolySafe

Input: G = {t|gi(t) <0,Vi=1,...n}
Output: t* time of first violation or FALSE

fori,...ndo
calculate roots with multiplicities of g;
end for
sort roots in ascending order
calculate v, vector of signs of polynomials at
zero
6. for each root do
7. update v at current root
8. ifall entries of v are'—"then
9
0

Uk wnNn

return current root
. endif
11. end for
12. return FALSE



Formal analysis of PolySafe

Input: G = {t|gi(t) <0,Vi=1,...n}
Output: t* time of first violation or FALSE

Uk wnNn

fori,...ndo

calculate roots with multiplicities of g;
end for
sort roots in ascending order
calculate v, vector of signs of polynomials at
zero
for each root do

update v at current root

if all entries of v are '—' then

return current root
end if

. end for

return FALSE

Warning! This algorithm has flaws that could
result in a catastrophic failure



Formal analysis of PolySafe

Input: G = {t|g:(t) <0,Vi=1,...n} Warning! This algorithm has flaws that could
Output: t* time of first violation or FALSE result in a catastrophic failure

1. fori,...ndo There could be

2. calculate roots with multiplicities of g; e Complex roots

3. end for e Infinitely many roots

4. sort roots in ascending order y y

5. calculate v, vector of signs of polynomials at

zero
6. for each root do

7. update v at current root

8. if all entries of v are'—'then
9 return current root

o. endif

11. end for

12. return FALSE



Formal analysis of PolySafe

Input: G = {t|g:(t) <0,Vi=1,...n} Warning! This algorithm has flaws that could
Output: t* time of first violation or FALSE result in a catastrophic failure

1. fori,...ndo There could be

2. calculate roots with multiplicities of g; e Complex roots

3. end for ® |nfinitely many roots (g; = 0)

4. sort roots in ascending order y y 9i =

5. calculate v, vector of signs of polynomials at Example:

zero

6. for each root do plt)=[ 4t t—1 2t+2 ]T

7. update v at current root

8. ifall entries of v are’'—' then g1(z,y, 2,t) = =32z + —4y? + 22

9 return current root

10. endif

1. end for

12. return FALSE



Formal analysis of PolySafe

Input: G = {t|gi(t) <0,Vi=1,...n}
Output: t* time of first violation or FALSE

. fori,..

VA WN o

.n do
calculate roots with multiplicities of g;

. end for
. sort roots in ascending order
. calculate v, vector of signs of polynomials at

zero
for each root do
update v at current root
if all entries of v are'—' then
return current root
end if

. end for
. return FALSE

Warning! This algorithm has flaws that could

result in a catastrophic failure
There could be

e Complex roots
e [nfinitely many roots (g; = 0)
Example:
1 T
plt)y=[ 4t t—1 2t+2 |

91(3572/,2,75) = —32z + _4y2 + Z2

vt, gl(z(t),y(t), Z(t)vt) =0



Formal analysis of PolySafe

Inp

utt G ={t]gi(t) <0,Yi=1,...n}

Output: t* time of first violation or FALSE

8.

0.
10.
1.
12.
13.
14.

;
2
3
4.
5
6
7

. discard zero polynomials, update G
. fori,...ndo
calculate roots with multiplicities of g;
discard non-real roots, negative roots
. end for
. sort roots in ascending order
. calculate v, vector of signs of polynomials at
zero
for each root do

update v at current root

if all entries of v are'—' then

return current root

end if
end for
return FALSE

Warning! This algorithm has flaws that could

result in a catastrophic failure
There could be

e Complex roots
e [nfinitely many roots (g; = 0)
Example:
1 T
plty=[ 4t t—1 2t+2 |

gl($7yaz?t) = —32z + _4y2 + Z2

vt, gl(z(t)vy(t)?z(t)vt) =0



Formal analysis of PolySafe

Inp

utt G ={t]gi(t) <0,Yi=1,...n}

Output: t* time of first violation or FALSE

8.

0.
10.
1.
12.
13.
14.

;
2
3
4.
5
6
7

. discard zero polynomials, update G
. fori,...ndo
calculate roots with multiplicities of g;
discard non-real roots, negative roots
. end for
. sortroots in ascending order
. calculate v, vector of signs of polynomials at
zero
for each root do

update v at current root

if all entries of v are'—' then

return current root

end if
end for
return FALSE

Warning! This algorithm has flaws that could
result in a catastrophic failure



Formal analysis of PolySafe

Input: G = {t|gi(t) <0,Vi=1,...n}
Output: t* time of first violation or FALSE

8.

0.
10.
1.
12.
13.
14.

;
2
3
4.
5
6
7

discard zero polynomials, update G
fori,...ndo
calculate roots with multiplicities of g;
discard non-real roots, negative roots

. end for
. sortroots in ascending order
. calculate v, vector of signs of polynomials

at zero
for each root do
update v at current root
if all entries of v are '—' then
return current root
end if
end for
return FALSE

Warning! This algorithm has flaws that could
result in a catastrophic failure

If 0 is the root of g;, then computing v fails



Formal analysis of PolySafe

Input: G = {t|g:(t) <0,Vi=1,...n} Warning! This algorithm has flaws that could
Output: ¢t* time of first violation or FALSE result in a catastrophic failure

R dnscgrd zero polynomials, update ¢ If 0 is the root of g;, then computing v fails
2. fori,...ndo

3. calculate roots with multiplicities of g,

4. discard non-real roots, negative roots

5. end for

6. sortroots in ascending order

7. choose c less than all roots

8. calculate v, vector of signs of polynomials

atc

9. for each root do
10.  update v at current root

1. if all entries of v are'—' then

12. return current root
13.  endif
14. end for

15. return FALSE



Formal analysis of PolySafe

Input: G = {t|g:(t) <0,Vi=1,...n} Warning! This algorithm has flaws that could
Output: ¢t* time of first violation or FALSE result in a catastrophic failure

1. discard zero polynomials, update G

2. fori,...ndo

3. calculate roots with multiplicities of g,
4. discard non-real roots, negative roots
5. end for

6. sortroots in ascending order
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Catastrophic failure

The update strategy of v is
flawed, and can result in a vi-
olation not being detected

. choose c less than all roots

. calculate v, vector of signs of polynomials at ¢
. for each root do

. update v at current root

11.  if all entries of v are'—' then

12. return current root
13.  endif
14. end for

15. return FALSE
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Formal analysis of PolySafe

Input: G = {t|gi(t) <0,Vi=1,...n}
Output: t* time of first violation or FALSE
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. discard zero polynomials, update G
. fori,...ndo

calculate roots with multiplicities of g;
discard non-real roots, negative roots
end for

. sortroots in ascending order

choose cless than all roots

. calculate v, vector of signs of polynomials at ¢
. for each root do

update v at current root

if all entries of v are'—' then
return current root

end if

. end for
. return FALSE

Warning! This algorithm has flaws that could
result in a catastrophic failure

Catastrophic failure

The update strategy of v is
flawed, and can result in a vi-
olation not being detected

When a polynomial is positive around a root
with even multiplicity, a violation will not be
detected

Introduce +* to fix the update
process
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Formal analysis of PolySafe

Input: G = {t]g:(t) <0,Vi=1,...n} Theorem: PolySafe works

Output: t* time of first violation or FALSE

) . e |f the Polysafe algorithm returns
. discard zero polynomials, update G : . .
. fori,...ndo False, then there is no violation

calculate roots with multiplicities of g; e |f the Polysafe algorithm returns a

discard non-real roots, negative roots number ¢*, then the first instance

.
2

3

4

5. end for of a violation occurs at time ¢*
6. sortroots in ascending order
7
8
9
0

. choose c less than all roots

. calculate v, vector of signs of polynomials at ¢

. for each root do

. update v at current root (with change)

11.  if all entries of v are either '—' or '+*'
then

12. return current root

13.  endif

14. end for

15. return FALSE



Formal analysis of PolySafe

Input: G = {t|gi(t) <0,Vi=1,...n}
Output: t* time of first violation or FALSE

. discard zero polynomials, update G
. fori,...ndo
calculate roots with multiplicities of g;
discard non-real roots, negative roots
end for
. sortroots in ascending order
choose cless than all roots

. for each root do
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then
12. return current root
13.  endif
14. end for
15. return FALSE

. calculate v, vector of signs of polynomials at ¢

update v at current root (with change)
if all entries of v are either '—" or "+*'

Theorem: PolySafe works

e |f the Polysafe algorithm returns
False, then there is no violation

e |f the Polysafe algorithm returns a
number ¢*, then the first instance
of a violation occurs at time ¢*

PolySafe_works:
(p:Polynomial,
G:0b_T,
rl:(sorted_root_list?)):
(PolySafe_full(G)(p) < -1

Violation?(G) (p))

(PolySafe_full(G)(p) >= @
Violation?(G)(p)



Formal analysis of PolySafe (conclusions)

PolySafe_works:
(p:Polynomial,
G:0b_T,
rl:(sorted_root_list?)):
(PolySafe_full(G)(p) < -1

Violation?(G) (p))

(PolySafe_full(G)(p) >= @
Violation?(G) (p)

® Summary
® 438 proofs
® Polynomials as lists (with standard
form)
® Polynomials around roots
® First violation occurring at a root

® Qutcomes

® |dentified missing requirements of
PolySafe

® |dentified and fixed root behavior

® Fully executable PolySafe in PVS
environment

e Further considerations

® Root computation and
approximation
® Resolving a conflict

[2] “PolySafe: A Formally Verified Algorithm for Conflict Detection on a Polynomial Airspace” BK Colbert, | Tanner Slagel, LG Crespo, S Balachandran, 2020

https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf


https://shemesh.larc.nasa.gov/fm/papers/IFAC2020-draft.pdf

Conclusions, challenges, future Work

Conclusion:
® Cows
PVS math Auto-code
e Formal methods libraries: generation
e PVS, NASAlib NASAlib with Frama-C
. . . Formal
e Formal reasoning in a polynomial Animation reasoning for
airspace & rapid hybrid
prototyping: .
Challenges, future work : PVSio g;f_e::,ss

® Expanding NASAlib

® Formal verification for increasing
autonomous complex systems

® Proof automation, automated reasoning
e Animation and rapid prototyping
e Code generation

Usable
interface:
VSCode-PVS

automation
using ML &
Al

X . Automation
Floating point with SMT
analysis: PRECiSA

solver: meti-
Tarski

Thanks for listening! Q & C?






