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This paper describes a variable-pitch propeller testing and aerodynamic modeling method-
ology for electric vertical takeoff and landing (eVTOL) aircraft using wind tunnel testing.
Propellers used for eVTOL aircraft propulsion systems experience a wide range of operating
conditions resulting in significant variation of axial thrust and torque, as well as off-axis
forces and moments, across a typical flight envelope. An experimental design is developed to
collect informative wind tunnel data in an efficient manner using response surface methods.
System identification methods are then applied to isolated propeller wind tunnel data to
develop a mathematical model of the propeller valid throughout the transition envelope of a
vectored-thrust eVTOL aircraft. Multiple explanatory variable definitions are postulated and
compared using modeling and prediction performance metrics. Modeling results validated
against data withheld from the modeling process indicate good predictive capability and agree
with theoretical expectations. All identified propeller models are provided, which allows the
models to be used in future eVTOL aircraft flight dynamics simulations.

Nomenclature

𝐶𝑇𝑥 , 𝐶𝑇𝑦 , 𝐶𝑇𝑧 = propeller force coefficients
𝐶𝑄𝑥

, 𝐶𝑄𝑦
, 𝐶𝑄𝑧

= propeller moment coefficients
𝐷 = propeller diameter, ft
𝑖𝑝 = propeller incidence angle, rad
𝐽 = advance ratio
𝐽𝑥 = normal advance ratio
𝐽𝑧 = edgewise advance ratio
𝑛 = propeller and motor rotational speed, revolutions/s
𝑄𝑥 , 𝑄𝑦 , 𝑄𝑧 = propeller moments, ft·lbf
𝑞 = freestream dynamic pressure, lbf/ft2
𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧 = propeller forces, lbf
𝑉 = freestream velocity, ft/s
𝛿𝑐 = collective pitch (blade root) angle, rad
[𝑚 = motor pulse width modulation command, `s
[𝑐 = collective pitch servo-actuator pulse width modulation command, `s
𝜌 = air density, slug/ft3

I. Introduction

Electric vertical takeoff and landing (eVTOL) aircraft are currently drawing significant interest in the aerospace
industry as an enabling technology for future Urban Air Mobility (UAM) transportation missions. Mission

requirements for eVTOL aircraft necessitate operations in a wide variety of flight conditions spanning hover, transition,
and forward flight. Consequently, eVTOL aircraft propellers experience aerodynamic conditions that significantly differ
from conventional propeller and rotor operation in a typical flight profile. Propeller aerodynamics are conventionally
modeled in the axial airflow condition where data tables or functional representations of axial thrust and torque
coefficients are sufficient to model the propeller aerodynamics. At high incidence angles, axial thrust and torque deviate
from nominal axial airflow values and off-axis propulsive forces and moments become significant.
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Several works have employed methods for theoretically and computationally predicting propeller aerodynamics
at incidence [1–10]; however, experimental techniques provide the most accuracy in revealing the highly complex
and nonlinear behavior of high incidence angle propeller aerodynamics. Previous experimental studies of propellers
operating at high incidence angles include Refs. [11–19]. In particular, the work described in this paper builds on
experimental design and modeling techniques for fixed-pitch, eVTOL aircraft propellers described in Refs. [16–19].
The significant new contributions of this work include characterization of a variable-pitch eVTOL aircraft propeller,
an extended experimental design methodology, a comparison of modeling results using different explanatory variable
definitions, and distribution of variable-pitch propeller aerodynamics models valid through a significant portion of an
eVTOL aircraft flight envelope.

The objective of this work is to identify a model of the propeller aerodynamics enabling accurate flight dynamics
simulation development for a new vectored-thrust eVTOL vehicle. Vectored thrust in the context of eVTOL aircraft
includes both tilt-wing and tilt-rotor configurations. The intended aircraft is similar in scale and utility to the Langley
Aerodrome No. 8 (LA-8) tandem tilt-wing, eVTOL, subscale wind-tunnel/flight test (SWFT) aircraft pictured in
Fig. 1 [20]. Design of experiments (DOE) and response surface methodology (RSM) techniques are leveraged to
develop an efficient, statistically-rigorous wind tunnel experiment [21, 22]. Response surface models are then developed
using propeller aerodynamic model structure insight [16] and system identification algorithms [23]. The proposed
propeller model identification strategies can be applied for many tilt-wing and tilt-rotor eVTOL vehicles currently under
development∗ and future eVTOL vehicles. This work is complemented by recent eVTOL aircraft modeling research
leveraging isolated propeller models for flight dynamics simulation development [24, 25].

Fig. 1 LA-8 mounted in the NASA Langley 12-Foot Low-Speed Tunnel.

This paper is organized as follows. Section II provides background information on propeller aerodynamics.
Section III describes the wind tunnel experimental setup. The experimental design leveraging DOE/RSM techniques is
developed in Sec. IV. Section V outlines the overall propeller aerodynamic modeling approach, which is followed by an
overview of the employed model identification methods given in Sec. VI. Propeller aerodynamic modeling results are
presented in Sec. VII. Overall conclusions are summarized in Sec. VIII.

II. Background
Propeller aerodynamics are well-defined and well-researched for nominal operating conditions in axial flow where

aerodynamic predictions can be made analytically and/or experimentally. Theoretical techniques include momentum
theory, blade element methods, and vortex theories [26]. Experimental techniques typically consist of developing data
tables or functional representations from wind tunnel data. For a propeller operating in airflow normal to the propeller
disk, only a net thrust force and a net aerodynamic torque acting along the axis of rotation are generated [27]. The
individual propeller blades can be thought of as rotating wings which each produce a lift force perpendicular to the
relative flow direction and a drag force parallel to the relative flow direction [6]. The summed lift forces produced by the
propeller blades is the propeller thrust 𝑇𝑥 . The summed drag forces result in a net moment about the propeller shaft
opposite to the direction of rotation, which is the propeller aerodynamic torque 𝑄𝑥 .

∗Information available online at https://evtol.news/aircraft [retrieved 29 October 2021]
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Propeller data are generally nondimensionalized and presented in terms of thrust coefficient𝐶𝑇𝑥 and torque coefficient
𝐶𝑄𝑥

(or equivalently by power coefficient 𝐶𝑃 = 2𝜋𝐶𝑄𝑥
where 𝑃 = 2𝜋𝑛𝑄𝑥). The thrust and torque coefficients are

defined as:

𝐶𝑇𝑥 =
𝑇𝑥

𝜌𝑛2𝐷4 (1)

𝐶𝑄𝑥
=

𝑄𝑥

𝜌𝑛2𝐷5 (2)

The thrust and torque coefficients can be shown through dimensional analysis to have a functional dependence on
advance ratio 𝐽, propeller blade Reynolds number 𝑅𝑒, and propeller tip Mach number 𝑀tip for a given fixed-pitch
propeller design [27, 28]. For propellers with variable-pitch hubs, thrust and torque also vary with blade pitch angle.

Advance ratio 𝐽, which relates to the linear distance traveled by the propeller in one revolution, is defined as:

𝐽 =
𝑉

𝑛𝐷
(3)

Advance ratio generally has the largest effect on fixed-pitch propeller aerodynamics, and accordingly, thrust and
torque coefficient representations are commonly expressed as only a function of advance ratio. Representing propeller
aerodynamics only as a function of advance ratio for a fixed blade pitch angle requires that airflow is parallel to the
propeller axis of rotation as well as the assumptions that viscous and compressibility effects are negligible [27].

Reynolds number is a dimensionless quantity which corresponds to the ratio of inertial to viscous forces acting on a
body. For large propellers, the propeller blade Reynolds number effects are minimal and can generally be neglected.
For small propellers, the Reynolds number is lower, indicating that the viscous forces become important and results in
propeller performance degradation [29, 30]. Following the definition given in Ref. [30], the propeller blade Reynolds
number 𝑅𝑒 is

𝑅𝑒 =
𝜌𝑉𝑝𝑐

`
(4)

where 𝑐 is the propeller chord at 75% blade length, ` is the dynamic viscosity, and 𝑉𝑝 = 0.75𝜋𝑛𝐷 is the propeller blade
linear speed at 75% blade length. Mach number is the ratio of flow speed to the speed of sound 𝑎, which physically
represents the ratio of inertial forces to forces related to compressibility of the fluid [31]. The propeller tip Mach number,
which quantifies the averaged compressibility effects, is defined as [32]:

𝑀tip =
𝜋𝑛𝐷

𝑎
(5)

For the propeller studied in this paper, the propeller blade Reynolds number and tip Mach number effects were small
compared to advance ratio and blade pitch angle effects; however, the influence of propeller blade Reynolds number
and/or tip Mach number, which are both proportional to rotational speed 𝑛, was found to be beneficial to consider for
model development. This will be discussed further in Sec. VII.

When the airflow relative to a propeller is not parallel to the axis of rotation, the propeller will produce auxiliary
forces and moments other than the axial thrust and torque [27]. In this condition, periodic variation in propeller blade
local angle of attack results in a non-uniform load distribution on the propeller disk. Thus, in a general case of arbitrary
flow direction relative to the propeller disk, propeller forces and moments will also be dependent on angle between the
freestream velocity and propeller axis of rotation, in addition to advance ratio, propeller blade pitch angle, propeller
blade Reynolds number, tip Mach number, and the propeller design. This angle between the freestream airflow and
propeller rotation axis is the propeller incidence angle, 𝑖𝑝, shown in Fig. 2. The value of 𝑖𝑝 is zero when airflow is
normal to the propeller disk, opposing the direction of axial thrust. Previous work has demonstrated the benefit of using
the normal and edgewise (tangential) component of advance ratio

𝐽𝑥 =
𝑉 cos 𝑖𝑝
𝑛𝐷

= 𝐽 cos 𝑖𝑝 (6)

𝐽𝑧 =
𝑉 sin 𝑖𝑝
𝑛𝐷

= 𝐽 sin 𝑖𝑝 (7)

as explanatory variables for modeling propeller aerodynamics at high incidence angles [16]. Similar advance ratio
component definitions are used for rotorcraft [31, 32]; this representation of advance ratio was also used in a previous
propeller modeling effort which developed lookup tables for propulsive forces and moments for a quadrotor vehicle [33].

3



𝑉

𝑧

𝑖𝑝

𝑥

Fig. 2 Propeller incidence angle definition and coordinate system.

The propeller side force𝑇𝑦 , normal force𝑇𝑧 , pitching moment𝑄𝑦 , and yawing moment𝑄𝑧 can be non-dimensionalized
in a manner similar to the thrust 𝑇𝑥 and torque 𝑄𝑥 [6]. The propeller normal force coefficient 𝐶𝑇𝑧 , side force coefficient
𝐶𝑇𝑦 , pitching moment coefficient 𝐶𝑄𝑦

, and yawing moment coefficients 𝐶𝑄𝑧
, are defined as:

𝐶𝑇𝑦 =
𝑇𝑦

𝜌𝑛2𝐷4 , 𝐶𝑇𝑧 =
𝑇𝑧

𝜌𝑛2𝐷4 , 𝐶𝑄𝑦
=

𝑄𝑦

𝜌𝑛2𝐷5 , 𝐶𝑄𝑧
=

𝑄𝑧

𝜌𝑛2𝐷5 (8)

The propeller force and moment sign convention used in this work follows the right-handed propeller coordinate system
shown in Fig. 2, where the 𝑦-axis is pointed into the page.

III. Wind Tunnel Test Setup
The test article for this study was a variable-pitch, three-bladed, 19.5-inch diameter, clockwise rotating propeller.

Assuming that all clockwise and counterclockwise rotating propellers on an aircraft have perfectly mirrored designs,
only one orientation needs to be tested. The propeller data and models would be identical, except that the signs of the
lateral propeller force and moment components, 𝑄𝑥 , 𝑇𝑦 , and 𝑄𝑧 , would be reversed for the counterclockwise rotating
propeller. Figure 3 shows the assembled propeller and variable-pitch hub on the wind tunnel sting. The propeller was
powered by a 220 KV electric motor and 100 amp electronic speed control (ESC). A variable-pitch mechanism was
designed and fabricated to equip the flight vehicle with high-bandwidth variable-pitch control for aircraft stabilization.
The ability to leverage variable propeller pitch as a control effector becomes important for certain full-scale eVTOL
aircraft configurations because motor/propeller rotational speed control becomes slower as propeller diameter and inertia
increase. As configured for testing, the custom variable-pitch mechanism allowed setting the collective pitch angle 𝛿𝑐
(blade root pitch angle) between −9.6 and +7.2 deg. A multi-exposure image showing propeller blade collective pitch
movement is shown in Fig. 4.

The isolated propeller wind tunnel experiment was performed in the NASA Langley Research Center 12-Foot
Low-Speed Tunnel.† The test was designed to cover a significant portion of the operational flight envelope of a future
eVTOL SWFT aircraft. For operational convenience and test facility implementation consideration, test factors selected
to control during wind tunnel testing were freestream velocity𝑉 (or dynamic pressure 𝑞), incidence angle 𝑖𝑝 , motor pulse
width modulation (PWM) command [𝑚, and collective pitch servo-actuator PWM command [𝑐. The factor settings to
test were determined using DOE/RSM experimental design techniques that will be discussed in Sec. IV. At each test
point, the six force and moment components were measured using a strain gauge balance and a propeller rotational
speed measurement was provided by the ESC. A polynomial calibration model between the collective servo-actuator
PWM command [𝑐 and the collective pitch angle 𝛿𝑐 was used to determine the tested collective pitch angle.

Each individual wind tunnel run was executed by automatically commanding incidence angle, motor PWM command,
and collective PWM command at each test point throughout the run. Incidence angle variation is depicted in the
multi-exposure image displayed in Fig. 5a. The propeller test coordinate system and incidence angle measurement
are shown in Fig. 5b. The wind tunnel dynamic pressure setting had to be manually changed from the control room
and was slower to change compared to the other test factors, but could be adjusted during the course of a run without

†Information available online at https://researchdirectorate.larc.nasa.gov/12-foot-low-speed-tunnel-12-ft-lst/ [retrieved 29 October 2021]
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Fig. 3 Experimental propeller mounted on the wind tunnel sting.

Fig. 4 Multi-exposure image showing propeller blade pitch movement.

shutting off tunnel airflow. In accordance with the ease of changing the settings for each test factor, the incidence
angle, motor PWM command, and collective servo-actuator PWM command were designated as easy-to-change (ETC)
factors; freestream velocity (dynamic pressure) was designated as a hard-to-change (HTC) factor. These considerations
informed the experimental design discussed in the next section.

𝑉

Sting Rotation

(a) Multi-exposure image showing incidence angle variation

𝑖𝑝

𝑥

𝑦
𝑧

𝑉

(b) Propeller test coordinate system

Fig. 5 Experimental propeller mounted in the NASA Langley 12-Foot Low-Speed Tunnel (viewed from above).

Each of the test factors were varied to encompass the anticipated transition envelope for the future eVTOL vehicle.
Although the test point conditions were specified using motor PWM command and collective pitch servo-actuator PWM
command, these settings were used to indirectly sweep variables more pertinent to propeller aerodynamics: propeller
rotational speed and collective pitch angle. Freestream velocity and propeller rotational speed were then further reduced
to calculate propeller advance ratio. Changes in flow velocity drive changes in propeller advance ratio. Changes in
motor PWM command change the propeller rotational speed, which has the primary effect of changing the propeller
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blade Reynolds number and tip Mach number, but also contributes to changes in the propeller advance ratio.

IV. Experimental Design
As mentioned previously, the propeller test matrix was designed using four variable factors: freestream velocity

𝑉 (HTC), incidence angle 𝑖𝑝 (ETC), motor command [𝑚 (ETC), and collective servo-actuator command [𝑐 (ETC).
For the wind tunnel used for this study, changing 𝑉 required more time and effort than to change 𝑖𝑝, [𝑚, and [𝑐.
Consequently, for testing efficiency, 𝑉 was treated as a HTC factor held at a constant value for several consecutive test
points, rather than being varied between each test point. Four different test regions were designed and tested:

1) a 2-factor Hover Region varying [𝑚 and [𝑐 with no airflow,
2) a 4-factor Low Incidence Region with a higher airspeed range (high-speed transition),
3) a 4-factor High Incidence Region with a lower airspeed range (low-speed transition), and
4) a 3-factor Descent Region surrounding the vortex ring state (VRS) condition at 𝑖𝑝 = 180 deg.

The factor ranges tested for each region are listed in Table 1, with a visual overview shown in Fig. 6.‡ These test ranges
were selected based on the expected transition flight envelope, test hardware restrictions, and insight from a previous
study [16, 17], where it was expected that a cubic response surface model would be able to adequately describe the
propeller force and moment coefficient variation in each region. Note that a lower collective command setting [𝑐
corresponds to a higher collective pitch angle 𝛿𝑐, and vice versa.

Table 1 Factor ranges for each propeller test region

Factor Units Hover Region Low Incidence Region High Incidence Region Descent Region
𝑉 (HTC) ft/s 0 (fixed) 14.5 to 71.1 14.5 to 54.3 14.5 to 45.9
𝑖𝑝 (ETC) deg N/A (fixed at 0) 0 to 65 50 to 100 180 (fixed)
[𝑚 (ETC) `s 1500 to 1960 1500 to 1960 1500 to 1960 1500 to 1960
[𝑐 (ETC) `s 1000 to 2000 1000 to 1500 1200 to 1600 1200 to 1600

Fig. 6 Freestream airspeed and incidence angle range for each propeller test region.

Modeling test matrix design was accomplished with the aid of Design-Expert®, a commercially available statistical
software package.§ The test factor settings in each region were determined using I-Optimal response surface designs.
I-optimal designs minimize the integrated prediction variance for a predefined model order over the range of test factors,
which reduces prediction error for the identified models [21, 22]. The primary goal for this study was to develop
propeller aerodynamic models with low prediction error over the region of operability, so an I-optimal design is a
good response surface design choice. The Hover Region was run as a completely randomized design, meaning that
each test factor was varied at each new test point. The Low Incidence Region, High Incidence Region, and Descent
Region employed split-plot designs [34, 35], or designs with restricted randomization for HTC factor(s). Split-plot
designs are used to conduct efficient experiments with HTC factors, while still executing a statistically-rigorous designed
experiment. The HTC factors (whole-plot factors) are held at a constant value for several consecutive test points while

‡Propeller incidence angle 𝑖𝑝 is undefined in hover (𝑉 = 0). For Hover Region testing, the sting orientation angle was fixed at 0 deg, as indicated
in Table 1. The Hover Region is plotted from 0 to 180 deg in Fig. 6 to reflect that hover can be approached from all incidence angles at low speeds.

§Information available online at https://www.statease.com/software/design-expert/ [retrieved 29 October 2021]
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the ETC factors (sub-plot factors) are varied between each test point. The set of consecutive test points where the
settings for HTC factor(s) are held constant is referred to as a group. The different amount of randomization for HTC
factors and ETC factors results in different whole-plot and sub-plot variance components, which must be considered
for experiment design and data analysis [22]. All split-plot designs used for this work were ordinary least-squares
equivalent [22, 36–38], meaning that the ordinary least-squares parameter estimates are equal to parameter estimates
obtained using generalized least-squares with sub-plot/whole-plot variance component estimates. In other words, the
design performance and estimates of model parameters are decoupled from the sub-plot and whole-plot variance
components.

A set of completely randomized and split-plot I-optimal experiment designs were developed with different design
model complexities to investigate the adequacy of fitting a cubic model. Assessment of the prediction variance of
a response surface design for a given model structure provides insight into its precision of prediction and allows
comparison of different response surface designs. For a completely randomized design, the variance of the predicted
response is

Var[ �̂�(𝒙0)] = 𝜎2𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (9)

where �̂�(𝒙0) is the predicted response evaluated at the design space location 𝒙0 expanded to the form of the model
structure, 𝑿 is a matrix composed of the designed test points in the form of the model structure, and 𝜎2 is the
measurement error variance [22]. As can be seen by examining Eq. (9), the prediction variance is a function of the
experimental design, the model structure, the location in the design space, and the measurement facility error variance.
The scaled prediction variance (SPV) and unscaled prediction variance (UPV), which remove the dependence on 𝜎2,
are used to compare experimental designs prior to experimentation. SPV is defined as

SPV =
𝑁 Var[ �̂�(𝒙0)]

𝜎2 = 𝑁 𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (10)

where the number of test points 𝑁 penalizes a larger design size [22]. The SPV considers the prediction accuracy as
well as the expense of test points when comparing designs. The UPV, defined as

UPV =
Var[ �̂�(𝒙0)]

𝜎2 = 𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (11)

provides an assessment of the prediction precision independent from the size of the experimental design. For split-plot
designs, restricted randomization for HTC factors and the consequent compound error structure results in a different
prediction variance computation [39]. The prediction variance for split-plot designs is calculated as:

Var[ �̂�(𝒙0)] = 𝒙𝑇0

(
𝑿𝑇𝚺−1𝑿

)−1
𝒙0 (12)

The SPV and UPV for split-plot designs are:

SPV =
𝑁 Var[ �̂�(𝒙0)]
𝜎2

sp + 𝜎2
wp

=
𝑁 𝒙𝑇0

(
𝑿𝑇𝚺−1𝑿

)−1
𝒙0

𝜎2
sp + 𝜎2

wp
(13)

UPV =
Var[ �̂�(𝒙0)]
𝜎2

sp + 𝜎2
wp

=
𝒙𝑇0

(
𝑿𝑇𝚺−1𝑿

)−1
𝒙0

𝜎2
sp + 𝜎2

wp
(14)

Here, 𝜎2
sp is the sub-plot variance and 𝜎2

wp is the whole-plot variance, with the measurement error variance of a single
data point being 𝜎2

sp + 𝜎2
wp. For 𝑛wp total whole-plots (groups), the covariance matrix 𝚺 is

𝚺 =


𝚺1 . . . 0
...

. . .
...

0 . . . 𝚺𝑛wp


with the covariance matrix for each 𝑗 th whole plot given as [39]:

𝚺 𝑗 =


𝜎2

sp + 𝜎2
wp . . . 𝜎2

wp
...

. . .
...

𝜎2
wp . . . 𝜎2

sp + 𝜎2
wp

 , 𝑗 = 1, 2, ..., 𝑛wp
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Graphical presentation of the distribution of prediction variance throughout the design space is an effective way to
assess experimental designs. Each candidate design used for this work was compared using fraction of design space
(FDS) plots [40]. FDS graphs depict the prediction variance distribution over the design space in a concise manner,
where the prediction variance metrics are plotted against the FDS encompassing a prediction variance less than or equal
to a particular value. It is also useful to consider the FDS including a particular model precision, quantified by the
confidence interval half-width 𝛿 [41–43]. The model precision 𝛿 normalized by the response standard deviation 𝜎

plotted against FDS provides further insight into the prediction capability of the model developed from a particular
experiment design, prior to conducting the experiment. For this study, a design was deemed to be adequate for fitting a
particular model if 𝛿/𝜎 was less than two for greater than 95% of the design space. The prediction variance threshold
PV∗ used to determine the FDS within a given model precision level is

PV∗ =

(
𝛿/𝜎

𝑡𝛼/2,𝑁−𝑛𝑝

)2
(15)

where 𝑁 is the number of test points, 𝑛𝑝 is the number of parameters in the model, and 𝛼 is the significance level
(chosen as 𝛼 = 0.05 for this study).

A. Hover Region: 2-Factor Completely Randomized Design
In the Hover Region, only the motor PWM command and the collective PWM command were varied with no

tunnel airflow and sting incidence angle fixed. A comparison of candidate 2-factor completely randomized I-optimal
designs using a cubic, quartic, quintic, and sixth-order design model complexity is shown in Table 2 and Fig. 7. Each
candidate design contains five model points beyond the minimum number of test points needed to fit a full model of the
specified order, as well as one center point. Table 2 lists the number of test points, as well as the FDS with 𝛿/𝜎 ≤ 2 for
a cubic and quartic evaluation model. Due to the small number of factors, increasing the design model complexity
only marginally increases the number of test points. An adequate FDS (FDS ≥ 0.95) for a normalized model precision
𝛿/𝜎 ≤ 2 is obtained with a design order one power larger than the evaluation model order. Figure 7 shows the UPV,
SPV, and 𝛿/𝜎 threshold values against FDS for a cubic evaluation model. The UPV and 𝛿/𝜎 threshold curves decrease
in value and become more uniform (flat) as the design order increases. The SPV curve is similar for each design order.

Table 2 Comparison of candidate Hover Region experimental designs

Cubic Model Quartic Model
Design Order Points FDS with 𝛿/𝜎 ≤ 2 FDS with 𝛿/𝜎 ≤ 2
Cubic Design 16 0.921 0.000
Quartic Design 21 0.998 0.865
Quintic Design 27 1.000 0.998
Sixth-Order Design 34 1.000 0.999

Fig. 7 Hover Region FDS plots for a cubic evaluation model.
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Although the quartic design meets the FDS criteria for a cubic evaluation model, the quintic design was selected
to use for the experiment due to the increased data density and the relatively low expense of executing the additional
test points for the higher order design. Prior to running the experiment, three additional center points were added and
spaced throughout the test matrix (resulting in four total center points). The center points aid in further reduction of the
prediction variance within the experimental region and allow estimation of pure error [21]. Six additional test points
selected using a random number generator were added throughout the design to use as validation data withheld from
model identification. The commanded Hover Region motor and collective PWM factor settings are shown in Fig. 8a.
The observed values of the propeller rotational speed and collective pitch angle are shown in Fig. 8b, where it can be
seen that a higher collective pitch angle setting results in a lower propeller speed. This is due to increased loading on the
propeller at higher collective pitch settings and the open-loop nature of the motor commands used for the experiment.
Although propeller speed could be commanded directly and regulated using a feedback controller, using motor PWM
settings as the commanded test factor is more operationally convenient from an experimental design and wind tunnel
implementation perspective, with minimal impact on the modeling results [24].

(a) Motor command against collective command (b) Observed rotational speed against collective pitch angle

Fig. 8 Designed and observed test variable values for the Hover Region.

B. Low and High Incidence Regions: 4-Factor Split-Plot Design
In the Low Incidence Region and High Incidence Region, all four test factors were varied to characterize the

propeller aerodynamics across the transition flight envelope for the intended eVTOL vehicle. Each region used the
same experiment design in coded units, but translated to the factor settings in engineering units shown in Table 1. A
comparison of candidate 4-factor split-plot I-optimal designs using a cubic, quartic, quintic, and sixth-order design
model complexity is shown in Table 3 and Fig. 9. Each candidate design contains five model points beyond the minimum
number of test points and two groups beyond the minimum number of groups needed to fit a full model of the specified
order. Table 3 lists the number of test points and number of groups, as well as the FDS with 𝛿/𝜎 ≤ 2 for a cubic and
quartic evaluation model. An adequate FDS (FDS ≥ 0.95) for a normalized model precision 𝛿/𝜎 ≤ 2 is obtained with a
design order two powers larger than the evaluation model order. Figure 9 shows the UPV, SPV, and 𝛿/𝜎 threshold
values against FDS for a cubic evaluation model. The UPV and 𝛿/𝜎 threshold curves decrease in value and become
more uniform as the design order increases. The SPV curve increases in value as the design order increases.
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Table 3 Comparison of candidate Low/High Incidence Region experimental designs

Cubic Model Quartic Model
Design Order Points Groups FDS with 𝛿/𝜎 ≤ 2 FDS with 𝛿/𝜎 ≤ 2
Cubic Design 40 6 0.000 0.000
Quartic Design 75 7 0.922 0.000
Quintic Design 131 8 0.988 0.785
Sixth-Order Design 215 9 0.999 0.982

Fig. 9 Low and High Incidence Region FDS plots for a cubic evaluation model.

Balancing design quality to support identifying a cubic model and test efficiency, the quintic split-plot design was
selected for the Low Incidence and High Incidence Region experiments. The base quintic design was augmented with
three center groups containing three center points each (resulting in nine total center points) near the start, middle, and
end of the test matrix to allow estimation of pure error and further reduce prediction variance. The ETC factor settings
were reset between center points within the center point groups by commanding randomized changes in the ETC factors,
which also functioned as validation test points. Furthermore, two test points selected using a random number generator
were appended to each non-center point group to use as additional validation data withheld from model identification.
These validation data were found to provide a good estimate of prediction error while remaining a modest number of
test points for the present application.

The experimental test points for the Low Incidence Region are shown in Fig. 10. Figure 10a shows the commanded
freestream velocity (HTC factor) against test point number. Figure 10b shows the incidence angle against freestream
velocity. The commanded motor and collective factor settings are shown in Fig. 10c. The observed values of the
propeller rotational speed and collective pitch angle are shown in Fig. 10d. The coded test matrix for the high incidence
angle region was identical, and thus, followed the same test matrix as shown in Figs. 10a-10c with different values of
test factors in engineering units.
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(a) Freestream velocity (HTC factor) against test point number (b) Incidence angle against freestream velocity

(c) Motor command against collective command (d) Observed rotational speed against collective pitch angle

Fig. 10 Designed and observed test variable values for the Low Incidence Region.

C. Descent Region: 3-Factor Split-Plot Design
In the Descent Region, the freestream velocity, motor PWM command, and collective PWM command were varied

at a fixed incidence angle of 𝑖𝑝 = 180 deg to characterize the location and average thrust losses associated with the
VRS condition. A comparison of candidate 3-factor split-plot I-optimal designs using a cubic, quartic, quintic, and
sixth-order design model complexity is shown in Table 4 and Fig. 11. Each candidate design contains five model points
beyond the minimum number of test points and two groups beyond the minimum number of groups needed to fit a full
model of the specified order. The candidate design comparison interpretation is similar to that described in Sec. IV.B.

Table 4 Comparison of candidate Descent Region experimental designs

Cubic Model Quartic Model
Design Order Points Groups FDS with 𝛿/𝜎 ≤ 2 FDS with 𝛿/𝜎 ≤ 2
Cubic Design 25 6 0.000 0.000
Quartic Design 40 7 0.837 0.000
Quintic Design 61 8 0.965 0.492
Sixth-Order Design 89 9 0.997 0.956
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Fig. 11 Descent Region FDS plots for a cubic evaluation model.

Due to the possibility of increased thrust sensitivity near the VRS condition, the sixth-order design was selected to
run for the experiment for the increased data density throughout the experimental region. Center points and validation
points were added throughout the test matrix following the same approach and justification as discussed in Sec. IV.B
The commanded and observed test variable values for the Descent region are shown in Fig. 12.

(a) Freestream velocity (HTC factor) against test point number (b) Motor command against freestream velocity

(c) Motor command against collective command (d) Observed rotational speed against collective pitch angle

Fig. 12 Designed and observed test variable values for the Descent Region.
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D. Final Design Summary
The final design qualities for each propeller test region are summarized in Table 5 and Fig. 13 following the same

format as the design comparisons presented in Secs. IV.A-IV.C. The validation points are included in the total number
of points but are withheld from the FDS calculations. The prediction variance distribution is relatively uniform and has
a low overall value for each design. The model precision is also adequate for fitting at least a full cubic model.

Table 5 Final experimental design properties for each test region

Cubic Model Quartic Model
Design Order Points Groups FDS with 𝛿/𝜎 ≤ 2 FDS with 𝛿/𝜎 ≤ 2
Hover Region 36 N/A 1.000 0.999
Low/High Incidence Region 162 11 0.993 0.864
Descent Region 122 12 0.997 0.963

Fig. 13 Final design FDS plots for a cubic evaluation model in each test region.

Figure 14 shows a four-dimensional representation of the observed freestream velocity, incidence angle, propeller
rotational speed, and collective pitch angle for each experimental region with non-zero freestream velocity. Figure 15
shows the 𝐽𝑥 and 𝐽𝑧 coverage for each experimental region. Table 6 shows the observed ranges of several propeller test
variables in each experimental region. Excluding experimental setup time, execution of all test points described in
this paper took approximately 3.5 hours. This test strategy leveraging DOE/RSM experimental design techniques is
significantly faster compared to a similar propeller characterization study conducted using a one-factor-at-a-time (OFAT)
test matrix [16, 17]. Additionally, the randomized test point execution makes the designs more robust to time-varying
systematic instrumentation errors and extraneous variables [21]. These errors are transferred to the parameter variance
as opposed to corrupting the parameter estimates.
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Fig. 14 Observed propeller test variable values for the Low Incidence, High Incidence, and Descent Regions.

Fig. 15 Observed normal and edgewise advance ratio values in each experimental region.

Table 6 Observed ranges of propeller test variables

Variable Hover Region Low Incidence Region High Incidence Region Descent Region
𝑛, rpm [2240, 5450] [2230, 5640] [2220, 5350] [2290, 5190]
𝛿𝑐, deg [−9.56, 7.23] [−0.387, 7.23] [−2.33, 4.9] [−2.3, 4.77]
𝐽 0 [0.11, 1.19] [0.103, 0.905] [0.123, 0.661]
𝐽𝑥 0 [0.0476, 0.697] [−0.157, 0.438] [−0.661, −0.123]
𝐽𝑧 0 [0, 1.08] [0.0974, 0.891] 0
𝑅𝑒 [98300, 239000] [96300, 246000] [95300, 231000] [98700, 224000]
𝑀tip [0.17, 0.415] [0.169, 0.429] [0.168, 0.405] [0.174, 0.393]
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V. Propeller Aerodynamic Modeling Approach
The main goal of this effort was to develop a propeller aerodynamic model relating the propeller states to output

propulsive forces and moments. The response variables were the dimensionless propeller force and moment coefficients,
𝐶𝑇𝑥 , 𝐶𝑇𝑦 , 𝐶𝑇𝑧 , 𝐶𝑄𝑥

, 𝐶𝑄𝑦
, and 𝐶𝑄𝑧

, defined previously in Eqs. (1), (2) and (8). Response surface models developed
from designed experiments conventionally evaluate the factors under test directly as candidates for explanatory variables.
For this work, analysis was instead performed by redefining certain explanatory variables for modeling due to the unique
characteristics of propeller aerodynamics at incidence and test facility integration considerations. As mentioned in
Secs. III-IV, wind tunnel testing was performed by varying motor PWM command [𝑚 and collective PWM command
[𝑐 directly; however, modeling was performed using the measured propeller rotational speed 𝑛 and collective pitch
angle 𝛿𝑐, which are more directly related to propeller aerodynamics. Three different explanatory variable definitions
were considered and compared for this work:

1) Explanatory Variable Definition I (EV-I): Using �̂� , 𝑖𝑝 , �̂�, and 𝛿𝑐 as explanatory variables, which is the closest
explanatory variable representation to the factors under test

2) Explanatory Variable Definition II (EV-II): Using 𝐽𝑥 , 𝐽𝑧 , and 𝛿𝑐 as explanatory variables, which was
hypothesized to better represent propeller aerodynamics when 𝑅𝑒 and 𝑀tip effects are negligible

3) Explanatory Variable Definition III (EV-III): Using 𝐽𝑥 , 𝐽𝑧 , �̂�, and 𝛿𝑐 as explanatory variables, which was
hypothesized to better represent propeller aerodynamics when 𝑅𝑒 and/or 𝑀tip effects are significant.

The hat (ˆ) notation is used to indicate that the variables are centered on the median value within the modeling data. It
is important to perform modeling with explanatory variables expressed in coded units, or in engineering units with the
explanatory variables centered on a reference value, to maintain low correlation among candidate regressors. Note that
the variables not directly varied in the Hover and Descent Regions are omitted for their respective modeling analyses.
The utility of each of these three parameterizations are compared in Sec. VII.

Since the transformations between commanded test factors and the explanatory variables used for modeling were
not linear, data collinearity assessment was performed to assess the impact on model identification. Data collinearity is
defined as a correlation between regressors high enough to cause corrupted model identification [23]. Data collinearity
will cause difficulty in both model structure determination and parameter estimation because the effects of certain
regressors on the response cannot be distinguished. Collinearity assessment is useful for confirming that a choice
of modeling candidate regressors from a given experiment design or data set are sufficiently decorrelated for model
identification. Correlation between two candidate regressors can be assessed using the pairwise correlation coefficient

𝑟𝑖 𝑗 =
(𝝃𝑖 − b̄𝑖)𝑇 (𝝃 𝑗 − b̄ 𝑗 )√︁

(𝝃𝑖 − b̄𝑖)𝑇 (𝝃𝑖 − b̄𝑖)
√︃
(𝝃 𝑗 − b̄ 𝑗 )𝑇 (𝝃 𝑗 − b̄ 𝑗 )

(16)

where 𝝃𝑖 and 𝝃 𝑗 are two regressor measurement histories, with means denoted b̄𝑖 and b̄ 𝑗 , respectively. A correlation
coefficient value of zero means the signals are uncorrelated, or orthogonal, and an absolute correlation coefficient of one
indicates that the signals are completely correlated. A correlation coefficient between regressors with magnitude greater
than 0.9 indicates that data collinearity problems may be encountered [23].

Figure 16 shows the pairwise correlation coefficient values between all candidate regressors sorted in ascending order
within a full cubic model structure in the Low Incidence Region. The candidate regressors are assembled using the coded
test factors as well as the three explanatory variable definitions centered on each respective median value. The highest
correlation for each case is between the linear and cubic candidate regressors for each respective explanatory variable,
which are challenging to decorrelate for any modeling problem. As would be expected, the overall lowest correlation
is observed for the candidate regressors assembled from the test factors, or the designed test matrix. Low candidate
regressor correlation, however, is still sufficiently maintained for a large majority of the candidate regressors for each
of the explanatory variable definitions (EV-I, EV-II, and EV-III). This supports the validity of using the transformed
explanatory variable definitions for model identification. Additionally, the model structure selection method used for
this work, discussed next, automatically avoids adding highly correlated regressors into the model, thus, providing
additional protection against data collinearity [23].
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Fig. 16 Pairwise correlation between candidate regressors for a cubic model in the Low Incidence Region.

VI. Model Identification Methodology
As highlighted previously, most of the data used for model development in this paper were obtained from split-plot

experiments [34, 35], or experiments with restriction to randomization for certain test factor(s). This results in a
compound error structure with different whole-plot and sub-plot variance estimates. Generally, restricted maximum
likelihood (REML) analysis is used to estimate the variance components and generalized least-squares is used for
parameter estimation when developing models for split-plot experiments [44]. However, because the split-plot
experimental designs used for this work were ordinary least-squares equivalent, ordinary least-squares regression can
be used for parameter estimation and provides the same solution as generalized least-squares regression, independent
of the variance component estimates [22, 36–38]. Model structure determination, however, is still complicated by
the compound error structure [44]. Statistical software packages generally use REML analysis to estimate variance
components and significance testing leveraging methods described in Ref. [45] to refine the model structure.

For this work, an alternative model structure determination approach was sought that does not rely on significance
testing or the variance component estimation. An approach meeting these requirements allows more model development
flexibility for when the explanatory variables used for modeling are transformed versions of the designed test factors,
which was necessary for this study for the reasons explained in Sec. V. For example, for explanatory variable definitions
EV-II and EV-III, the whole-plot and sub-plot factors are combined to calculate the advance ratio components which
precludes using conventional model structure development techniques used for split-plot experiments. This approach
represents an example of an engineering solution used to develop an improved, aerodynamically-informed model
taking priority over statistical convention. Although it is not a statistically-based choice, using explanatory variable
definitions different from the test factors was necessary to accommodate the practical considerations associated with
this experimental study and yield the most useful mathematical model for the intended engineering application.

Multivariate orthogonal function (MOF) modeling, described in Refs. [23, 46], meets the aforementioned model
structure identification requirements—it does not rely on significance testing or variance component estimation to
determine the model structure. MOF modeling instead selects regressors to include in the model based on their
independent ability to improve characterization of the response variable. MOF modeling has also been successfully
used in previous modeling studies using wind tunnel testing to characterize fixed-wing aircraft [47, 48] and propeller
aerodynamics at incidence [16]. Consequently, MOF modeling was selected as the model structure determination
technique for this work.

The MOF modeling approach [23, 46] is initiated by orthogonalizing a predefined set of candidate regressors using
an algorithm such as Gram-Schmidt orthogonalization or QR decomposition. Orthogonal regressors are convenient for
model structure development because of the ability to independently assess the potential of the orthogonalized candidate
regressors to model the response variable—this facilitates selecting only the model terms that significantly contribute to
model effectiveness. For model selection, the orthogonal regressors are ranked from highest to lowest decrease in the
mean squared fit error (MSFE),

MSFE =
1
𝑁

(𝒛 − �̂�)𝑇 (𝒛 − �̂�) (17)

where �̂� is the length 𝑁 model response vector and 𝒛 is the length 𝑁 measured response vector. In other words, this
ranks the regressors from highest to lowest ability to improve the model. Candidate regressors are brought into the
model structure in this order. Note that this procedure prevents data collinearity because if there is high correlation
between candidate regressors, after the first candidate regressor is orthogonalized, any other highly correlated candidate
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regressors will be close to zero after passing through the orthogonalization process, which will prevent the latter model
terms from being included in the model structure [23].

Deciding which terms to include in the final model can be done using one or more statistical metrics. A common
threshold for MOF modeling is to minimize the predicted squared error (PSE) [23, 49]. The PSE is the sum of the
MSFE for a model and a complexity penalty term related to the number of terms included in the model

PSE = MSFE + 2𝜎2
max

𝑛𝑝

𝑁
(18)

where 𝑛𝑝 is the number of terms in the current model structure and 𝜎2
max is an estimate of the upper-bound of mean

squared error for the model prediction of data not used to develop the model. The model complexity penalty term
contains a factor of 2 because the PSE metric is being employed for model structure identification, where inadequate
model forms are being evaluated [47, 48]. In wind tunnel testing, the quantity 𝜎2

max can be estimated using the variance
of measured response between repeated data points or from the variance between the measured response 𝒛 and mean
measured response 𝒛. The quantity 𝜎2

max is estimated for this work using the measurement error variance between
repeated data points �̂�2 as [23, 47, 48]:

𝜎2
max = 25 �̂�2 (19)

Another statistical metric that has been used as a stopping criterion for MOF modeling is the coefficient of
determination 𝑅2 [50, 51]. The 𝑅2 metric, calculated as

𝑅2 =
�̂�𝑇 𝒛 − 𝑁 �̄�2

𝒛𝑇 𝒛 − 𝑁 �̄�2 (20)

quantifies the amount of variation in the response variable about its mean value that is described by the model. Because
𝑅2 always increases with the addition of more model terms, it is important that each model term added on the basis
of the 𝑅2 metric significantly increases its value. A common 𝑅2 increase constituting a significant increase with the
addition of a new model term is Δ𝑅2 = 0.5% [23]. This means that the model term describes a minimum of 0.5% of the
total variation about the mean response.

Both PSE and 𝑅2 were used as a cutoff threshold for candidate model terms to include in the final model structure.
After the orthogonal regressors were ranked by their ability to reduce the MSFE, the cutoff for model term addition was
chosen to be either the candidate model term that minimized the PSE or the last term to increase 𝑅2 by 0.5%, whichever
admitted more terms into the model. This selection was made because in certain circumstances, PSE minimization was
found to admit too few terms into the model due to having a rough estimated value of 𝜎2

max.
After determining the model terms to include in the model structure, the final parameter values were estimated using

ordinary least-squares regression in ordinary regressor space as:

𝜽 =

(
𝑿𝑇𝑿

)−1
𝑿𝑇 𝒛 (21)

Here, 𝜽 is a vector of 𝑛𝑝 estimated parameters, 𝑿 is a 𝑁 × 𝑛𝑝 matrix consisting of column vectors of regressors, and 𝒛 is
the measured response variable. The software implementing the MOF modeling and least-squares regression algorithm
was from the System IDentification Programs for AirCraft (SIDPAC) software toolbox.¶

After identifying the model structure and parameter estimates, model adequacy was examined using data withheld
from the model development process. Regression methods minimize the summation of squared modeling residuals
between modeled and measured response, so inspection of modeling fit metrics and modeling residuals alone does
not provide information about the model predictive capability. Assessment of model performance using validation
data not used for modeling provides a more reliable estimate of model prediction accuracy. Validation assessment
can be performed by analyzing the residuals between the measured response 𝒛 and predicted response �̂� for the same
explanatory variable inputs. Comparison of modeling and prediction residuals is useful because a significant increase
in the spread of prediction residuals compared to modeling residuals is a way of diagnosing an improper model fit.
For this work, modeling and prediction residuals are compared using the normalized root-mean-square modeling error
(NRMSE) metric:

NRMSE =
1

range(𝒛)

√︄
(𝒛 − �̂�)𝑇 (𝒛 − �̂�)

𝑁
(22)

¶Information available online at https://software.nasa.gov/software/LAR-16100-1 [retrieved 29 October 2021]
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Range normalization, as opposed to other normalization metrics such as the mean or maximum absolute value of the
response variable, provides the fairest comparison between prediction error metrics for this work because axial propeller
responses are generally biased above or below zero and off-axis propeller responses are centered about zero [16].

A prediction error metric defined using critical binomial analysis of validation residuals is also useful as a quantitative
measure of the model adequacy. For this analysis, each validation data point is considered to either pass or fail relative
to a prediction error threshold. Failed trials can indicate model inadequacy or measurement error. The binomial test
provides a threshold to determine when the number of failures is statistically significant. For this metric, the prediction
error level associated with the number of successful trials being equal to the critical binomial number quantifies the
model prediction capability. The process of computing critical binomial analysis of residuals prediction error metric
(𝑒∗𝑐𝑣) is shown in Ref. [24] and further explanation of critical binomial analysis of residuals and justification for using
this metric to assess prediction error are given in Ref. [52].

VII. Modeling Results
Separate propeller aerodynamic models were identified for each test region using each of the three explanatory

variable definitions [EV-I (�̂� , 𝑖𝑝 , �̂�, 𝛿𝑐), EV-II (𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐), and EV-III (𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐)] postulated in Sec. V. To analyze
the adherence to regression modeling assumptions and model fit adequacy, sample residual plots for 𝐶𝑇𝑥 in the Low
Incidence Region are shown in Fig. 17 for the EV-I model and Fig. 18 for the EV-III model. Figures 17a and 18a

(a) Residual history (b) Normal probability plot (c) Residuals against predicted response

Fig. 17 Externally studentized residual diagnostics for the EV-I 𝑪𝑻𝒙 model in the Low Incidence Region.

(a) Residual history (b) Normal probability plot (c) Residuals against predicted response

Fig. 18 Externally studentized residual diagnostics for the EV-III 𝑪𝑻𝒙 model in the Low Incidence Region.

show the externally studentized modeling residuals, 𝑡𝑖 , against data point number [22, 53]. Figures 17b and 18b show
normal probability plots for the externally studentized modeling residuals. Figures 17c and 18c show the externally
studentized modeling residuals against the predicted response. These plots show that the residuals for each model
definition are reasonably independent, normally distributed, and have constant variance, satisfying the regression
modeling assumptions and suggesting that the identified model parameters are meaningful. There is a slight trend
observed in Figs. 17a and 18a, but this was deemed to be small enough as to not significantly impact the modeling
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results—parameter estimation results are robust to time-varying instrumentation errors due to the randomization in the
experimental design. Residuals with similar character were obtained for the other response variables, test regions, and
explanatory variable definitions.

Figures 19-23 compare modeling and prediction error metrics for each modeling region and explanatory variable
definition. Tables 7-11 at the end of this paper list the numerical values shown in the figures. These metrics are used to
assess the quality of the modeling results and compare the utility of the different explanatory variable combinations.

Fig. 19 Coefficient of determination, 𝑹2, for each local model.

Fig. 20 Number of model parameters identified for each local model.

Fig. 21 Modeling data NRMSE for each local model response.

Figure 19 (Table 7) shows the coefficient of determination (𝑅2) value for each local model. The thrust coefficient
𝐶𝑇𝑥 models have an 𝑅2 value above 98% indicating that a large majority of the variation in the response is described by
the models. The 𝐶𝑇𝑥 models for EV-III generally have the highest 𝑅2 values, although the difference in value is small
compared to the EV-I and EV-II models. For the other propeller force and moment coefficients, it is observed that EV-II
most often has the lowest 𝑅2 value compared to EV-I and EV-III. This suggests that Reynolds number and/or tip Mach
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Fig. 22 Validation data NRMSE for each local model response.

Fig. 23 Binomial analysis of residuals prediction error metric, 𝒆∗𝒄𝒗 , for each local model.

number effects become significant for characterizing the variation of the torque coefficient 𝐶𝑄𝑥
and the off-axis force

and moment coefficients. The 𝐶𝑇𝑧 and 𝐶𝑄𝑥
models for EV-I and EV-III have 𝑅2 values above 97%. The 𝐶𝑄𝑦

and 𝐶𝑄𝑧

models for EV-I and EV-III have 𝑅2 values above 82%, with models in the High Incidence Region having 𝑅2 values
above 94%. The models for 𝐶𝑇𝑦 have the lowest 𝑅2 values, but this is expected since 𝐶𝑇𝑦 is the weakest response for
propellers at incidence [16].

Figure 20 (Table 8) shows the number of model terms identified in each local model. Generally, the models
corresponding to EV-I have the largest number of model parameters for the stronger response variables compared to
respective EV-II and EV-III models. The models for EV-II are seen to generally have the fewest number of model terms,
but as explained above, they omit variables that characterize propeller blade Reynolds number and tip Mach number
effects leading to a worse model fit. This suggests that propeller blade Reynolds number effects or tip Mach number
effects are important to consider for the propeller used in this study.

Figures 21-22 (Tables 9-10) show the NRMSE for modeling data (NRMSE𝑚) and validation data (NRMSE𝑣),
respectively. Although 𝑅2 and NRMSE𝑚 reflect the model fit quality, model prediction metrics calculated using
validation data not used in the modeling process are generally considered a more reliable indicator of modeling success.
The NRMSE values calculated using modeling and validation data for each respective local model are similar and
low-valued indicating that a quality model has been identified. The binomial analysis of residuals prediction error metric
(𝑒∗𝑐𝑣) value for each model is shown in Figure 23 (Table 11). In the Hover, Low Incidence, and High Incidence regions,
the prediction error for thrust coefficient is less than 3%; in the Descent region prediction error for thrust coefficient
is around 5% or less. The models for 𝐶𝑇𝑧 and 𝐶𝑄𝑥

in all respective regions, as well as 𝐶𝑄𝑦
and 𝐶𝑄𝑧

in the High
Incidence region, have prediction error values of approximately 10% or less. This indicates that high-quality propeller
aerodynamic models have been developed. The 𝐶𝑇𝑦 models and the 𝐶𝑄𝑦

, 𝐶𝑄𝑧
models in the Low Incidence region have

prediction error values of roughly 20% or less, which are reasonable values because these models characterize relatively
weak responses with a lower signal-to-noise ratio.

After investigating the three different explanatory variable definitions, one definition needed to be selected for the
final model. Since the EV-II models were suspected to lack the parameterization to best describe the aerodynamics
for the propeller described in this work (i.e., EV-II models cannot characterize propeller blade Reynolds number or

20



tip Mach number effects), EV-II was not selected as the final model explanatory variable type. Comparing EV-I and
EV-III in general, and especially for stronger propeller force and moment coefficients, using EV-III (𝐽𝑥 , 𝐽𝑧 , �̂�, and 𝛿𝑐 as
explanatory variables) results in a better modeling fit and lower prediction error, while also having a lower number
of modeling terms. Additionally, using dimensionless propeller variables 𝐽𝑥 , 𝐽𝑧 , as opposed to 𝑉 and 𝑖𝑝 extends the
extrapolation capabilities of the model. For these reasons, the models developed with 𝐽𝑥 , 𝐽𝑧 , �̂�, and 𝛿𝑐 as explanatory
variables (EV-III) were selected as the final models. The EV-III model parameter estimates \̂ and parameter standard
errors 𝑠(\̂) for each propeller force and moment coefficient in each test region are shown in Tables 12-27. The model
parameters are presented in the order in which they were added to the model, so terms appearing first are most significant
to the model. As an example of how the polynomial models would appear for usage, the 𝐶𝑇𝑥 model in the Low Incidence
Region in Table 14 is expressed in polynomial equation form as:

𝐶𝑇𝑥 = 𝐶𝑇𝑥𝑜
+ 𝐶𝑇𝑥

𝐽𝑥

𝐽𝑥 + 𝐶𝑇𝑥
�̂�𝑐

𝛿𝑐 + 𝐶𝑇𝑥
𝐽2
𝑥

𝐽2
𝑥 + 𝐶𝑇𝑥

𝐽𝑧

𝐽𝑧 + 𝐶𝑇𝑥
𝐽𝑥 �̂�𝑐

𝐽𝑥𝛿𝑐

Recall that the explanatory variables are all centered on a reference value in the model equations (see Sec. V). The
median values used to center each explanatory variable are given in Table 28. As an example for 𝐽𝑥 , the centered
explanatory variable is

𝐽𝑥 = 𝐽𝑥 − 𝐽𝑥𝑜

where the value of 𝐽𝑥𝑜 , as well as the respective reference values for the other explanatory variables, are listed in
Table 28.

Figures 24-26 show the modeled response for axial thrust coefficient 𝐶𝑇𝑥 in each test region compared to modeling
and validation wind tunnel data. For the Hover Region (Fig. 24), the 𝐶𝑇𝑥 model and data are plotted against rotational

Fig. 24 Hover Region 𝑪𝑻𝒙 response surface model
compared to measured data.

Fig. 25 Low and High Incidence Region 𝑪𝑻𝒙 models
compared to measured data.

speed 𝑛 and collective pitch angle 𝛿𝑐, which were the only two explanatory variables varied in the experiment. For the
Low and High Incidence Regions (Fig. 25), the 𝐶𝑇𝑥 model is plotted against normal advance ratio 𝐽𝑥 and edgewise
advance ratio 𝐽𝑧 at a collective pitch angle of 𝛿𝑐 = 4 deg and a propeller rotational speed of 𝑛 = 3500 rpm. The modeling
and validation test data shown in the figure have a collective pitch angle between 3 deg and 5 deg (i.e., near the nominal
value used to display the modeled response). All tested propeller rotational speed values are shown due to the relatively
weak influence of propeller speed on the 𝐶𝑇𝑥 response compared to the other explanatory variables. As can be seen in
Table 14 and Table 20, the 𝐶𝑇𝑥 model in the Low Incidence Region is not dependent on 𝑛 and the 𝐶𝑇𝑥 model in the High
Incidence Region only has one relatively weak model term dependent on 𝑛. The 𝑛 effects, attributed to propeller blade
Reynolds number and/or tip Mach effects, were more influential in other propeller force and moment coefficients. Small
differences seen between the model and data are partially attributed to the collective pitch angle and propeller rotational
speed settings for the displayed test data not perfectly matching the displayed modeled response surface value. For the
Descent Region (Fig. 25), the 𝐶𝑇𝑥 model and data are plotted against normal advance ratio 𝐽𝑥 and collective pitch angle
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Fig. 26 Descent Region 𝑪𝑻𝒙 response surface model
compared to measured data.

Fig. 27 Modeled 𝑪𝑻𝒙 response in the Descent Region
at different collective pitch angle settings.

of 𝛿𝑐. As can be seen in Table 26, the 𝐶𝑇𝑥 model in the Descent Region is independent of direct 𝑛 effects (propeller
blade Reynolds number and/or tip Mach effects). The modeled response in each region shows overall good agreement
with the modeling and validation data points indicating that the models are suitable for their intended application of
flight dynamics simulation development. Note that models identified over different ranges of certain variables require
blending methods to eliminate discontinuities for simulation, where it is desirable to have continuous, differentiable
transition between modeling regions. Reference [16] presents an approach to smoothly blend propeller models for this
purpose, in addition to other practical aspects of using the identified propeller models in a flight dynamics simulation.

Figure 27 shows the modeled 𝐶𝑇𝑥 response in the Descent Region against normal advance ratio at several different
collective pitch angle settings shown in the legend. The minimum 𝐶𝑇𝑥 for each collective pitch angle on the plot is the
approximate location of the VRS at each collective pitch angle setting. It can be seen that the VRS location occurs at a
more negative 𝐽𝑥 value (greater total advance ratio 𝐽) as the collective pitch angle increases.

VIII. Conclusions
A method for variable-pitch propeller aerodynamic model development suitable for use in flight dynamics simulations

for vectored-thrust eVTOL aircraft has been presented. Wind tunnel data were collected using designed experiments
allowing identification of accurate cubic response surface propeller aerodynamic models in four regions of flight:
hover, high-incidence/low-speed transition, low-incidence/high-speed transition, and descent. Application of I-optimal
completely randomized and split-plot experiment designs enabled efficient collection of high-quality wind tunnel data for
model identification. The propeller model identification approach leveraged multivariate orthogonal function modeling
to identity local polynomial models, which was a suitable and effective choice for the selected experimental designs
and modeling problem definitions. Three different explanatory variable formulations were compared and the results
indicated that the variables derived from propeller aerodynamics theory provided the best models. The final models
describe the variation of the dimensionless force and moment coefficients in each test region as a function of normal
advance ratio, edgewise advance ratio, propeller rotational speed, and collective pitch angle. Collectively, the models
identified in the four different test regions describe propeller aerodynamics over a wide range of flight conditions seen in
operational flight for eVTOL vehicles. Model validation assessment indicated that the models are high quality and
sufficient for the purpose of supporting flight dynamics model development for a future eVTOL aircraft. Because
eVTOL vehicle dynamics are highly dependent on propulsive effects, accurate propeller aerodynamic modeling is
essential for high-fidelity simulator development. This paper demonstrated several novel propeller modeling techniques
useful for modeling future eVTOL vehicles and provides progress in this new area of aerodynamic modeling research.
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Modeling and Validation Metric Tables

Table 7 Coefficient of determination, 𝑹2, for each local model (expressed as a percentage)

Region Explanatory Variables 𝐶𝑇𝑥 𝐶𝑇𝑦 𝐶𝑇𝑧 𝐶𝑄𝑥
𝐶𝑄𝑦

𝐶𝑄𝑧

Hover Region EV-I: �̂�, 𝛿𝑐 99.97 — — 99.91 — —
Hover Region EV-II: 𝛿𝑐 99.97 — — 99.80 — —
Hover Region EV-III: �̂�, 𝛿𝑐 99.97 — — 99.91 — —
Low Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 99.21 84.21 98.52 97.40 82.93 86.08
Low Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 99.40 75.95 97.02 92.78 60.57 71.68
Low Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 99.40 86.13 98.27 98.12 84.92 83.26
High Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 99.75 73.55 97.65 97.76 94.62 95.88
High Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 99.84 79.10 97.76 95.21 86.82 93.30
High Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 99.87 82.68 97.76 98.09 95.70 96.39
Descent Region EV-I: �̂� , �̂�, 𝛿𝑐 98.41 — — 98.54 — —
Descent Region EV-II: 𝐽𝑥 , 𝛿𝑐 98.43 — — 98.18 — —
Descent Region EV-III: 𝐽𝑥 , �̂�, 𝛿𝑐 98.43 — — 98.18 — —

Table 8 Number of model parameters identified for each local model

Region Explanatory Variables 𝐶𝑇𝑥 𝐶𝑇𝑦 𝐶𝑇𝑧 𝐶𝑄𝑥
𝐶𝑄𝑦

𝐶𝑄𝑧

Hover Region EV-I: �̂�, 𝛿𝑐 4 — — 4 — —
Hover Region EV-II: 𝛿𝑐 4 — — 3 — —
Hover Region EV-III: �̂�, 𝛿𝑐 4 — — 4 — —
Low Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 15 11 20 11 17 14
Low Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 6 13 8 6 7 7
Low Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 6 15 10 7 18 9
High Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 15 17 13 16 9 15
High Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 11 16 6 10 9 6
High Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 13 20 6 11 10 9
Descent Region EV-I: �̂� , �̂�, 𝛿𝑐 9 — — 8 — —
Descent Region EV-II: 𝐽𝑥 , 𝛿𝑐 6 — — 4 — —
Descent Region EV-III: 𝐽𝑥 , �̂�, 𝛿𝑐 6 — — 4 — —
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Table 9 Modeling data NRMSE for each local model response (expressed as a percentage)

Region Explanatory Variables 𝐶𝑇𝑥 𝐶𝑇𝑦 𝐶𝑇𝑧 𝐶𝑄𝑥
𝐶𝑄𝑦

𝐶𝑄𝑧

Hover Region EV-I: �̂�, 𝛿𝑐 0.64 — — 1.02 — —
Hover Region EV-II: 𝛿𝑐 0.64 — — 1.52 — —
Hover Region EV-III: �̂�, 𝛿𝑐 0.64 — — 1.02 — —
Low Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 2.24 7.82 1.88 3.77 7.43 4.93
Low Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 1.97 9.66 2.67 6.29 11.30 7.03
Low Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 1.97 7.33 2.03 3.21 6.99 5.41
High Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 0.81 9.01 2.99 3.23 5.02 2.98
High Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 0.64 8.01 2.92 4.73 7.86 3.80
High Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 0.58 7.29 2.92 2.99 4.49 2.79
Descent Region EV-I: �̂� , �̂�, 𝛿𝑐 2.59 — — 3.40 — —
Descent Region EV-II: 𝐽𝑥 , 𝛿𝑐 2.57 — — 3.79 — —
Descent Region EV-III: 𝐽𝑥 , �̂�, 𝛿𝑐 2.57 — — 3.79 — —

Table 10 Validation data NRMSE for each local model response (expressed as a percentage)

Region Explanatory Variables 𝐶𝑇𝑥 𝐶𝑇𝑦 𝐶𝑇𝑧 𝐶𝑄𝑥
𝐶𝑄𝑦

𝐶𝑄𝑧

Hover Region EV-I: �̂�, 𝛿𝑐 1.02 — — 0.82 — —
Hover Region EV-II: 𝛿𝑐 1.02 — — 1.67 — —
Hover Region EV-III: �̂�, 𝛿𝑐 1.02 — — 0.82 — —
Low Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 2.45 12.61 4.55 6.46 12.11 13.06
Low Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 2.10 11.91 4.94 7.03 15.79 15.11
Low Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 2.10 11.93 4.03 4.85 12.40 14.33
High Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 2.20 16.95 3.40 5.70 8.09 6.78
High Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 1.83 13.33 3.09 6.23 7.94 7.14
High Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 1.68 17.46 3.09 6.02 6.37 5.31
Descent Region EV-I: �̂� , �̂�, 𝛿𝑐 3.73 — — 3.33 — —
Descent Region EV-II: 𝐽𝑥 , 𝛿𝑐 3.53 — — 3.47 — —
Descent Region EV-III: 𝐽𝑥 , �̂�, 𝛿𝑐 3.53 — — 3.47 — —
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Table 11 Binomial analysis of residuals prediction error metric, 𝒆∗𝒄𝒗 , for each local model (expressed as a
percentage)

Region Explanatory Variables 𝐶𝑇𝑥 𝐶𝑇𝑦 𝐶𝑇𝑧 𝐶𝑄𝑥
𝐶𝑄𝑦

𝐶𝑄𝑧

Hover Region EV-I: �̂�, 𝛿𝑐 0.99 — — 0.25 — —
Hover Region EV-II: 𝛿𝑐 0.99 — — 1.59 — —
Hover Region EV-III: �̂�, 𝛿𝑐 0.99 — — 0.25 — —
Low Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 2.98 13.99 5.77 6.37 11.51 18.66
Low Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 2.64 13.24 5.85 10.04 15.44 17.89
Low Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 2.64 15.36 4.83 6.45 13.62 18.73
High Incidence Region EV-I: �̂� , 𝑖𝑝 , �̂�, 𝛿𝑐 2.15 23.87 4.03 9.06 9.68 7.79
High Incidence Region EV-II: 𝐽𝑥 , 𝐽𝑧 , 𝛿𝑐 1.96 15.15 3.23 8.00 11.14 10.38
High Incidence Region EV-III: 𝐽𝑥 , 𝐽𝑧 , �̂�, 𝛿𝑐 1.79 19.51 3.23 6.96 9.21 6.62
Descent Region EV-I: �̂� , �̂�, 𝛿𝑐 4.34 — — 3.87 — —
Descent Region EV-II: 𝐽𝑥 , 𝛿𝑐 5.02 — — 3.51 — —
Descent Region EV-III: 𝐽𝑥 , �̂�, 𝛿𝑐 5.02 — — 3.51 — —

EV-III Parameter Estimate Tables

Table 12 Parameter estimates for 𝑪𝑻𝒙 in the Hover
Region (𝑹2 = 99.97%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑥𝑜

+7.054E−02 2.643E−04
𝐶𝑇𝑥

�̂�𝑐

+4.877E−01 5.187E−03

𝐶𝑇𝑥
�̂�2
𝑐

+2.844E−01 2.273E−02

𝐶𝑇𝑥
�̂�3
𝑐

−1.696E+00 2.918E−01

Table 13 Parameter estimates for 𝑪𝑸𝒙 in the Hover
Region (𝑹2 = 99.91%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑥𝑜

−3.706E−03 2.478E−05
𝐶𝑄𝑥

�̂�𝑐

−2.757E−02 1.761E−04

𝐶𝑄𝑥
�̂�2
𝑐

−8.434E−02 1.872E−03

𝐶𝑄𝑥�̂�
+6.931E−06 1.232E−06

Table 14 Parameter estimates for 𝑪𝑻𝒙 in the Low Inci-
dence Region (𝑹2 = 99.40%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑥𝑜

+5.102E−02 4.433E−04
𝐶𝑇𝑥

𝐽𝑥

−2.317E−01 1.832E−03

𝐶𝑇𝑥
�̂�𝑐

+5.686E−01 6.237E−03

𝐶𝑇𝑥
𝐽2
𝑥

−2.301E−01 1.242E−02

𝐶𝑇𝑥
𝐽𝑧

+1.927E−02 1.414E−03

𝐶𝑇𝑥
𝐽𝑥 �̂�𝑐

+3.828E−01 4.092E−02
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Table 15 Parameter estimates for 𝑪𝑻𝒚 in the Low Inci-
dence Region (𝑹2 = 86.13%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑦𝑜

−1.894E−03 1.572E−04
𝐶𝑇𝑦

𝐽𝑧

−8.849E−03 6.870E−04

𝐶𝑇𝑦
𝐽𝑥

+8.063E−03 5.899E−04

𝐶𝑇𝑦�̂�
+8.497E−05 1.053E−05

𝐶𝑇𝑦
𝐽𝑧 �̂�𝑐

−4.461E−02 8.483E−03

𝐶𝑇𝑦
𝐽𝑥 𝐽𝑧

+2.554E−02 4.590E−03

𝐶𝑇𝑦
𝐽𝑥 𝐽2

𝑧

−6.945E−02 1.630E−02

𝐶𝑇𝑦
�̂�3
𝑐

−1.378E+00 4.614E−01

𝐶𝑇𝑦
�̂�2
𝑐 �̂�

−6.985E−03 3.081E−03

𝐶𝑇𝑦
𝐽2
𝑥 𝐽𝑧

+1.253E−01 2.599E−02

𝐶𝑇𝑦
𝐽2
𝑧 �̂�

−3.445E−04 9.993E−05

𝐶𝑇𝑦
�̂�2

−1.376E−06 4.495E−07
𝐶𝑇𝑦

𝐽𝑥 𝐽𝑧 �̂�
+7.399E−04 3.290E−04

𝐶𝑇𝑦
𝐽𝑥 �̂�𝑐

+3.368E−02 1.154E−02

𝐶𝑇𝑦
𝐽2
𝑥

−1.032E−02 3.554E−03

Table 16 Parameter estimates for 𝑪𝑻𝒛 in the Low Inci-
dence Region (𝑹2 = 98.27%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑧

𝐽𝑧

−3.929E−02 1.094E−03

𝐶𝑇𝑧𝑜
−6.643E−03 2.001E−04

𝐶𝑇𝑧
𝐽𝑧 �̂�𝑐

−1.883E−01 2.088E−02

𝐶𝑇𝑧
𝐽𝑥

+1.137E−02 9.038E−04

𝐶𝑇𝑧
�̂�𝑐

−2.922E−02 3.387E−03

𝐶𝑇𝑧�̂�
+7.735E−05 1.025E−05

𝐶𝑇𝑧
𝐽2
𝑧

−1.551E−02 3.114E−03

𝐶𝑇𝑧
�̂�2

−2.945E−06 6.773E−07
𝐶𝑇𝑧

𝐽𝑥 𝐽2
𝑧

−9.038E−02 1.668E−02

𝐶𝑇𝑧
𝐽2
𝑧 �̂�𝑐

+1.919E−01 4.802E−02

Table 17 Parameter estimates for 𝑪𝑸𝒙 in the Low In-
cidence Region (𝑹2 = 98.12%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑥𝑜

−5.958E−03 4.606E−05
𝐶𝑄𝑥

�̂�𝑐

−3.964E−02 6.993E−04

𝐶𝑄𝑥
𝐽𝑥

+1.064E−02 2.020E−04

𝐶𝑄𝑥�̂�
+4.634E−05 2.593E−06

𝐶𝑄𝑥
𝐽2
𝑥

+2.048E−02 1.218E−03

𝐶𝑄𝑥
�̂�𝑐 �̂�

+3.002E−04 4.551E−05

𝐶𝑄𝑥
𝐽2
𝑧 �̂�

+9.493E−05 1.538E−05

Table 18 Parameter estimates for 𝑪𝑸𝒚 in the Low In-
cidence Region (𝑹2 = 84.92%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑦

𝐽𝑥

−2.664E−03 1.221E−03

𝐶𝑄𝑦
𝐽𝑧 �̂�

+9.627E−05 3.513E−05

𝐶𝑄𝑦�̂�
+5.446E−05 7.954E−06

𝐶𝑄𝑦𝑜
−7.585E−04 1.221E−04

𝐶𝑄𝑦
�̂�𝑐

+6.799E−03 2.169E−03

𝐶𝑄𝑦
𝐽𝑥 𝐽𝑧

−1.915E−02 3.680E−03

𝐶𝑄𝑦
𝐽2
𝑥

+1.586E−02 3.095E−03

𝐶𝑄𝑦
𝐽𝑥 �̂�

+5.184E−05 3.617E−05

𝐶𝑄𝑦
𝐽3
𝑧

+7.998E−03 2.447E−03

𝐶𝑄𝑦
𝐽𝑧 �̂�

2
−7.827E−06 1.701E−06

𝐶𝑄𝑦
�̂�2

−1.540E−06 3.586E−07
𝐶𝑄𝑦

𝐽2
𝑧 �̂�𝑐

+5.352E−02 1.550E−02

𝐶𝑄𝑦
𝐽2
𝑥 �̂�

−9.327E−04 2.494E−04

𝐶𝑄𝑦
�̂�𝑐 �̂�

2
−1.389E−05 7.449E−06

𝐶𝑄𝑦
𝐽𝑥 �̂�

2
−8.027E−06 2.750E−06

𝐶𝑄𝑦
𝐽𝑥 𝐽𝑧 �̂�

−8.403E−04 2.783E−04

𝐶𝑄𝑦
𝐽3
𝑥

−4.838E−02 1.733E−02

𝐶𝑄𝑦
𝐽𝑥 𝐽2

𝑧

−3.084E−02 1.477E−02

26



Table 19 Parameter estimates for 𝑪𝑸𝒛 in the Low In-
cidence Region (𝑹2 = 83.26%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑧

𝐽𝑧

−1.266E−02 1.142E−03

𝐶𝑄𝑧
𝐽𝑥 �̂�

2
−9.130E−06 4.602E−06

𝐶𝑄𝑧�̂�
−9.283E−05 1.064E−05

𝐶𝑄𝑧
�̂�2

+2.317E−06 5.943E−07
𝐶𝑄𝑧

𝐽2
𝑧 �̂�𝑐

−1.583E−01 2.820E−02

𝐶𝑄𝑧
𝐽3
𝑥

−8.719E−02 1.859E−02

𝐶𝑄𝑧
𝐽2
𝑥

+1.611E−02 4.730E−03

𝐶𝑄𝑧
𝐽2
𝑧

−8.568E−03 2.738E−03

𝐶𝑄𝑧
𝐽𝑥 𝐽𝑧 �̂�

−1.241E−03 4.331E−04

Table 20 Parameter estimates for 𝑪𝑻𝒙 in the High
Incidence Region (𝑹2 = 99.87%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑥𝑜

+8.638E−02 2.227E−04
𝐶𝑇𝑥

𝐽𝑥

−1.667E−01 1.936E−03

𝐶𝑇𝑥
�̂�𝑐

+4.844E−01 2.783E−03

𝐶𝑇𝑥
𝐽𝑧

+6.300E−02 1.394E−03

𝐶𝑇𝑥
𝐽𝑥 𝐽𝑧

−3.751E−01 1.330E−02

𝐶𝑇𝑥
𝐽2
𝑧

+1.544E−01 6.887E−03

𝐶𝑇𝑥
𝐽𝑥 𝐽2

𝑧

+3.234E−01 3.279E−02

𝐶𝑇𝑥
𝐽𝑥 �̂�𝑐

+3.205E−01 2.174E−02

𝐶𝑇𝑥
𝐽3
𝑧

−2.401E−01 1.832E−02

𝐶𝑇𝑥
𝐽3
𝑥

−4.661E−01 5.525E−02

𝐶𝑇𝑥
𝐽2
𝑥 𝐽𝑧

+2.554E−01 5.030E−02

𝐶𝑇𝑥
�̂�2

−2.828E−06 6.887E−07
𝐶𝑇𝑥

𝐽𝑧 �̂�𝑐

+6.817E−02 1.876E−02

Table 21 Parameter estimates for 𝑪𝑻𝒚 in the High
Incidence Region (𝑹2 = 82.68%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑦𝑜

−3.768E−03 9.358E−05
𝐶𝑇𝑦

�̂�𝑐

−2.000E−02 1.746E−03

𝐶𝑇𝑦
𝐽𝑥 𝐽𝑧 �̂�𝑐

−3.965E−01 6.011E−02

𝐶𝑇𝑦
𝐽𝑧

−1.692E−03 5.718E−04

𝐶𝑇𝑦
𝐽𝑧 �̂�

−6.493E−06 3.799E−05

𝐶𝑇𝑦
𝐽𝑧 �̂�𝑐 �̂�

−9.258E−04 7.534E−04

𝐶𝑇𝑦
𝐽3
𝑧

−6.420E−02 7.830E−03

𝐶𝑇𝑦
𝐽2
𝑧

+2.734E−02 3.522E−03

𝐶𝑇𝑦
𝐽2
𝑧 �̂�𝑐

+2.527E−01 5.708E−02

𝐶𝑇𝑦
𝐽2
𝑥

+1.803E−02 3.241E−03

𝐶𝑇𝑦
𝐽𝑥 𝐽𝑧

−3.029E−02 4.665E−03

𝐶𝑇𝑦
𝐽𝑥 𝐽2

𝑧

+1.321E−01 2.068E−02

𝐶𝑇𝑦
𝐽𝑥 𝐽𝑧 �̂�

+1.166E−03 3.400E−04

𝐶𝑇𝑦
𝐽𝑧 �̂�𝑐

−3.342E−02 8.854E−03

𝐶𝑇𝑦�̂�
+2.014E−05 5.943E−06

𝐶𝑇𝑦
𝐽2
𝑥 �̂�𝑐

+1.519E−01 6.317E−02

𝐶𝑇𝑦
�̂�2
𝑐

+6.441E−02 2.982E−02

𝐶𝑇𝑦
𝐽𝑥

+2.395E−03 7.666E−04

𝐶𝑇𝑦
𝐽𝑥 �̂�2

𝑐

−6.251E−01 2.434E−01

𝐶𝑇𝑦
�̂�2
𝑐 �̂�

−4.123E−03 2.078E−03

Table 22 Parameter estimates for 𝑪𝑻𝒛 in the High In-
cidence Region (𝑹2 = 97.76%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑧𝑜

−1.132E−02 8.805E−05
𝐶𝑇𝑧

𝐽𝑧

−3.037E−02 7.763E−04

𝐶𝑇𝑧
�̂�𝑐

−3.567E−02 1.866E−03

𝐶𝑇𝑧
𝐽𝑥 𝐽𝑧

−5.633E−02 4.439E−03

𝐶𝑇𝑧
𝐽3
𝑧

−5.915E−02 6.191E−03

𝐶𝑇𝑧
𝐽𝑥

−4.666E−03 8.625E−04
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Table 23 Parameter estimates for 𝑪𝑸𝒙 in the High
Incidence Region (𝑹2 = 98.09%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑥𝑜

−4.968E−03 4.436E−05
𝐶𝑄𝑥

�̂�𝑐

−3.383E−02 7.032E−04

𝐶𝑄𝑥
𝐽2
𝑧 �̂�

+3.540E−04 1.044E−04

𝐶𝑄𝑥
𝐽2
𝑥

+1.605E−02 1.064E−03

𝐶𝑄𝑥
�̂�2
𝑐

−1.240E−01 1.450E−02

𝐶𝑄𝑥�̂�
+2.015E−05 2.127E−06

𝐶𝑄𝑥
𝐽𝑧 �̂�𝑐

−1.032E−02 4.055E−03

𝐶𝑄𝑥
𝐽𝑥 𝐽𝑧 �̂�𝑐

+2.035E−01 2.301E−02

𝐶𝑄𝑥
𝐽2
𝑥 �̂�𝑐

−1.635E−01 3.022E−02

𝐶𝑄𝑥
𝐽2
𝑧

−6.122E−03 1.125E−03

𝐶𝑄𝑥
𝐽3
𝑧

+2.022E−02 5.217E−03

Table 24 Parameter estimates for 𝑪𝑸𝒚 in the High
Incidence Region (𝑹2 = 95.70%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑦

𝐽𝑥

−2.780E−02 7.570E−04

𝐶𝑄𝑦𝑜
+2.879E−03 9.625E−05

𝐶𝑄𝑦
𝐽𝑧

+1.403E−02 7.421E−04

𝐶𝑄𝑦
𝐽2
𝑧 �̂�

+5.117E−04 1.395E−04

𝐶𝑄𝑦�̂�
+8.761E−05 6.092E−06

𝐶𝑄𝑦
𝐽𝑧 �̂�

+2.827E−04 3.718E−05

𝐶𝑄𝑦
𝐽2
𝑥

+3.307E−02 4.561E−03

𝐶𝑄𝑦
�̂�𝑐

+6.980E−03 1.543E−03

𝐶𝑄𝑦
𝐽𝑥 𝐽2

𝑧

+1.328E−01 1.812E−02

𝐶𝑄𝑦
𝐽𝑥 𝐽𝑧

−4.272E−02 6.805E−03

Table 25 Parameter estimates for 𝑪𝑸𝒛 in the High
Incidence Region (𝑹2 = 96.39%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑧

𝐽𝑧

−1.915E−02 5.020E−04

𝐶𝑄𝑧𝑜
−2.770E−03 9.572E−05

𝐶𝑄𝑧
𝐽2
𝑧 �̂�𝑐

−5.641E−02 4.267E−02

𝐶𝑄𝑧
�̂�𝑐

−2.216E−02 1.776E−03

𝐶𝑄𝑧
𝐽𝑧 �̂�𝑐

−9.223E−02 1.009E−02

𝐶𝑄𝑧�̂�
−3.757E−05 4.960E−06

𝐶𝑄𝑧
𝐽𝑥 𝐽𝑧 �̂�

−8.877E−04 1.376E−04

𝐶𝑄𝑧
�̂�2

+1.979E−06 3.624E−07
𝐶𝑄𝑧

𝐽𝑧 �̂�
+1.533E−04 3.218E−05

Table 26 Parameter estimates for 𝑪𝑻𝒙 in the Descent
Region (𝑹2 = 98.43%)

Parameter \̂ 𝑠(\̂)
𝐶𝑇𝑥𝑜

+8.906E−02 6.646E−04
𝐶𝑇𝑥

𝐽3
𝑥

+1.126E+00 1.815E−01

𝐶𝑇𝑥
�̂�𝑐

+4.380E−01 1.109E−02

𝐶𝑇𝑥
𝐽𝑥

−1.445E−01 6.936E−03

𝐶𝑇𝑥
𝐽2
𝑥

+8.904E−01 4.206E−02

𝐶𝑇𝑥
𝐽𝑥 �̂�𝑐

+6.459E−01 8.246E−02

Table 27 Parameter estimates for 𝑪𝑸𝒙 in the Descent
Region (𝑹2 = 98.18%)

Parameter \̂ 𝑠(\̂)
𝐶𝑄𝑥𝑜

−4.858E−03 3.650E−05
𝐶𝑄𝑥

�̂�𝑐

−3.438E−02 5.012E−04

𝐶𝑄𝑥
𝐽2
𝑥

+1.424E−02 8.473E−04

𝐶𝑄𝑥
�̂�2
𝑐

−1.066E−01 1.466E−02
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Table 28 Median reference values used to center explanatory variables for each modeling region

Variable Hover Region Low Incidence Region High Incidence Region Descent Region
𝐽𝑥 — +3.320E−01 +8.333E−02 −3.038E−01
𝐽𝑧 — +1.693E−01 +3.215E−01 —
𝑛, rev/s +6.249E+01 +6.345E+01 +6.155E+01 +6.144E+01
𝛿𝑐, rad −6.747E−03 +6.992E−02 +2.676E−02 +2.550E−02
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