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Abstract In this work, we extend the regularization framework from Kron-
qvist et al [36] by incorporating several new regularization functions and de-
velop a regularized single-tree search method for solving convex mixed-integer
nonlinear programming (MINLP) problems. We propose a set of regularization
functions based on distance metrics and Lagrangean approximations, used in
the projection problem for finding new integer combinations to be used within
the Outer-Approximation (OA) method. The new approach, called Regular-
ized Outer-Approximation (ROA), has been implemented as part of the open-
source Mixed-integer nonlinear decomposition toolbox for Pyomo - MindtPy.
We compare the OA method with seven regularization function alternatives for
ROA. Moreover, we extend the LP/NLP Branch & Bound method proposed
by Quesada and Grossmann [46] to include regularization in an algorithm
denoted RLP/NLP. We provide convergence guarantees for both ROA and
RLP/NLP. Finally, we perform an extensive computational experiment con-
sidering all convex MINLP problems in the benchmark library MINLPLib. The
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computational results show clear advantages of using regularization combined
with the OA method.

Keywords Convex MINLP ¨ Outer Approximation ¨ Regularization for
Mixed-Integer Optimization

1 Introduction

Optimization problems whose objective and constraints can be represented by
algebraic linear and nonlinear functions of both continuous and discrete vari-
ables are commonly referred to as mixed-integer nonlinear programs (MINLP).
MINLP is a highly versatile modeling paradigm, allowing even Universal Tur-
ing Machines to be encoded via a Minsky’s register machine [39]. There is a
large variety of practical applications and optimization tasks that can be mod-
eled using MINLP, see e.g., [8, 19, 37, 51]. Although MINLPs are non-convex
optimization problems because of some variables’ discreteness, the term convex
MINLP is used to denote problems where the continuously relaxed problem is
convex [34].

Convex MINLP problems are an important class of problems, as the con-
vex properties can be exploited to derive efficient decomposition algorithms.
Among these decomposition algorithms for MINLP, we have Branch & Bound
(B&B) [13], Generalized Benders Decomposition [20], Outer-Approximation
(OA) [16], Partial Surrogate Cuts [46], Extended Cutting Plane (ECP) [53],
Feasibility Pump [4, 7] Extended Supported Hyperplanes (ESH) [32], and the
center-cut [35] method. Moreover, the are several extensions of the OA method,
such as the single-tree OA [46], Quadratic-cuts OA [49], conic-based OA [11],
Decomposition-based OA [43], and Proximal OA [14]. These methods exploit
the convex properties to derive valid linearizations of the nonlinear constraints
based on their gradients. These linearizations are equivalent to first-order Tay-
lor expansions of the nonlinear functions in the inequality constraints. They
define a linear region that overestimates the problem’s nonlinear feasible region
because of the convexity property. Since methods such as ECP, ESH, and OA,
in their original form, all solve MILP relaxation problems via a B&B search
tree in each iteration, these methods are known as multi-tree methods [11, 42].
Algorithm developers have actively interested in solving MINLP problems in a
Branch & Cut scheme. Quesada and Grossmann [46] first proposed a method,
called LP/NLP B&B, that combines the outer approximation framework with
B&B, resulting in only a single dynamically updated B&B search tree. Such al-
gorithms are referred to as single-tree methods, and several single-tree variants
of both OA and ESH have been presented [11, 41, 42] and has been imple-
mented by several MINLP solvers such as BONMIN [6], FilMint [1], AOA [26],
SHOT [42], Pajarito [11], and BARON [29].

OA is regarded as one of the most efficient methods for convex MINLP [34]
and several state-of-the-art solvers build upon the OA algorithm. However, as
described in [36] methods such as ECP, ESH, and OA all similarly use the
linear relaxation as in Kelley’s cutting plane method [28]. Kelley’s method
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is known to be unstable given its large jumps in the search space [24] and is
generally considered to have a poor theoretical and practical performance, e.g.,
see [44]. Several stabilization techniques [2, 12] have been proposed to tackle
this shortcoming in the continuous problem setting (NLP). Directly using a
trust-region or a regularization is non-trivial for mixed-integer problems due
to the search space’s discrete and often disjunct nature. For nonsmooth convex
MINLP de Oliveira [45] proposed a regularized algorithm based on the ECP
method. Combining OA and bundle methods, Delfino and de Oliveira [15]
derived a method for nonsmooth convex MINLP. Kronqvist et al [36] showed
that using ideas from the level method [30, 38] makes it possible to integrate
regularization and second-order derivatives in an OA framework efficiently.
By Using a second-order Taylor expansion of the Lagrangean within a level-
based OA, the so-called Q-OA method [36] significantly reduced the number
of iterations for highly nonlinear convex MINLP problems.

In this paper, we build upon the work by Kronqvist et al [36] and present a
general regularization framework for OA. We refer to the new method as Reg-
ularized Outer-Approximation (ROA), which enables different regularization
functions to be used while ensuring global convergence. We propose a set of
regularization functions based on distance metrics and the Lagrangean. The
motivation behind the Lagrangean-based regularization functions is to incor-
porate more information from both the objective and constraint function. We
also integrate the regularization framework with the single-tree search algo-
rithm in a method we denominate as regularized LP/NLP (RLP/NLP).

1.1 Contributions and outline

We propose a general framework for integrating different regularized mixed-
integer subproblems in the OA method in multi-tree and single-tree settings
to solve convex MINLP problems. We prove that these methods are guaran-
teed to converge to the optimal solution of MINLP problems, regardless of
the choice of regularization function. Seven different regularization functions
are proposed as objectives in this work, three of them coming from distance
metrics to the incumbent solutions. The other four have approximations of the
Lagrangean function around the best-found solution. We implemented these
methods in the open-source Mixed-integer nonlinear decomposition toolbox
for Pyomo - MindtPy [3]. The implementation is used for a comprenhensive
computational study by solving all convex MINLP problems available in the
benchmark library MINLPLib [9].

The remaining manuscript is organized as follows. In Section 2 we pro-
vide a brief background on the OA and LP/NLP methods. Section 3 intro-
duces the Regularized Outer-Approximation (ROA) method and proposes the
norm-based objective functions for the regularization subproblem. Next, we
introduce four objective functions obtained through approximations of the
Lagrangean function in Section 4. We provide a convergence analysis of the
proposed methods in Section 5. The single-tree extension of the regularization
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method as the Regularization LP/NLP Branch & Bound (RLP/NLP) method
and its implementation are presented in Section 6. Finally, the computational
results of the methods’ benchmarking in presented in Section 7.

2 Background

The MINLP problems considered in this paper are of the form,

min
x,y

fpx,yq

s.t. gjpx,yq ď 0 @j “ 1, . . . , l,

Ax`By ď b,

x P Rn, y P Zm.

(MINLP)

Later in the algorithms, the (nonlinear) objective function is transformed into
a constraint by the epigraph formulation, fpx,yq ď µ, where the continuous
variable µ represents the objective value. To guarantee global convergence for
OA-type algorithms typically require convexity assumptions, a bounded search
space, and some form of constraint qualification for problem MINLP [6, 16, 18].
Throughout this paper, we rely on the following assumptions:

Assumption 1. The nonlinear functions f, g1, . . . , gl : RnˆRm Ñ R are convex
and continuously differentiable.

Assumption 2. The linear constraints Ax`By ď b form a bounded polyhe-
dron.

Assumption 3. A constraint qualification holds for each feasible integer com-
bination, e.g., Slater’s condition [48].

We will not go through the Outer-Approximation method in detail. However,
we will introduce some of the main concepts and subproblems as these are
used later on. Algorithm 3 in the Appendix summarizes the main steps of the
OA algorithm, and for more details, we refer to [16, 18, 36, 46].

The OA method uses a linear approximation (or relaxation) of the feasible

set of the nonlinear constraints. Given a set of trial solutions
 

pxi,yiq
(k

i“0
, the

linear relaxation is formed by the constraints

fpxk,ykq `∇fpxk,ykqJ
„

x´ xk

y ´ yk



ď µ,

gjpx
k,ykq `∇gjpxk,ykqJ

„

x´ xk

y ´ yk



ď 0 @j P Ik,
(1)

where Ii are index sets containing the indices of the nonlinear constraint ac-
tive at the trial solution pxi,yiq [18]. The constraints in (1) form a polyhedral
outer approximation of the feasible set of the nonlinear constraints in prob-
lem MINLP. The linear constraints are often referred to as cuts, as they refine
the outer approximation by cutting off infeasible parts of the search space.
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In the OA algorithm the next integer combination yk`1 is obtained by
solving the following MILP problem

min
x,y,µ

µ

s.t. fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R.
(OA-MILP)

Due to the convexity assumption, we know that the optimum of problem OA-
MILP provides a valid lower bound (LB) to the MINLP problem, referred
to as LBk`1. If the the integer assignment yk`1 is feasible, then the corre-
sponding continuous variables xk`1 are determined by solving the convex NLP
subproblem

min
xPRn

fpx,yk`1q

s.t. gjpx,y
k`1q ď 0 @j “ 1, . . . l,

Ax`Byk`1 ď b.

(NLP-I)

A feasible solution to problem NLP-I gives a valid upper bound (UB) to the
MINLP problem, which we refer to as UBk`1.

If problem NLP-I is infeasible, then values for the continuous variables
xk`1 are obtained by solving a feasibility problem. The feasibility problem
minimizes the norm of the constraint violations, typically `8 or `1. With the
current choice of integer variables y, the feasibility problem is defined as

min
xPRn,sPRl

`

}s}p

s.t. gjpx,y
k`1q ď sj @j “ 1, . . . l,

Ax`Byk`1 ď b.

(NLP-f)

As described in Algorithm 3, the OA method iteratively solves subprob-
lems OA-MILP, NLP-I, and NLP-f to find the optimal solution to the MINLP
problems and produce certificates of optimality (upper and lower bounds).

Every iteration of the OA algorithm solves a new problem OA-MILP that
only differs from the previous one by some cuts. To avoid solving a large
number of similar and potentially challenging MILP problems, Quesada and
Grossmann [46] proposed the LP/NLP-based B&B algorithm that combines
OA and B&B. The LP/NLP-based B&B algorithm dynamically updates prob-
lem OA-MILP and only builds a single B&B tree. Each node, or leaf, of the
search tree forms a continuous linear programming (LP) problem where the
integer variables are relaxed as continuous, and the cuts in (1) are used to
approximate the nonlinear constraints. Integer solutions are obtained through
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Fig. 1: Progress of OA in problem Ex 1, with each figure being an iteration.
The feasible region defined by the nonlinear constraints (dark gray), the outer
approximation obtained by the generated cuts (light gray), the MIP problem
solution (‚), and NLP subproblem solution (‚) are included.

branching on the LP problems. Once an integer solution is found in the search
tree, it is used as a new integer combination in the OA algorithm resulting
in new cuts by solving the corresponding NLP subproblem. The best-found
feasible solution to the original problem is known as the incumbent solution
and is used as an upper bound in the search tree. The linear B&B procedure
continues with an improved approximation of the nonlinear constraints. The
new cuts, derived from the new integer combination, are added to all open
nodes of the B&B tree. The main steps in the LP/NLP B&B are outlined in
Algorithm 4 in the Appendix.

We consider the following illustrative example to highlight the features of
the presented methods and show how they differ from OA.

minimize x´ y{4.5` 2

s.t. x2{20` y ď 20

px´ 1q2{40´ y ď ´4

0.275y1.5 ´ 10px` 0.1q0.5 ď 0

0 ď x ď 20, 0 ď y ď 20, x P R, y P Z.

(Ex 1)

To best compare all the methods, we use the feasible point px0, y0q “ p1, 4q as
the starting point. OA requires five iterations to solve this problem, of which
the first four iterations are shown in Figure 1. In this specific problem, the first
iteration results in an infeasible solution. The optimal solution is obtained in
iteration four, and verifying optimality requires an additional iteration.

3 Regularized Outer-Approximation

The level-based OA (L-OA) method was presented by Kronqvist et al [36],
where the authors used a squared `2-regularization to the subproblem of ob-
taining new integer assignments. It was shown in the paper that the regu-
larization technique is equivalent to adding a trust region, given by squared
`2-norm, with a center at the incumbent solution. We give a brief overview of
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the L-OA algorithm since the other regularization techniques in this paper are
also based on this framework. For more details, we refer to [36].

At iteration k, the problem OA-MILP is solved to obtain a LB LBk on
the optimal objective value. Given an incumbent solution px̄, ȳq and the UB
resulting from fpx̄, ȳq, we estimate the optimal objective value of the MINLP
problem f‹ “ fpx‹,y‹q as

f̂‹k “ p1´ αqfpx̄, ȳq ` αLB
k, (2)

where α P p0, 1s. The estimated optimum f̂‹k is chosen as an interpolation
between the UB and LB, where α is the interpolation parameter representing
how much the linear approximation is trusted. For the continuous setting,
within the level method proposed by Lemaréchal et al [38], a value of α “
1´

?
2{2 « 0.29 is found to be optimal. The proof does not generalize for the

mixed-integer case, meaning that an ideal value for α is not known a-priori. As
in [36], we also simply use α “ 0.5. The next integer assignment yk`1 is now

determined by projecting x̄, ȳ onto the f̂‹k level set of the linearly approximated
objective function intersected with the current outer approximation of the
feasible set. The projected solution is obtained as the minimizer of the following
MIP problem,

min
x,y,µ

φhx̄,ȳpx,yq

s.t. µ ď f̂‹k

fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . , k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R,
(MIP-Proj)

where φhx̄,ȳ : Rn ˆ Rm Ñ R is a convex regularization function represent by
the symbol h. The parameter α value is bounded between 0 and 1. It rep-
resents the trade-off between trusting the solution of the linear relaxation of
the problem (α “ 1), which leads to an optimal solution of problem MIP-Proj
with the same minimizer of problem OA-MILP, and staying in the neighbor-
hood of problem NLP-I solution (αÑ 0). The L-OA algorithm in [36] use the
regularization function

φ
`22
x̄,ȳpx,yq :“

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

2

2

, (3)

and the authors mention that the convergence guarantees of the algorithm are
independent of the choice of objective function in MIP-Proj. The regulariza-
tion problem MIP-Proj must contain all the cuts accumulated in problem OA-
MILP to ensure convergence. The regularization role is to favor solutions close
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to the incumbent solution concerning a specific metric. The new integer assign-
ment yk`1 is chosen as a point as close as possible to the incumbent solution,
such that the linearly approximated objective is reduced to at most f̂‹k . By
construction, the regularization problem MIP-Proj is always feasible, e.g., the
minimizer of problem OA-MILP will satisfy all the constraints, and it is used
to derive the next integer assignment yk`1. Once the new integer combination
is obtained, the corresponding continuous variables can be determined using
the same technique as the OA method. The difference between the L-OA and
OA methods is how the new integer assignments are obtained. Otherwise, both
methods use the same techniques for determining the continuous variables and
improving the outer approximation of the feasible set.

Since finite convergence of L-OA holds for any objective function in the
regularization problem [36], other regularization techniques can easily be in-
corporated into the L-OA framework. A general framework based on the L-OA
concept, where the regularization function is not specified, is summarized as a
pseudo-code in Algorithm 1. We refer to this algorithm as Regularized Outer-
Approximation (ROA).

Two alternative regularization functions that fits directly into the L-OA
are

φ`1x̄,ȳpx,yq :“

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

1

, (4)

φ`8x̄,ȳpx,yq :“

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

8

. (5)

A benefit of using a regularization based on either the `1-norm or `8-norm
is that the regularization problem can be encoded as a MILP problem. We
define for the remaining of the paper the L-OA approach from [36] as ROA-
`22, and the proposed linear regularization approaches that use (4) and (5) as
regularization functions as ROA-`1 and ROA-`8, respectively.

As shown in [36], L-OA finds the same integer solutions as problem OA-
MILP in OA with specific trust-region constraints. In fact, the equivalence to
a trust region still holds with the regularization given by any p-norm. This
property is stated in Theorem 1. The proof uses the same argumentation as
in [36] but is included for the sake of completeness.

Theorem 1 With the regularization given by a p-norm, the procedure of solv-
ing problems OA-MILP and MIP-Proj in ROA results in solution equivalent
to adding the trust region constraint

›

›

›

›

x´ x̄
y ´ ȳ

›

›

›

›

p

ď rk (6)

to problem OA-MILP in OA, where rk is chosen as the optimum of prob-
lem MIP-Proj.
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Algorithm 1 An algorithm summarizing the Regularized Outer-
Approximation (ROA) method.

Define accepted optimality gap ε ě 0, the regularization function φhx̄,ȳ, and choose the
parameter α P p0, 1s.

1. Initialization.
1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP prob-

lem.
1.2 Generate cuts at x̃, ỹ according to (1) and construct problems OA-MILP.
1.3 Set iteration counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Repeat until UBk´1 ´ LBk´1 ď ε.
2.1 Solve problem OA-MILP to obtain yk and LBk.
2.2 If a feasible solution x̄, ȳ has been found, calculate the estimated optimal value f̂‹k

according to (2) and solve problem MIP-Proj to update yk.
2.3 Solve problem NLP-I with integer variables fixed as yk to obtain xk.

2.3.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.
2.3.1.1 If fpxk,ykq ď fpx̄, ȳq, set x̄, ȳ “ xk,yk.

2.3.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f
and set UBk “ UBk´1.

2.4 Generate cuts at xk,yk according to (1) and add these to problems OA-MILP
and MIP-Proj.

2.5 (Optional) Generate no-good cuts at yk and add these to problems OA-MILP.
2.5 Increase iteration counter, k “ k ` 1,

3. Return x̄, ȳ as the optimal solution x‹,y‹.

Proof As mentioned earlier, MIP-Proj is always feasible and and we denote
the minimizer by xMIP-Proj,yMIP-Proj, µMIP-Proj. The radius of the equivalent
trust region constraint is then given by

rk “

›

›

›

›

xMIP-Proj ´ x̄
yMIP-Proj ´ ȳ

›

›

›

›

p

(7)

Solving problem OA-MILP, with the trust region constraint, gives the solution
xMILP,yMILP, µMILP. Now, assume this solution is not an optimal solution to
problem MIP-Proj. Since xMILP,yMILP, µMILP is not an optimal solution, it
follows that

rk ą

›

›

›

›

xMILP ´ x̄
yMILP ´ ȳ

›

›

›

›

p

. (8)

Since OA-MILP minimizes µ, we know that µMILP ď µMIP-Proj ď f̂‹k . This
leads to a contradiction since xMILP,yMILP, µMILP is a feasible solution to
problem MIP-Proj with an objective value strictly lower than the solution ob-
tained by solving the minimization problem. Therefore, the solution to prob-
lem OA-MILP, with the trust-region constraint, must also be an optimal so-
lution to problem MIP-Proj. [\

Depending on which function φhx̄,ȳ is used in the ROA method, we ob-
tain different variants of the algorithm. These variants are denoted as ROA-h,
e.g., we refer to ROA-`1 when (4) is used as the objective for the regulariza-
tion problem. Next, we illustrate the difference between these variants with
example Ex 1.
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Fig. 2: First iteration of ROA for problem Ex 1 with the three level norms
presented in this work. The format from Figure 1 is used here, with the ad-
ditional features that the regularization objective contours, the regularization
problem solution (Ĳ), the incumbent solution (‚), and the level constraint (2)
with α “ 0.5 (red line) are included. Left: ROA-`22. Center: ROA-`1. Right:
ROA-`8.

For example Ex 1, the three level regularization norms presented here;
ROA-`22, ROA-`1, and ROA-`8; converge to the optimal solution in three
iterations. Thanks to the regularization, all three approaches find the optimal
solution in the first iteration, as observed in Figure 2. Although the simple
example does not show this behavior, the regularization objective’s choice
might affect which integer combination gets chosen to solve problem NLP-
I. In every case, the regularization keeps this integer combination close to
the incumbent solution. Moreover, the choice of the objective may impact the
computational time required to solve the regularization problem. As mentioned
above, choosing the squared `2 norm as in L-OA [36] leads to the regularization
problem becoming an MIQP. On the other hand, the `1 and `8 norms in the
objectives can be modeled using linear inequalities and auxiliary variables, as
presented in the Appendix, leading to MILP regularization subproblems. For
all approaches, it takes two more iterations to close the LB.

In the next section, we present two new regularization strategies that
also fit within the ROA framework and incorporate information from the La-
grangean function.

4 Lagrangean based regularization

To take advantage of second-order derivatives for selecting the new integer
assignment yk`1, Kronqvist et al [36] proposed a technique they refer to as
Quadratic Outer-Approximation (Q-OA). Instead of a regularization function,
Q-OA uses a second-order Taylor series expansion of the Lagrangean function
as the objective function in MIP-Proj. Thus, the new integer assignment is
chosen by minimizing a quadratic approximation of the Lagrangean within
an outer approximation of the feasible set subject to a level constraint, i.e.,
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µ ď f̂‹k . Except for the level constraint, there is an apparent similarity with
the sequential quadratic programming (SQP) approach [5].

The Lagrangean function L : Rn ˆ Rm ˆ Rk Ñ R associated with the
MINLP problem can be written as

Lpx,y, λq “ fpx,yq ` λJg̃px,yq, (9)

where g̃ : Rn ˆ Rm Ñ Rk contains all the constraints in the form g̃px,yq ď
0, linear and nonlinear. From the fixed NLP problem giving the incumbent
solution (x̄, ȳ), the corresponding dual variable λ̄ is also obtained. Now, by
defining the regularization function φhx̄,ȳ as

φL2
x̄,ȳpx,yq :“ ∇x,yLpx̄, ȳ, λ̄qJ

„

x´ x̄
y ´ ȳ



`
1

2

„

x´ x̄
y ´ ȳ

J

∇2
x,yLpx̄, ȳ, λ̄q

„

x´ x̄
y ´ ȳ



,

(10)

the ROA method in Algorithm 1 will result in the Q-OA algorithm. Note
that φhx̄,ȳ in (10) can be considered a regularizer with a stabilization center at
the minimizer of the quadratic approximation of the Lagrangean. Suppose the
Hessian of the Lagrangean is not positive definite (only positive semidefinite).
In that case, the stabilization center may not be a unique point but a subspace.

Remark 1 With the integer variables fixed as ȳ, the point px̄, ȳ, λ̄q is a station-
ary point of the Lagrangean and, therefore, all partial derivatives correspond-
ing to the continuous variables will be zero in ∇x,yLpx̄, ȳ, λ̄q. This follows
directly from the KKT conditions of the NLP problem NLP-I.

Next, we derive two new regularization functions based on the Lagrangean
that can be directly implemented in Algorithm 1. Using the Hessian of the
Lagragian, we can define a norm as

›

›

›

›

x
y

›

›

›

›

Lpx̄,ȳ,λ̄q
:“

d

„

x´ x̄
y ´ ȳ

J

∇2
x,yLpx̄, ȳ, λ̄q

„

x´ x̄
y ´ ȳ



, (11)

which is a proper norm if in the Hessian is positive definite or a semi norm if
the Hessian is positive semidefinite [31]. Based on this (semi) norm, we define
a new regularization function as

φ∇
2L

x̄,ȳ px,yq :“

›

›

›

›

x
y

›

›

›

›

2

Lpx̄,ȳ,λ̄q
“

„

x´ x̄
y ´ ȳ

J

∇2
x,yLpx̄, ȳ, λ̄q

„

x´ x̄
y ´ ȳ



. (12)

This regularization function’s motivation favors search directions in which the
Lagrangean has a locally linear behavior. This regularization, therefore, favors
regions of the search space where the outer approximation is expected to be
more accurate. Suppose the Hessian has at least one zero eigenvalue. In that
case, the equivalent trust-region will be unbounded in directions in which the
quadratic approximation of the Lagrangean changes linearly.
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There are situations in which the Hessian is not known or too expensive to
compute. One of the simplest approximations of the Hessian is a scaled identity
matrix ρI. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [17],
for example, uses the scaled identity as the first estimate of the Hessian of the
Lagrangean. Using this trivial approximation of the Hessian in the quadratic
approximation of the Lagrangean, gives us the following regularization func-
tion

φ
L1{`

2
2

x̄,ȳ px,yq :“ ∇x,yLpx̄, ȳ, λ̄qJ
„

x´ x̄
y ´ ȳ



` ρ

„

x´ x̄
y ´ ȳ

J

I

„

x´ x̄
y ´ ȳ



, (13)

where ρ P R` is a scaling factor. This gives a regularization function with
a stabilization center shifted in the direction of the negative gradient of the
Lagrangean. Since the gradient is zero for all the continuous variables, the
stabilization center is only shifted for the discrete variables. The stabilization
center pxc,ycq can easily be determined from the stationary conditions of the
regularization function, and is given by

„

xc
yc



“

„

x̄
ȳ



´
∇x,yLpx̄, ȳ, λ̄q

2ρ
. (14)

Depending on the magnitude of both ∇x,yLpx̄, ȳ, λ̄q and ρ, the stabilization
center might be far from the incumbent solution and even outside of the vari-
able bounds. However, we can directly control how far from the incumbent
solution the stabilization center lies by scaling ρ. By selecting ρ as

ρ “

›

›

›

›

∇x,yLpx̄, ȳ, λ̄q
2d

›

›

›

›

2

, (15)

the euclidean distance between the stabilization center and the incumbent
solution becomes d. We can, thus, use the parameter d to determine how far
the stabilization center is shifted.

If we completely remove the quadratic term from the Lagrangean approx-
imation, we are left with the linear approximation function

φL1
x̄,ȳpx,yq :“ ∇x,yLpx̄, ȳ, λ̄qJ

„

x´ x̄
y ´ ȳ



. (16)

Note that function (16) will not result in a regularization in ROA! However,
since the linear approximation function combines the gradients of both the
constraints and the objective, it could provide a direction more favorable for
finding feasible solutions. Based on the computational results in Section 7, we
observe that using (16) as the objective function in the regularization sub-
problem is not advantageous compared to the other approaches presented in
this paper; supporting the use of a regularizer.

Similarly to the level-based approaches, we use the following notation for
the regularization methods derived using the Lagrangean: The Q-OA method
presented in [36] is presented as ROA-L2. We denote ROA-L1 the method
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using the first-order approximation of the Lagrangean as in (16), and following
that notation the regularization methods involving (12) and (13) are denoted
ROA-∇2L and ROA-L1{`

2
2, respectively.

Next, we illustrate the differences between these regularization functions
derived from the Lagrangean in ROA with example Ex 1. In Figure 3 we ob-
serve the first three iterations of the ROA methods with objective functions for
problem MIP-Proj given by the second-order Taylor approximation, the Hes-
sian of the Lagrangean based norm, and the first-order Taylor approximations
of the Lagrangean function. Notice that the second-order Taylor approxima-
tion of the Lagrangean, proposed initially as Q-OA in [36], has a regularization
objective equivalent to the sum of the two other methods presented in Fig-
ure 3. This can be observed as the contours of the regularization objective in
the ROA-L2 method have a stabilization center (sometimes beyond the do-
main of the figure) specified by the ROA-∇2L with a shift given by ROA-L1

corresponding objective in the direction of the discrete variable. This obser-
vation corresponds with Remark 1. Moreover, the gradient of the Lagrangean
switches from pointing up or down depending on whether the incumbent so-
lution is below or above the optimal solution, respectively. Although all the
methods shown in Figure 3 can find the optimal solution following an infeasi-
ble first iteration, the number of required iterations to close the gap between
UB and LB and guarantee optimality varies. It takes ROA-L2 five iterations,
ROA-∇2L six iterations, and ROA-L1 seven iterations to guarantee the opti-
mality of the solution after finding the optimal solution in the last iteration for
the first method and in the second-to-last iteration for the other two methods.

The progress of the ROA-L1{`
2
2 method is shown in Figure 4. This Figure

exemplifies how the `22 norm stabilization center is shifted from the incumbent
solution in the direction of the Lagrangean gradient. This distance of the
shifting is given by parameter d, equal to one in this example. It can be seen
from the smallest contour, representing a regularization objective of zero, on
which the incumbent solution lies. In terms of the number of iterations, ROA-
L1{`

2
2 is the most efficient method among all the ones presented here at solving

problem Ex 1, finding the optimal solution on its first iteration and closing
the gap between UB and LB in three iterations.

5 Convergence properties

The convergence proof of the L-OA algorithm presented in [36] is entirely
independent of the objective function of the regularization problem MIP-Proj.
Therefore, finite convergence of ROA, for any function φhx̄,ȳ, directly follows
from the convergence proofs of L-OA. For completeness, we outline the main
convergence property of ROA. For more details, we refer the reader to Section
5 in [36].

From the start, we assumed that all the nonlinear functions were con-
vex (Assumption 1). This assumption is crucial since it ensures that the ROA
methods’ cuts do not cut off any feasible integer solution and that problem OA-
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Fig. 3: First three iterations (from left to right) for proposed Lagrangean-based
regularization methods for problem Ex 1. The format from Figure 2 is used
here. Top: ROA-L2. Center: ROA-∇2L. Bottom: ROA-L1.

MILP gives a valid LB. For a complete proof that problem OA-MILP gives
a valid LB, see [16, 18, 36]. The regularization problem will be feasible in
each iteration with all the ROA methods. The feasibility of the regulariza-
tion problem is given by the fact that the constraints in the regularization
problem MIP-Proj are the same as in OA-MILP, besides the reduction con-
straint controlled by the confidence parameter α, for more details, see Lemma
4 in [36]. As stated in Lemma 3 in [36], it is clear that each infeasible integer
combination obtained in the search will be excluded from the search space by
the generated cuts. An essential property of the ROA methods is that, as long
as the UB and LB of the optimal objective function are different, the regular-
ization problem will provide a new integer combination in each iteration. This
property is formally stated in the following theorem.
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Fig. 4: First two iteration of ROA-L1{`
2
2 for problem Ex 1. The format from

Figure 2 is used here, considering the scaling factor ρ such that the shifting of
the stabilization center is d “ 1.

Theorem 2 If the lower bound is not equal to the upper bound, then the min-
imizer of regularization subproblem MIP-Proj provides a new integer combi-
nation.

Proof By Lemma 3 in [36], it is clear that each infeasible integer combination
encountered will be excluded from the search space by the cuts generated
in the ROA algorithm. As proven in Theorem 5 in [36], all feasible integer
combinations found by the ROA algorithm will also be excluded from the
search space as long as there is a gap between the upper and lower bound. [\

The main convergence property of ROA is summarized in the following
theorem.

Theorem 3 The ROA algorithm will terminate after a finite number of it-
erations, either by proving the best-found solution’s optimality or by verifying
that the MINLP problem is infeasible.

Proof By Theorem 2, it is clear that problem MIP-Proj will, in each iteration,
find a new, previously unexplored integer assignment, as long as the UB is
not equal to the LB. As stated in Lemma 1 in [36], the LB is valid in each
iteration of the algorithm. Due to Assumption 2, the search space only contains
a finite number of different integer assignments. Therefore, the algorithm must
terminate after a finite number of iterations with either the UB equal to the
LB or by proving infeasibility by problem OA-MILP being infeasible. [\

For more details and a complete convergence proof, we refer the reader to
Section 5 in [36].
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6 Regularization in LP/NLP Branch & Bound algorithm

Solvers based on a single-tree search or LP/NLP-based B&B algorithms have
shown outstanding performance in recent benchmarks [34, 42]. A natural ex-
tension of the regularization framework from the previous section is, thus, the
integration of regularization in LP/NLP-based B&B. This is also suggested in
the conclusions and future work section of [36].

To introduce regularization into the LP/NLP-based B&B framework, we
use the regularization problem MIP-Proj for each node in the search tree where
an integer feasible solution is found. The regularization problem intends to
choose new integer combinations close to the incumbent solution. It is also
necessary to generate cuts at the nodes’ variable values in the search tree with
integer feasible solutions to ensure convergence. Otherwise, an infeasible inte-
ger combination encountered in the search tree might not be excluded as the
regularization might result in a different integer combination. Except for these
two modifications, the algorithm follows the same procedure as the standard
LP/NLP-based B&B algorithm. The regularized LP/NLP-based B&B algo-
rithm is summarized as a pseudo-code in Algorithm 2. We denote all the algo-
rithms implementing regularization approaches on the LP/NLP-based B&B
method as RLP/NLP. Similarly to ROA, depending on the objective func-
tion used in the regularization subproblem, φhx̄,ȳpx,yq, we denominate the
approach as RLP/NLP-h, e.g., the single-tree approach using (5) is denoted
RLP/NLP-`8.

A significant difference compared to ROA is that the optimum of the lin-
ear approximation OA-MILP is not available during the search. This is an
important detail and is described further in the following remark.

Remark 2 During the B&B tree search, the minimum of the current linear
approximation OA-MILP is not known. Only a lower bound to problem OA-
MILP is available, and all integer feasible solutions to OA-MILP may have a
larger objective function value. Using the available LB to calculate the esti-
mated optimum f̂‹k may, therefore, result in an infeasible level constraint, i.e.,
there does not exist a feasible integer solution to problem OA-MILP with an
objective value less than or equal to f̂‹k . In such a situation, the regularization
problem MIP-Proj will also be infeasible.

If the regularization is infeasible, the RLP/NLP algorithm continues by using
the integer combination obtained at the current node. Note that each integer
feasible node of the search tree involves a possibly expensive regularization
problem. Therefore, the additional regularization problem must significantly
reduce the number of integer combinations explored to be competitive. As
shown in [36] the regularization can lead to a drastic reduction of iterations
and explored integer combinations.

Since f̂‹k is not necessarily a valid LB to the current linear approxima-
tion OA-MILP, the convergence proofs from the previous section do not hold.
However, the convergence can still be guaranteed as cuts are generated for each
node’s variable values with an integer feasible solution. Therefore, the conver-
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Algorithm 2 An algorithm summarizing the regularized LP/NLP
(RLP/NLP) method.

Define accepted optimality gap ε ě 0 and choose the parameter α P p0, 1s.

1. Initialization.
1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP prob-

lem.
1.2 Generate cuts at x̃, ỹ according to (1) and construct problems OA-MILP.
1.3 Set node counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Begin B&B search for problem OA-MILP and continue until UBk´1 ´ LBk´1 ď ε.
2.1 If a new solution x̂, ŷ is found, then generate cuts at x̂, ŷ, set yk “ ŷ and update

LBk according to current B&B tree. Add the new cuts to open nodes of the B&B
tree and to problem MIP-Proj.

2.2 If a feasible solution has been found or provided
2.2.1 Calculate the estimated optimal value f̂‹k according to (2).

2.2.2 Solve problem MIP-Proj to update yk. If the regularization problem is infea-
sible, keep yk unchanged.

2.3 Solve problem NLP-I with integer variables fixed as yk to obtain xk and λk.
2.3.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.

2.3.1.1 If fpxk,ykq ď fpx̄, ȳq, set x̄, ȳ, λ̄ “ xk,yk, λk.
2.3.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f.

2.4 Generate cuts at xk,yk according to (1) and add these to problem MIP-Proj, and
add these as global lazy constraints to the B&B tree.

2.5 (Optional) Generate no-good cuts at yk and add these as global lazy constraints to
the B&B tree of problem OA-MILP.

2.6 Increase node counter, k “ k ` 1
3 Return x̄, ȳ as the optimal solution x‹,y‹.

gence is guaranteed due to the convergence of the ECP algorithm, see [1] for
details of a single-tree ECP algorithm.

7 Computational results

This section introduces our implementation details of the seven ROA methods
and analyzes their performance through benchmark tests. The OA method is
selected as the baseline. As a general observation, we notice that the regular-
ization methods can handle highly nonlinear convex MINLP problems more
efficiently than OA. This aligns well with the observations of the two regular-
ization methods in [36]. Using regularization methods induces a more careful
choice of the integer combination to be evaluated. Having that trial solution
lies preferably close to the best found feasible solution. In general, these regu-
larization methods favor the choice of the following integer combination close
to a stabilization center. This center is constructed using the incumbent so-
lution and the constraints curvature, using information from the Lagrangean
of the problem or a p-norm. The choice of the new integer solution comes at
the expense of solving a mixed-integer regularization subproblem. This extra
step might become exorbitant for mostly linear instances, where tight outer
approximations of the nonlinear feasible region can be obtained with only a
few gradient-based cuts.
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To test the performance of the proposed methods, we use test instances
from the problem library MINLPLib1 [9]. There are 536 convex problems in
MINLPLib, from which we select the 438 instances that have at least one
discrete variable and at least one continuous variable. We denote the 438-
instances set as Problem Set 1. Compared to the OA method, ROA methods
use regularization to keep the trial solutions close to the incumbent solution
and the feasible set. Favoring solutions close to the incumbent also favors areas
close to a linearization point, i.e., areas where the outer approximation is ac-
curate. In theory, regularization-based methods lead to a higher efficiency gain
concerning OA in highly nonlinear instances. This has been corroborated ex-
perimentally [36]. Therefore, we establish Problem Set 2 with highly nonlinear
instances selected from Problem Set 1 according to the following criterion:

nnonlin
n`m

ą 0.4, (17)

where nnonlin is the number of variables present in some nonlinear term,
and m ` n is the total number of discrete and continuous variables. There
are in total 135 convex MINLP problems in MINLPLib that satisfy (17). The
instances in Problem Set 1 have between 2 to 4530 variables and 0 to 5329
constraints. The instances in Problem Set 2 range from 6 to 4530 variables
and 0 to 4650 constraints.

7.1 Implementation details

The OA methods and seven ROA methods are implemented as part of the
Mixed-integer nonlinear decomposition toolbox for Pyomo - MindtPy [3].
This toolbox presents an open-source2 implementation of several solution tech-
niques for MINLP based on problem decomposition. Through a Python imple-
mentation relying on the algebraic modeling language Pyomo [23], MindtPy
can easily access a wide range of solvers to address the subproblems arising
from the decomposition. The methods implemented in MindtPy for the solu-
tion of convex MINLP include OA [16] and ECP [53]. These are complemented
with other decomposition methods such as the feasibility pump [4, 7] and the
center cut algorithm [35]. Besides, MindtPy includes an implementation of the
LB/NLP B&B method [46]. Its flexible framework allows users to easily tailor
the algorithm to fit their particular application i.e., by using different initial-
ization procedures, feasibility norms, cutting planes generators, and call-back
procedures.

For the results presented herein, we use CPLEX 20.1.0.0 [27] as the solver
for the MILP/MIQP subproblems and IPOPT 3.12 [52] for the NLP subprob-
lems using the Harwell Subroutine Library (HSL) MA27 [25] as a solver for
linear systems. The level parameter in ROA methods is set to α “ 0.5 for all

1 Retrieved on May 7, 2021, from http://www.minlplib.org/
2 https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html

http://www.minlplib.org/
https://pyomo.readthedocs.io/en/stable/contributed_packages/mindtpy.html
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approaches. Moreover, for ROA-L1{`
2
2 we use as shifting radius d “ 1. We im-

plement the multi-tree and single-tree approaches, described in Algorithms 1
and 2 respectively. We consider the zero tolerance for checking if a constraint
is active as 10´8; hence we set the IPOPT parameter constr viol tol to that
value.

According to Theorem 3, it is not necessary to solve the regularization
subproblems to optimality. As noted in [36], any feasible solution for the reg-
ularization problems is sufficient to guarantee the convergence of the ROA
methods. These regularization problems are of the same size as the master OA-
MILP, and solving them might be a limiting factor in ROA, as observed by [36]
previously. The performance was improved by not solving the regularization
problem to optimality by using the setting the MIP solution limit parameter,
mip limits solutions, to 10. If CPLEX uses multiple threads, the number
of MIP solutions found by CPLEX might be slightly greater than the mip

limits solutions given that if the limit is reached, the nodes being pro-
cessed in other threads will not be interrupted. CPLEX will stop after all the
current working threads are completed.

Since the problems we consider are all convex, the Hessian of the La-
grangean is always positive semidefinite, and the regularization subproblems
are always convex. However, due to numerical accuracy, the regularization
problem ended up nonconvex for a few cases, e.g., the smallest eigenvalue of
the Hessian was slightly negative. Therefore, we set the optimalitytarget

parameter to 3 to enable CPLEX to solve nonconvex MIQPs in the ROA-L2

and ROA-∇2L methods. Another approach to deal with the nonconvexities
induced by numerical accuracy is to add small perturbations to the diagonal
of the Hessian [36].

The solution procedure is initialized by solving the continuous relaxation of
problem MINLP, which provides a valid LB of the optimal objective function.
In each iteration k, the problem OA-MILP is initialized with the NLP sub-
problem solution in iteration k´ 1. Since the solution of OA-MILP is feasible
to the problem MIP-Proj, we use its optimal value to initialize the regulariza-
tion subproblems. Along this line, as problem NLP-I is solved for the integer
combination of the regularization problem, we use the solution to MIP-Proj
to initialize the nonlinear subproblems. All the other settings in MindtPy,
CPLEX, and IPOPT are the same as the default.

As termination criteria, we use the standard criteria of both an absolute
optimality tolerance ε and a relative optimality tolerance εrel. The search is,
thus terminated if either

fpx̄, ȳq ´ LB ď ε or
fpx̄, ȳq ´ LB

|fpx̄, ȳq| ` 10´10
ď εrel

are satisfied. All tests ran on an Intel® Xeon® CPU (24 cores) 2.67 GHz
server with 128GB of RAM running Ubuntu. For the termination criteria, we
set the tolerances ε “ 10´5 and εrel “ 10´3, and a time limit of 900s. The
multi-tree results are run with up to 8 threads, while the single-tree results
are run with a single thread.
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The LP/NLP-based B&B algorithm can be implemented through so-called
call-backs to the MILP solver in the B&B process, both to solve the con-
tinuous nonlinear subproblems and add new cuts to the LP problems in the
B&B search. The initialization procedure is the same as in traditional OA
to set up the first problem OA-MILP. For each feasible integer solution ŷ
found in the B&B process, it is checked whether that specific integer combi-
nation has been found earlier in the search, i.e., ŷ P tyi|i “ 1, . . . , k ´ 1u.
If ŷ R tyi|i “ 1, . . . , k ´ 1u, then the xk variables can be obtained by solv-
ing NLP-I using that integer combination. If NLP-I is infeasible, the feasibility
problem NLP-f is solved to determine the continuous variables. Cuts are gen-
erated according to (1) and added to all open nodes in the search tree, and
practically implemented as lazy constraints. If ŷ P tyi|i “ 1, . . . , k ´ 1u, then
there is no need to again solve NLP-I as the cuts already added for this inte-
ger combination is sufficient for the linear approximation to be tight for this
integer combination [6]. This situation can, for example, occur if two differ-
ent feasible solutions to the original problem only differ in the values of the
continuous variables. This situation can be avoided by adding no-good cuts at
every found solution [4].

7.2 Detailed examples

We first present detailed results for six particular instances of the
selected test set. These problems were chosen to illustrate in de-
tail the advantage of the ROA methods. The selected instances are
cvxnonsep normcon203, cvxnonsep psig404, nvs115, nvs126, slay08m7, and
smallinvDAXr1b150-1658 .

The statistics of these instances and their solution details are pre-
sented in Table 1. slay08m corresponds to the Big-M formulation of a
safety layout problem, introduced in [47]. This instance is a Mixed-binary
Quadratically Constrained Program (MBQP). cvxnonsep normcon20 and
cvxnonsep psig40 are numerical instances proposed by Kronqvist et al [33].
The first one considers a single norm-2 constraint of 10 integer and 10 con-
tinuous variables. The second one minimizes a signomial function in terms of
integer and continuous variables, making them a Mixed-integer Quadratically
Constrained Program (MIQCP) and a general MINLP, respectively. The
cvxnonsep instances are designed to be particularly difficult for OA-type
methods. nvs11 and nvs12 instances proposed by Gupta and Ravindran
[21] that have been widely used for benchmarking MINLP solver, see e.g.,
[50]. They contain only integer variables, and quadratic constraints, and

3 http://minlplib.org/cvxnonsep_normcon20.html
4 http://www.minlplib.org/cvxnonsep_psig40.html
5 http://www.minlplib.org/nvs11.html
6 http://www.minlplib.org/nvs12.html
7 http://minlplib.org/slay08m.html
8 http://minlplib.org/smallinvDAXr1b150-165.html

http://minlplib.org/cvxnonsep_normcon20.html
http://www.minlplib.org/cvxnonsep_psig40.html
http://www.minlplib.org/nvs11.html
http://www.minlplib.org/nvs12.html
http://minlplib.org/slay08m.html
http://minlplib.org/smallinvDAXr1b150-165.html
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Fig. 5: Bound profiles for instance cvxnonsep psig40 against (a) solution
time and (b) iterations using the multi-tree ROA method as described in
Algorithm 1. The figure shows the upper and lower bounds obtained by the
different regularization methods.

objective function; making them Integer Quadratically Constrained Quadratic
Programs (IQCQP). smallinvDAXr1b150-165 models an Extension of the
Markovitz Mean-Variance-Optimization model by constraints for small
investors. These problems belong to MIQCP.

To illustrate how the methods differ for these problems, we first show the
upper and lower bounds obtained by each method in Figures 5 and 6. Each
figure shows the percentage gap with the known optimal solution with respect
to time and iterations. These plots have a semi-log vertical axis, where the
values within r´εrel, εrels are presented in a linear scale, while values beyond
that are presented in a logarithmic scale.

Figure 5 shows the progress of the bounds as a function of time and it-
erations for problem cvxnonsep psig40 in the multi-tree setting. We observe
that the UB is quickly reduced to the optimal solution by the regularization
methods compared to OA, except for ROA-L1, corresponding to the previous
observation that the gradient of the Lagrangean does not provide a stabiliza-
tion center, hence performing worse than the other methods. This was the only
approach unable to converge within the time limit in the multi-tree setting.
The LB is then improved to reach convergence within the specified optimality
tolerances. When observing the bounds progress with respect to the iterations,
the difference is even more drastic, showing the positive effect of regularization
on this problem.

The bounds profiles for all the presented methods through a single-tree
implementation when solving problem cvxnonsep normcon20 are presented
in Figure 6. Contrary to problem cvxnonsep psig40, the optimal solution
is found by all methods in the first iteration, leaving the remaining task to
improve the LB until the gap is within the specified tolerance. Although the
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Fig. 6: Bound profiles for instance cvxnonsep normcon20 against (a) solution
time and (b) NLP problems solved using the single-tree RLP/NLP methods
as described in Algorithm 2. The figure shows the upper and lower bounds
obtained by the different regularization methods.

regularization problems address the UB improvement part of OA directly by
providing integer combinations close to stabilization centers defined by the
incumbent solutions, we see that they also favor the more efficient convergence
of the LB. This effect is best observed in the bounds plot against the number
of NLPs solved, considered for the single-tree as a measure of iterations. The
regularization methods require only a fraction of the NLP subproblems to
obtain a LB within the optimality tolerance. This difference is not as prominent
in terms of computational time. However, for this problem, the most efficient
regularization method ROA-`8 reduces the run time by approximately a third.

Table 1 presents a more detailed view of the results for the different ex-
amples. Here we notice that, although the ROA method spends extra time
to solve the regularization problem, this eventually reduces the total solution
time compared to OA. Instance cvxnonsep normcon20 shows a positive effect
of the regularization methods, where the number of infeasible NLP problems
is drastically reduced from 175 and 20 in the multi-tree and single-tree cases,
respectively, to zero in all regularization cases. This leads to an advantage of
the regularization methods against OA for this instance. A similar situation
happens with instances nvs11 and nvs12, where all regularization methods
reduce the number of infeasible NLPs compared to OA, with the exception of
ROA-L1. This supports the notion that the gradient of the Lagrangean does
not define a stabilization center in the regularization objective; therefore, it is
not a regularization per se. Moreover, using the gradient of the Lagrangean as a
regularization objective (16) fails to converge to the optimal solution of exam-
ples slay08m and smallinvDAXr1b150-165 in the single-tree implementation
and of cvxnonsep psig40 in the both single- and multi-tree implementations.
However, OA converged in a little under 8 minutes. This highlights the ad-
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vantages of flexible implementation that allow these different approaches to
be simply activated or deactivated.

As a general observation, the regularization methods reduce the respective
number of iterations (number of NLP subproblems) required for convergence
compared to the case without a regularization. The time spent solving those
mixed-integer subproblems reduces the total algorithm time in most cases.
These methods also tend to find the optimal solutions more quickly, having a
practical effect if the time limit exceeds the time required to solve the problems.
Besides, finding reasonable feasible solutions early in the search leads to tighter
linearizations to the polyhedral approximation of the continuously relaxed
nonlinear feasible region, leading to a better LB and faster convergence of the
methods.

7.3 Numerical results

Based on the ROA method’s good performance in the previous section, we
perform a benchmark on Problem Set 1 and Problem Set 2. The software Paver
2 [10] is used to analyze the performance of the different methods proposed in
this work. We decide to present our results in the form of absolute performance
profiles, as seen in Figures 7, 8, 9 and 10. These plots show the total number
of instances found to be solved within 0.1% of the known optimal solution of
the problem against a measure of algorithmic effort, either solution time or
iterations. These figures include two extra lines, where the “Virtual best” and
“Virtual worst” alternatives are included. These cases are constructed with
the best and worst solvers for each instance. Notice that we define iterations
in the single-tree context as the number of NLP-I problems solved.

Figures 7 and 8 show the performance of the multi-tree implementation
of the different methods for the highly nonlinear instances, defined according
to (17). In general, the regularization methods achieve a better performance
in terms of solution time and iterations than OA. For simple examples, high-
lighted on the left side of the profiles and given by instances solvable in less
than 10 seconds or requiring fewer than ten iterations, OA seems to outper-
form most of the regularization methods, except for ROA-L2. This method,
called Q-OA in [36] performs almost as the Virtual best solver in terms of
iterations, demonstrating the value of incorporating the constraint curvature
information in the regularization via the second-order Taylor approximation
of the Lagrangean. In terms of solution time, the advantages of this approach
are reduced given the complexity associated with obtaining the Hessian of the
Lagrangean and, more importantly, addressing an MIQP regularization prob-
lem. Toward the end of the time limit, the other regularization methods catch
up to the performance of ROA-L2, with ROA-∇2L being able to solve 104
problems, the most among all the methods, after 15 minutes. Note that the
worst method is ROA-L1, which, as mentioned above, is not an actual regular-
ization method given that its projection objective function does not induce a
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Fig. 7: Time performance profile for highly nonlinear instances for multi-tree
ROA method as described in Algorithm 1.
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Fig. 8: Iteration performance profile for highly nonlinear instances for multi-
tree ROA method as described in Algorithm 1.

stabilization center. Traditional OA can solve 97 of the 135 problems to 0.1%
of the optimal solution in Problem Set 2 within 900 seconds.

When considering all convex MINLP in MINLPLib, Problem Set 1, the
gap between regularization-based methods and OA reduces, mainly since most
of these instances have low nonlinearity. Some alternatives of regularization



26 David E. Bernal et al.

methods solve more instances than OA, with ROA-`1 solving 330 out of the 438
instances within the time limit, 10 more than OA. The performance profiles
for the instances in Problem Set 1 are included in the Appendix in Figures 11
and 12. Besides the improved performance of the ROA methods compared to
OA, we could not clearly identify any features in the problems that would
benefit one regularization norm compared to the others.
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Fig. 9: Time performance profile for highly nonlinear instances for single-tree
RLP/NLP methods as described in Algorithm 2.

The performance profiles for the Problem Set 2 of RLP/NLP are shown
in Figures 9 and 10. In terms of NLP subproblems solved, the OA method
is almost equivalent to the virtual worst, demonstrating that the regulariza-
tion approaches lead to a more meaningful solution of NLP problems in the
solution procedure. This observation is not directly translated into the time
profiles, considering that solving an extra mixed-integer program for every in-
cumbent solution in the tree is an expensive step, although justifiable with
reducing iterations. Considering Problem set 2, the most successful approach
is RLP/NLP-`22 being able to solve 117 instances, 15 more than OA.

When considering Problem Set 1, the single-tree implementation of
RLP/NLP-L2 solves the least number of instances within the time limit. This
contrasts with the good performance this regularization had for the multi-tree
implementation. In multi-tree and single-tree, when considering all the
convex MINLP instances from MINLPLib, the most successful regularization
type was `1. This demonstrates the potential that linearly representable
regularizations have in terms of performance.

Out of Problem Set 2, 114 problems out of 135 could be solved by all meth-
ods, and 21 could not be solved using the multi-tree methods. All single-tree
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Fig. 10: Iteration performance profile for highly nonlinear instances for single-
tree RLP/NLP methods as described in Algorithm 2.

Table 2: Details for each method infeasible subproblems when solving Problem
Set 1 (438 instances).

ROA RLP/NLP

Regularization
method

# of instances with
infeasible NLP-I

Fraction of
infeasible NLP-I

# of instances
with infeasible NLP-I

Fraction of
infeasible NLP-I

# of instances with
infeasible MIP-Proj

Fraction of
infeasible MIP-Proj

None 111 3743/15671=23.9% 122 4211/26832=15.7% - -
`22 104 2395/8278=28.9% 110 2067/7544=27.4% 290 2540/6765=37.5%
`1 104 2670/9031=29.6% 114 1980/8384=23.6% 348 3084/8203=37.6%
`8 101 2671/10517=25.4% 109 2469/8559=28.8% 344 2752/7989=34.4%
L2 103 2359/6749=35.0% 112 1558/5974=26.1% 283 2157/5161=41.8%
∇2L 104 2435/7101=34.3% 110 1539/6171=24.9% 284 2270/5437=41.8%
L1{`22 100 2210/7731=28.6% 112 1501/6400=23.5% 278 2140/5556=38.5%
L1 110 2878/17041=16.9% 118 1459/7176=20.3% 262 2429/6311=38.5%

methods solved 119 of these instances, and none could solve 16 of those in-
stances. For the whole test set, Problem Set 1, 342 instances of 438 were solved
by all methods, and 96 were not solved by any in the multi-tree implemen-
tation. The single-tree methods were slightly more successful, with 351 cases
solved by all and 87 by none.

As similarly found in [36], the number of infeasible NLP-I problems en-
countered diminished when using regularization methods. Both in the multi-
and single-tree implementations, the regularization approaches were able to
solve fewer instances requiring the solution of problem NLP-f compared to
OA.

An exciting finding of Table 2 is that the fraction of problems NLP-I that
were infeasible was larger for the regularization methods! This result was sur-
prising given the hypothesis that is choosing an integer combination close to a
feasible solution results in trial solutions close to the feasible region, resulting
in fewer infeasible trial solutions. The explanation for this behavior has to
do with the total number of NLP-I problems solved by each method. Being
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the OA iterations less time-consuming more could be performed within the
time limit. This would set the denominator in the fraction to be large, mak-
ing the fraction smaller than for the other methods. This is not a measure to
be considered independently from the previous results. The fewer iterations
a problem requires to converge, the fewer NLP-I problems it needs to solve.
Therefore, many solved NLPs indicate inefficient methods, although it would
decrease the fraction of infeasible subproblems encountered. This can be ob-
served with ROA-L1, whose fraction of infeasible NLPs is the lowest among
all the tested methods. However, it was the weakest alternative considered in
this manuscript.

For the single-tree implementation, we observed that Remark 2 often ap-
peared in practice, with three-quarters of the instances presenting at some
point infeasible MIP-Proj problems. These infeasible problems arise from the
weak LB coming from the B&B tree, leading to an average of 40% of all MIP-
Proj problems being infeasible in the single-tree setting.

8 Conclusions and future work

This manuscript presents a new solution framework for multi-tree and single-
tree Outer-Approximation based on regularizations for solving convex MINLP
problems. We present seven different regularization methods for OA through
this framework, including two that were presented earlier in [36]. These reg-
ularizations can be classified into two groups: those based on distance mini-
mization around an incumbent solution and those based on approximations of
the Lagrangean function around that incumbent solution. The regularization
approach relies on the solution of an auxiliary mixed-integer program. Based
on the objective function’s choice, it can be a mixed-integer linear program
or a mixed-integer quadratic program. We show that the convergence proofs
from [36] directly apply to these methods as well, thus, guaranteeing conver-
gence to the optimal solution. Moreover, the regularization ideas are integrated
with the LP/NLP Branch & Bound method [46] leading to a single-tree regu-
larization algorithm for convex MINLP. The implementation of these methods
was done on top of the Mixed-Integer Decomposition Toolbox for Pyomo -
MindtPy [3] in open-source code. We evaluated these approaches experimen-
tally and compared them to OA by solving a large set of convex MINLP prob-
lems. We observed that the regularization approaches are especially well-fitted
for highly nonlinear problems, achieving performance improvements compared
to OA. This confirms the hypothesis that staying close to the feasible solu-
tions ensures the integer combinations found by the linearizations to stay close
to the convex set defined by the nonlinear constraints. For almost linear in-
stances, the benefits of the regularization technique are sometimes lost due to
the cost of solving auxiliary projection problems, which also aligns well with
the results in [36]. However, our results demonstrate that using linearly rep-
resentable regularizations does improve the average performance for all the
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convex MINLP instances at the benchmarking library MINLPLib, including
the highly linear ones.

For future work, we consider an interesting avenue to perform updates in
the Hessian of the Lagrangean estimate. As in the BFGS algorithm [17], the
Hessian of the Lagrangean needs not to be computed exactly, and its approx-
imation can be iteratively refined with the first estimate of it being a scaled
identity matrix. This technique has proved extremely useful in trust-region
methods for continuous NLP problems, such as Sequential Quadratic Pro-
gramming (SQP) [12, 22]. Although our results do not show a clear advantage
of certain regularization norms depending on problem features, we presented a
flexible implementation for the different norms such that one can easily exper-
iment with the different alternatives presented herein. By not evaluating the
problems in the library MINLPLib, but randomly generating problems with
controlled features, one can obtain experimental results to highlight which reg-
ularization norm is more efficient for a particular problem class. Moreover, the
two extra parameters introduced in the regularization methods, namely α and
d, have been maintained constant throughout these experiments. These hy-
perparameters represent a trade-off between how trustworthy the incumbent
solution is compared to the optimal solution and how much exploration far
from that incumbent solution is required. One can imagine a dynamic update
policy for these parameters, balancing the incumbent solutions’ exploration
and exploitation as a future research direction. 9
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38. Lemaréchal C, Nemirovskii A, Nesterov Y (1995) New variants of bundle
methods. Mathematical Programming 69(1-3):111–147

39. Liberti L, Marinelli F (2014) Mathematical programming: Turing com-
pleteness and applications to software analysis. Journal of Combinatorial
Optimization 28(1):82–104

http://www.hsl.rl.ac.uk
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex


32 David E. Bernal et al.

40. Liberti L, Cafieri S, Tarissan F (2009) Reformulations in mathematical
programming: A computational approach. In: Foundations of Computa-
tional Intelligence Volume 3, Springer, pp 153–234

41. Lundell A, Kronqvist J (2019) Integration of polyhedral outer approxima-
tion algorithms with mip solvers through callbacks and lazy constraints.
In: AIP Conference Proceedings, AIP Publishing LLC, vol 2070, p 020012

42. Lundell A, Kronqvist J, Westerlund T (2022) The supporting hyperplane
optimization toolkit for convex minlp. Journal of Global Optimization pp
1–41

43. Muts P, Nowak I, Hendrix EM (2020) The decomposition-based outer ap-
proximation algorithm for convex mixed-integer nonlinear programming.
Journal of Global Optimization pp 1–22

44. Nesterov Y (2004) Introductory Lectures on Convex Optimization: A Basic
Course, vol 87. Springer

45. de Oliveira W (2016) Regularized optimization methods for convex
MINLP problems. TOP 24(3):665–692

46. Quesada I, Grossmann IE (1992) An LP/NLP based branch and bound al-
gorithm for convex MINLP optimization problems. Computers & chemical
engineering 16(10-11):937–947

47. Sawaya N, Grossmann IE (2008) Reformulations, relaxations and cutting
planes for linear generalized disjunctive programming

48. Slater M (1950) Lagrange multipliers revisited. Tech. rep., Cowles Foun-
dation for Research in Economics, Yale University

49. Su L, Tang L, Bernal DE, Grossmann IE (2018) Improved quadratic cuts
for convex mixed-integer nonlinear programs. Computers & Chemical En-
gineering 109:77–95

50. Tawarmalani M, Sahinidis NV (2013) Convexification and global opti-
mization in continuous and mixed-integer nonlinear programming: theory,
algorithms, software, and applications, vol 65. Springer Science & Business
Media

51. Trespalacios F, Grossmann IE (2014) Review of mixed-integer nonlin-
ear and generalized disjunctive programming methods. Chemie Ingenieur
Technik 86(7):991–1012
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9 Appendix

9.1 Algorithmic description of OA and LP/NLP Branch & Bound

This section presents the algorithmic description of the Outer-Approximation
method [16, 18], in Algorithm 3, and the LP/NLP Branch & Bound method [6,
46], in Algorithm 4.

Algorithm 3 An algorithm summarizing the Outer-Approximation method.

Define accepted optimality gap ε ě 0.

1. Initialization.
1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP prob-

lem.
1.2 Generate cuts at x̃, ỹ according to (1) and construct problem OA-MILP.
1.3 Set iteration counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Repeat until UBk´1 ´ LBk´1 ď ε.
2.1 Solve problem OA-MILP to obtain yk and LBk

2.2 Solve problem NLP-I with integer variables fixed as yk to obtain xk.
2.2.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.
2.2.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f

and set UBk “ UBk´1.
2.3 Generate cuts at xk,yk according to (1) and add these to problem OA-MILP.
2.4 (Optional) Generate no-good cuts at yk and add these to problems OA-MILP.
2.5 Increase iteration counter, k “ k ` 1

3. Return the best found solution.

9.2 Representing `1 and `8 norms using Linear Programming

This section shows the valid reformulations of optimization problems with
norms one and infinity in the objective function using auxiliary variables and
linear constraints. This reformulation is exact in the sense that they preserve
the local and global optima from the original problem [40]. These reformu-
lations are particularly interesting since they allow the regularization prob-
lem MIP-Proj to be written as Mixed-Integer Linear Programming (MILP)
problems, instead of Mixed-Integer Quadratic Programming (MIQP) prob-
lems, as in the work byKronqvist et al [36]. MILP solution methods’ maturity
over MIQP allows these problems to be more quickly solvable in practice.

The norm-1 of a vector v P V Ď RN whose components might be negative
or positive, `1pvq “ }v}1 “

řN
i“1 |vi| can be reformulated in the case that

this term appears in the objective function with a set of linear constraints.
Through the addition of 2N non-negative slack variables s`, s´ P RN` , and N
linear equality constraints the following reformulation is valid:
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Algorithm 4 An algorithm summarizing the LP/NLP based Branch & Bound
algorithm.

Define accepted optimality gap ε ě 0.

1. Initialization.
1.1 Obtain a relaxed solution x̃, ỹ by solving an integer relaxation of the MINLP prob-

lem.
1.2 Generate cuts at x̃, ỹ according to (1) and construct problems OA-MILP.
1.3 Set node counter k “ 1, UB0 “ 8 and LB0 “ ´8.

2. Begin Branch & Bound for problem OA-MILP and terminate until UBk´1´LBk´1 ď ε.
2.1 If a new incumbent integer solution x̂, ŷ is found, check if ŷ P tyi|i “ 1, . . . , k´ 1u.

2.1.1 if ŷ P tyi|i “ 1, . . . , k´ 1u, then skip this iteration and continue the Branch &
Bound process.

2.1.2 if ŷ R tyi|i “ 1, . . . , k ´ 1u, set yk “ ŷ and set LBk to the lower bound of
current B&B tree.

2.2 Solve problem NLP-I with integer variables fixed as yk to obtain xk.
2.2.1 If problem NLP-I is feasible, set UBk “ mintfpxk,ykq, UBk´1u.
2.2.2 If problem NLP-I is infeasible, obtain xk by solving feasibility problem NLP-f

and set UBk “ UBk´1.
2.3 Generate cuts at xk,yk according to (1) and add these as global lazy constraints to

the B&B tree of problem OA-MILP.
2.4 (Optional) Generate no-good cuts at yk and add these as global lazy constraints to

the B&B tree of problem OA-MILP.
2.5 Increase node counter, k “ k ` 1.

3 Return the best found solution.

min
v

}v}1

s.t. v P V Ď RN
ô

min
v,s`,s´

N
ÿ

i“1

s`i ` s
´
i

s.t. s` ´ s´ “ v

v P V Ď RN , s` P RN` , s´ P RN`

(18)

This reformulation is applied to the regularization problem MIP-Proj when
considering the `1 regularization function as in (4), resulting in problem MIP-
Proj-`1. It can also be potentially applied to the feasibility NLP problem NLP-
f.
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min
x,y,µ,s`,s´

n`m
ÿ

j“1

s`j ` s
´
j

s.t. s`j ´ s
´
j “ xj ´ x̄j @j “ t1, . . . , nu

s`n`j ´ s
´
n`j “ yj ´ ȳj @j “ t1, . . . ,mu

µ ď f̂‹k

fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R, s`, s´ P Rn`m`

(MIP-Proj-`1)

The norm-8 of a vector v P V Ď RN whose components might be negative
or positive, `8pvq “ }v}8 “ maxi“t1,...,Nu |vi| can be reformulated in the case
that this term appears in the objective function with a set of linear constraints.
Through the addition of one non-negative slack variable s P R`, and 2N linear
inequality constraints, the following reformulation is valid:

min
v

}v}8

s.t. v P V Ď RN
ô

min
v,s

s

s.t. s ě v

s ě ´v

v P V Ď RN , s P R`

(19)

This is the usual choice for reformulating problem NLP-f, and can also
be used to reformulate problem MIP-Proj with `8 regularization objective
function, as in (5). This last problem formulation is:
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min
x,y,µ,s

s

s.t. s ě xj ´ x̄j @j “ t1, . . . , nu

s ě x̄j ´ xj @j “ t1, . . . , nu

s ě yj ´ ȳj @j “ t1, . . . ,mu

s ě ȳj ´ yj @j “ t1, . . . ,mu

µ ď f̂‹k

fpxi,yiq `∇fpxi,yiqJ
„

x´ xi

y ´ yi



ď µ @i “ 1, . . . , k,

gjpx
i,yiq `∇gjpxi,yiqJ

„

x´ xi

y ´ yi



ď 0 @i “ 1, . . . k,@j P Ii,

Ax`By ď b,

x P Rn, y P Zm, µ P R, s P R`
(MIP-Proj-`8)

9.3 Performance profiles for Problem Set 1

This section of the Appendix presents the performance profiles for the multi-
tree and single-tree implementation of the methods included in this manuscript
when solving all 358 convex MINLP problems in Problem Set 1. Figures 11
and 12 include the time and iteration performance profiles for the multi-tree
implementation, respectively. Figures 13 and 14 include the time and iteration
performance profiles for the single-tree implementation, respectively. Notice
that we define iterations in the single-tree context as the number of NLP-I
problems solved.
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Fig. 11: Time performance profile for multi-tree ROA method as described in
Algorithm 1.
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Fig. 12: Iteration performance profile for multi-tree ROA method as described
in Algorithm 1.



38 David E. Bernal et al.

0 2 4 6 8
0

100

200

300

400

In
s
t
a
n
c
e
s

s
o
lv

e
d

w
it
h
in

0
.1

%
o
f
o
p
t
im

a
l
s
o
lu

t
io

n

Solution time [s]

10 30 100 300 900

Virtual best (351)

Virtual worst (283)

RLP/NLP-`1 (334)
LP/NLP (327)

RLP/NLP-L2 (309)

LP/NLP RLP/NLP-`22
RLP/NLP-`1 RLP/NLP-`∞

RLP/NLP-L2 RLP/NLP-∇2L RLP/NLP-L1/`22
RLP/NLP-L1

Fig. 13: Time performance profile for single-tree RLP/NLP methods as de-
scribed in Algorithm 2.
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Fig. 14: Iteration performance profile single-tree RLP/NLP methods as de-
scribed in Algorithm 2
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