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Today’s commercial air carriers ensure safety through use of Safety Management 
Systems (SMS) although traditional SMS is labor-intensive and has difficulty scaling with 
the increasing complexity of operational data. An In-time Aviation Safety Management 
System envisions the integration of risk management and safety assurance using machine 
learning to timely monitor, assess, and mitigate known risks and detect emergent risks. This 
innovative perspective enables proactive and predictive safety using data analytics for 
improved actionable safety intelligence and risk visualization.

I.   Introduction
Technology innovations, market forces, and new opportunities compel continuous change to the National Airspace
System (NAS) foreseen in the National Aeronautics and Space Administration (NASA) Sky for All vision [1] and the
Federal Aviation Administration (FAA) concept for 2035 [2]. Safety remains paramount as the topmost priority to
ensuring the successful advancement of aviation coupled with the need to overcome challenges and constraints both in
design and operations. While today’s overarching Safety Management System (SMS) has provided benefits of reduced
aviation accidents and incidents, envisioned future concepts of operations potentially present new safety challenges.
For example, significantly more vehicles are projected to be flying in closer proximity to other aircraft, including some
vehicles that may be piloted remotely or by automated systems within the same airspace as crewed aircraft. To address
this concern,  a  new perspective  for  safety  management  is  needed.  The new perspective  the National  Academies
recommended is an In-time Aviation Safety Management System (IASMS) to ensure a safe future NAS [3]. 

The purpose of this paper is to examine how a future IASMS could benefit today’s commercial air carriers with
the IASMS concept of operations (ConOps) providing a critical juncture for improving risk management and safety
assurance beyond how SMS has generally been implemented [4, 5]. As part of the NAS, commercial air carriers are
in effect responsible for implementing SMS. The evolution of today’s SMS to an IASMS can take multiple paths
and involve different aspects, recognizing that air carriers have different approaches and methods for implementing
SMS to show compliance with FAA SMS regulations. To transform its SMS to the IASMS, an air carrier needs the
ability to fuse and evaluate increasingly large, disparate sets of data to quickly (in-time) identify and mitigate risks
and  hazards  in  ever  increasingly  complex  operations  while  integrating  process  changes  to  advance  safety
intelligence.  This paper  complements  previous papers  addressing  IASMS with other  aviation domains,  such as
Advanced Air Mobility (AAM) [4, 5] and space launch and reentry [6].

Key  attributes  of  the  IASMS ConOps  addressed  by  this  paper  are  the  integration  of  different  sources  of
operational data for use in predictive analytics, based on data fusion with in-time decision making and execution;
system modeling; human-system integration best practices; safety intelligence; and a new concept termed “learning
from all operations.” The paper concludes by identifying emerging opportunities to demonstrate how IASMS can
strengthen air carrier safety management.
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II.   SMS for Air Carriers
The traditional framework of SMS was established by the International Civil Aviation Organization (ICAO) [7].

ICAO  defines  an  SMS  as,  “a  systematic  approach  to  managing  safety,  including  the  necessary  organizational
structures,  accountability,  responsibilities,  policies,  and  procedures.”  The  traditional  State  Safety  Program  (SSP)
framework of an SMS, outlined in ICAO Annex 19 (2nd edition) informed by ICAO Standards and Recommended
Practices (SARPS), is comprised of the four pillars: (a) Safety Policy and Objectives, (b) Risk Management, (c) Safety
Assurance, and (d) Safety Promotion. SARPS form the foundation of a safe global aviation system, and the safety
management SARPS and SMS pillars are intended to help manage commercial aviation safety risks, in coordination
with  their  aviation  service  providers.  ICAO “Safety  Management  Manual”  (Document  9859)  provides  guidance
material on safety management principles and concepts, the SSP, and SMS implementation intended to support the
continued evolution of safety management and the SSP of each ICAO State, such as the FAA, in accordance with
provisions of Annex 19 [8].

Title 14 of the Code of Federal Regulations (14 CFR) Part 5 requires implementation of SMS by Part 121
Aviation Service Providers (i.e., commercial air carriers). The regulation identifies the basic processes integral to an
effective SMS but does not specify the methods for how to implement these processes. All SMS requirements are
applicable to an air carrier  regardless  of its  size.  The FAA provides guidance and methods for developing and
implementing an SMS to demonstrate  means of  compliance in  Advisory Circular  (AC) 120-92B titled “Safety
Management Systems for Aviation Service Providers” [9].

AC 120-92B provides an SMS framework, shown in Figure 1, that integrates the processes for risk management
and safety assurance. Safety risk management (SRM) involves early identification of hazards and ensuring controls
are designed to manage known hazards at an acceptable level. Safety assurance (SA) monitors performance for how
controls are used operationally to confirm that risk is mitigated as intended. Loops between risk management and
safety assurance include the operational  monitoring of risk controls to validate their efficacy and monitoring of
operational data for emergent or different hazards that require new risk controls or a change to them.

Fig. 1  FAA SMS Framework for Part 121 Air Carriers (from AC 120-92B, Figure 2.1).

For safety assurance, AC 120-92B identifies methods for flight-by-flight monitoring of operational performance
of systems and their associated risk controls that can be used by commercial air carriers. A carrier has the option to
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devise other method(s) to show means of compliance. The methods and sources of operational performance data
identified in AC 120-92B include the following:

1) Line Operations Safety Audit (LOSA) in which qualified observers, typically carrier pilots, ride the jump
seat during regularly scheduled flights to observe and record safety-related data on various weather and
visibility conditions, operational  complexities, and flight crew performance. LOSA uses the Threat and
Error Management (TEM) model to classify safety threats to flight operations, human errors, and unsafe
conditions either mitigated or not resolved during the flight.

2) Advanced Qualification Program (AQP) involves a methodology systematically applied for  developing
training program components for flight crew members and dispatchers. An AQP incorporates data-driven
quality control processes for validating and maintaining the effectiveness of curriculum content.

3) Aviation  Safety  Reporting  System (ASRS)  is  the  program developed  and  managed  by  NASA,  as  an
independent  third  party,  for  pilots  and  other  aviation  professionals  to  submit  aviation  safety  reports
voluntarily  and  anonymously.  Aggregation  and  analysis  of  ASRS data  provides  only  global  systemic
information where the level of detail constrains analysis of specific systems and processes. 

4) Flight Operational Quality Assurance (FOQA) is a program involving the routine collection of digital flight
data generated during aircraft operations that are then download post-flight and analyzed. FAA published
AC 120-82, “Flight Operational Quality Assurance,” that provides guidance and means of compliance for
FOQA program development, implementation, acceptance, and operation [10]. 

5) Aviation Safety Action Program (ASAP) provides for voluntary reporting of safety issues and events by the
air carrier’s employees. While the air carrier would analyze each report and ascertain whether corrective
action is needed for it, the operational safety assurance process includes analysis of patterns across reports
that could identify systemic problems. To support the requirement of a confidential reporting system, FAA
developed AC 120-66, “Aviation Safety Action Program,” to provide guidance for ASAP development,
implementation, acceptance, and operation [11].

6) Internal  Evaluation Program (IEP) is a safety process comprised of inspections, audits, and evaluations
configured to assess the adequacy of managerial controls and processes in critical safety systems. The IEP
intends  to  increase  awareness  management  and  employees’  responsibility  to  follow  company  safety
practices and comply with all regulatory requirements.

7) Continuing Analysis and Surveillance System (CASS) is a  quality assurance system that  monitors and
analyzes  the performance and effectiveness  of  the air  carrier’s  Continuous Airworthiness  Maintenance
Program (CAMP).

SMS can be scaled for different types and sizes of operators and their different business models. Air carrier sizes
are categorized into small (fewer than 10 airplanes),  medium (fewer than 48 airplanes),  or large (more than 48
airplanes). Complexity of operations corresponds to the size due to the volume of data available, the size of the
employee workforce, and the resources needed to manage the organization. 

Air carriers typically protect their SMS systems as proprietary and many domestic U.S. carriers, Part 135 cargo
delivery companies, and other stakeholders share their SMS data through an entity managed by the FAA called the
Aviation Safety Information Analysis and Sharing (ASIAS) system. ASIAS was devised to improve NAS-wide
safety by transitioning from a reactive, forensic investigation approach identifying causal factors of accidents and
incidents  and  preventing  their  reoccurrence  to  a  diagnostic/prognostic  approach.  ASIAS  accomplishes  this  by
aggregating data across carriers to see how certain rare events could be indicative of systemic problems and identify
emerging safety issues that may otherwise be undetectable through data sources at individual carriers. 

A broad perspective on SMS was developed by the Civil Air Navigation Services Organization (CANSO) in its
standard  of  excellence  in  SMS [12].  CANSO’s approach  aligns with ICAO and provides  guidance  that  an  air
navigation service provider (ANSP) can follow to meet or exceed ICAO regulatory requirements including adapting
the guidance to accommodate its size and operational complexity. The standard uses a model consisting of a system
enabler (safety culture) and a framework of five components addressing 16 elements, as shown in Figure 2.
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Fig. 2  CANSO SMS Model. 

III.   Shortfalls and Evolution of Today’s SMS 
One key challenge for today’s SMS to continue assuring safety in the NAS is the public’s low tolerance for

accidents and fatalities, as reflected by highly publicized aircraft accidents, airport runway near-misses, and other
incidents [13, 14, 15].  In support of its advocacy of aviation safety,  ICAO, in its Global Aviation Safety Plan
(GASP), called to “achieve and maintain aspirational safety goal of zero fatalities for global commercial operations
by 2030 and beyond” [16]. The purpose of the GASP “is to continually reduce fatalities, and the risk of fatalities, by
guiding the development of a harmonized aviation safety strategy and developing and implementing regional and
national aviation safety plans.” ICAO guidance on how to address current organization challenges and aviation high-
risk categories of occurrence and “global safety priorities” is also provided in the Global Aviation Safety Roadmap
(GASR) [16, Appendices A and B, 17]. The GASR provides a structured, common frame-of-reference action plan to
achieve global aviation safety goals developed by a consortium of international safety organizations and serves as an
implementation  program  for  ICAO’s  GASP.  Included  in  these  goals  are  calls  for  more  effective  SMS
implementation to support  the reduction of  operational  safety risks and strengthen safety oversight capabilities.
ICAO provides a detailed description of the critical elements of regulator safety oversight functions requisite to
SMS, to include system and functions; technical guidance, tools, and the provision of safety-critical information;
surveillance obligations; and resolution of safety issues [16, section 3.2.1]. 

Another key challenge is that today’s SMS is labor-intensive with humans collecting, integrating, and assessing
diverse data from multiple systems having different capabilities and identified known and emergent risks up leveled
through a series of operational safety teams for further review and analysis. This sequential process correlates findings
across data sources and advances through different management risk mitigation boards for review and decision making.

There is also a key challenge that today’s SMS has limited ability to scale due in part to the complexities of data
sources that are not easily integrated. The ability to fuse and integrate these data is seminal to developing predictive
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analytics and use of Machine Learning (ML) to identify and model anomalies, precursors, and trends as well as
detect emergent risk.

Overall, the shortfall with today’s SMS is its inability to quickly monitor, integrate, and assess large data sets to
identify  known  as  well  as  emergent  risks  in-time  so  that  contingencies  can  be  determined,  and  mitigations
implemented expeditiously.

As a complementary component of SMS and IASMS, the evolution of ASIAS, as shown in Figure 3, is planned as
an increasingly complex data architecture.  This architecture enables leveraging data fusion capabilities and use of
predictive analytics associated with ML, which is considered a subfield of artificial intelligence. Each phase in the
evolution of this architecture is expected to increase the effectiveness in discovering aviation vulnerabilities by tightly
integrating automated processes with the expertise of human subject matter experts (SMEs). ASIAS 3.0 introduces
faster sharing of data to enable more rapid decisions for mitigation of vetted and valid risks. Moreover, the added “in-
time” parameter that IASMS could bring would advance risk identification and mitigation to the operational leading
edge.

Fig. 3  Evolution from ASIAS 1.0 to ASIAS 3.0 [18].

IV.   IASMS ConOps
The IASMS as considered by the National Academies incorporated NASA’s focus on in-time system-wide

safety  assurance  (ISSA)  for  aviation transformation.  The  NASA  Aeronautics  Research  Mission  Directorate
(ARMD)  Strategic  Thrust  5  (see  https://www.nasa.gov/aeroresearch/strategy)  involves  in-time  safety  assurance
through domain-specific safety monitoring and alerting tools, integrated predictive technologies with domain-level
applications, and in-time safety threat management. Part of the intersection of Thrust 5 with the NASA “Sky for
All” Vision 2045 concerns the longer-term goal to develop an automatically assured adaptive in-time aviation safety
management  system  [1].  The  system  is  characterized  by  in-time  safety  intelligence  through  integrated  threat
monitoring, detection, prediction, and mitigation processes in the envisioned future highly dynamic, complex, and
uncertain airspace ecosystem. A path identified for achieving this future view of how safety is managed and assured
in-time has been conceptualized into this new type of commercial aviation SMS called IASMS. The Sky for All
vision is to accelerate the transformation to a digitally integrated air transportation system that enables access and
increases mobility for all users.

The IASMS ConOps initially focused on the two pillars of risk management and safety assurance most closely
related to the National Academies recommendations. Figure 4 represents the evolution of the ICAO original 4-pillar
SMS with the envisioned integration of risk management and safety assurance with IASMS. This integration is
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achieved with the paradigm of key functions of monitor, assess, and mitigate [4, 5]. Prior to the IASMS ConOps, the
ConOps  for  ISSA  addressed  only  the  risks  within  the  urban  air  mobility  (UAM)  domain.  With  a  widening
perspective, the IASMS ConOps adjoins all four SMS pillars as applicable to air carriers and all other domains of
the NAS.

Fig. 4  SMS Framework for IASMS.

While IASMS is considered to be complementary to ASIAS 3.0 in sharing the characteristics for Part 121
commercial air carriers relative to data fusion and predictive analytics, IASMS involves an architecture for the in-
time identification, assessment, and mitigation of risk with human-autonomy teaming that scales with the design and
operation of ever increasingly autonomous systems in the NAS. The evolution of the NAS as represented by the
FAA Vision 2035 and NASA Vision 2045 involves epochs that transition from today’s trajectory-based operations ,
with automated in-time safety monitoring and alerting services, to future performance-based, collaborative air traffic
management  (ATM)  involving  third-party  service  providers  and  integrated  predictive  risk  identification  and
mitigation across domains (2035). It then phases to highly automated ML-based dynamic, robust performance, and
safety with automatically assured adaptive in-time safety threat management (2045).

V.   IASMS Predictive Analytics 
Increasingly complex aviation safety issues  necessitate  new analytic  methods and tools to  identify complex

patterns and detect emergent risks. The objective is to rapidly discover patterns in data that may predict negative
outcomes before the next safety event occurs. Air carriers would benefit from development of technologies that
integrate and fuse large,  disparate sets of data from multiple sources.  The approach enables the execution of a
system-wide risk assessment to help achieve in-time system-wide safety threat management. ML fuses and interprets
complex patterns in data that might otherwise appear as insignificant. This improved speed and characterization of
system-wide risk identification would augment existing SMS processes  supporting risk management  and safety
assurance.

Predictive  safety  management  is  concerned  with  identifying  possible  risks  in  a  situation  based  on  given
circumstances and anticipating needed risk controls. Proactive safety management identifies root causes that can
lead  to  hazard  occurrence  as  well  as  drift  in  operational  practices  away  from nominal  patterns  or  procedural
requirements.  Reactive  safety  management  identifies  specific  causal  and  contributing  factors  of  an  incident  or
accident, both in design and operations, and develops mitigations to reduce the potential for those factors to lead to
another incident or accident. Current SMS practices by air carriers tend to rely on reactive safety management to
address issues as they occur, and with some bridging of proactive safety management. For example, data from the
FOQA program that collects and aggregates data post-flight are analyzed for possible trends in flight operational
performance data. 
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Predictive  analytics  builds  on  advanced  methods  for  data-driven  anomaly  detection  using  ML.  Data-driven
anomaly  detection,  coupled  with  domain  expert  feedback  on  the  operational  significance  of  the identified  off-
nominal  conditions,  can  effectively  identify  operationally  significant  anomalies  during  operations  and  provide
explanations for them. Precursor identification methods can be used by domain experts to identify precursors to
known, undesirable safety events. These approaches enable effective teamwork between human domain experts and
ML to identify sequences of events that lead to anomalous operations and can lead to increasing trust in autonomous
systems. Effective concepts and principles in human teaming with autonomation and autonomy, as well as human-
system integration, will be important to achieving trust. Research poses that ML algorithms should be considered
complementary and multiple algorithms will need to be integrated to use their respective strengths [19, 20, 21].
Analytic techniques from other AAM domains may be extensible to Part 121 air carriers such as with data-driven
anomaly detection [22, 23].

Human feedback and input are critical to increase the effectiveness of ML. This human feedback could be an
assessment of whether a statistical anomaly found by a data-driven anomaly detection algorithm is a safety issue or
not. Human feedback could also be a description of the state of the system based on the nature of data collected or
any subset of it.  Such feedback allows for a higher-level representation of the system state which is easier  for
humans to understand and helps the explainability, explicability, observability, and verifiability of ML. For example,
rather than always viewing FOQA data in terms of the raw data, it can be viewed in terms of time-based sequences
of states (e.g., cruise to top-of-descent to initial descent and so forth). Research has demonstrated the challenge
humans have understanding the subset of ML methods that are non-deterministic, “black box” methods that can lead
to less than desired human-machine interaction including over-trust/overreliance and complacency due to the high
cognitive overhead associated with these data analytical methods, particularly for safety sensitive/critical use  [24,
25]. Therefore, human in-the-loop is also posited to help mitigate potential for human factors “use, misuse, disuse,
and abuse” issues. Also, it addresses IASMS design challenges with increasingly autonomous systems that have
higher-then-expected incidences of poor human-automation interactions that may compromise safety.

An example of the first type of human feedback described in the previous paragraph is an assessment of the
significance of anomalies found using data-driven anomaly detection methods. Such anomalies are abnormal only in
the statistical sense that they are outliers, i.e., they may or may not represent a safety event. Therefore, after an
algorithm produces  a  list  of  statistical  anomalies,  an  SME must  review  the  list  to  identify  the  few statistical
anomalies that are operationally relevant for further investigation. The time spent reviewing the statistical anomalies
that are not safety-relevant is not productive time. Active learning is a branch of ML that works to minimize SME
labeling time by finding the statistical anomalies for which labels would be most informative and decrease the false
alarm rate of the anomaly detection algorithm. 

The  active  learning  method  builds  a  classifier  that  can  distinguish  between  operationally  significant  and
uninteresting anomalies with 70% fewer labels compared to manual review while achieving comparable accuracy
[26,  27].  The  result  of  the  active  learning  approach  is  a  significant  enhancement  of  ML  algorithms  through
teamwork with SMEs to discover potential safety threats before they emerge as risks. Finding anomalies alone is not
sufficient. For both known and unknown safety issues, it is necessary to find their precursors that are states of the
system that are not safety issues themselves, but which increase the probability of safety issues. For example, one
precursor  identification  algorithm  involved  identifying  precursors  to  go-arounds,  including  potential  overtake
situations and excessive airspeed on approach, which was able to find definitions of these precursors (e.g., what
constitutes  “excessive  airspeed”)  specific  to  the  relevant  conditions  (e.g.,  the  assigned  landing  runway).  Three
algorithms for precursor identification have been developed that are increasingly sophisticated in being able to use
available  information.  As  with  anomaly  detection  algorithms,  it  is  expected  that  new  precursor  identification
algorithms will be developed, and their strengths leveraged as part of an IASMS.

ML algorithm developments represent key steps in providing data analytics necessary for both “in-time” and
“predictive” safety management. These methods, tools, and techniques can discover data patterns and yield insights
not otherwise possible with traditional SMS safety assessments and, moreover, with efficacy superior to previous
ML algorithms. Importantly, currently only a small fraction of available safety data is mined (and those that are
often  have  time latencies  in  event  occurrence,  assessment,  and any mitigation actions).  Therefore,  it  is  further
posited that the forecasted increase in big data will necessitate  the use of NASA-developed ML data analytical
methods  to  provide  another  critical  support  to  SMS  evolution—the  concept  of  aviation  safety  “learning
organizations” and the relationship between “learning from all operations” and “in-time prognostic predictive safety
intelligence.”

As an example,  one study examined an initial  machine learning method that predicted unstable high energy
landing (long or hard) with 80% accuracy. The air traffic controller could be alerted about a potentially unstable
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high energy landing situation and recommend a go-around to the flight crew. Another study called VIPR examined
precursors to in-flight engine incidents [28]. Depending on the nature of the engine problem, VIPR was able to
detect  serious  fault  conditions  in  flights  prior  to  the  incident.  Precursors  were  detected  to  an  in-flight  engine
shutdown about 30 flights prior to that incident, to a flight engine shutdown caused by high vibration event about 20
flights prior to that incident, and to an engine on-fire safety incident some 4 to 5 flights prior to that incident.

A. In-Time Predictive Safety Intelligence 
A question that has been proposed to the aviation safety community is, “what if the aviation industry could

identify threats and mitigate safety risks before they occur?” For example, the aircraft Flight Management System
(FMS) is comprised of systems having varying levels of automation and it was reported that LOSA data showed that
20% of flights necessitate the pilot taking action to handle aircraft malfunctions, only 10% of flights are completed
based on the original flight plan entered into the FMS before departure, and about 35% of flights involved FMS
programming errors [29]. Increasingly complex aviation safety issues necessitate more robust safety intelligence
built on new analytic methods and tools to identify complex patterns and detect emergent risks. ML can fuse and
interpret complex patterns in data that might otherwise appear as weak signals and not be recognized by the human
SME. Research has been tackling the problem by introducing ML methods into complex, data-informed decision
making to help identify actionable data,  recognize patterns,  predict  mitigation actions,  yield new hidden safety
insights, and assure safety. Because of the ever-increasing volume of disparate data, the path to predictive SMS is
challenged  by  the  need  for  data  analytics  that  can  evaluate  and  detect  unknown  vulnerabilities  and  discover
precursors, anomalies, and other predictive indicators, as compared to more traditional safety metrics used (e.g.,
FOQA exceedances).  These  vulnerabilities  are  “needles  in  a  haystack”  that  ML methods  are  ideally  suited  to
discover. 

The use of ML to improve aviation safety is not new. Application of ML and other current and emerging data-
driven approaches have already contributed to enhancing safety of flight operations. For example, ML has been
applied to development of new runway overrun protection systems designed to help prevent runway excursions,
veer-offs, and other undesired aircraft states upon landing and roll-out. Moreover, for proactive and predictive safety
systems, the substantial increase in amount of data available continues to provide the opportunity and impetus to
utilize  ML and data  mining techniques,  with modern  airliners  having  more  than 50,000 sensors  collecting  2.5
terabytes of data daily. The evolution to predictive SMS and the increasing complexity of operations will increase
the volume, velocity, veracity, and variety of data produced and the need for ML to understand and act upon these
data. With this growth of predictive safety intelligence comes the challenges of integrating new data streams that are
not easy to access and failure to integrate useful technologies due to programmatic roadblocks.

VI.   Safety Intelligence
The IASMS provides a common path for air carriers to develop a vision for safety intelligence and learning from

all operations. Learning from all operations is cross-cutting to the ICAO SMS pillars and offers new opportunities to
add to the breadth of data available to a variety of data repositories [30]. Such data could be used to augment risk
management and safety assurance processes by informing new safety enhancements with key insights and lessons
learned of what has been done to avoid risks in similar circumstances. All participating parties would share safety
information and data such as across FAA and ASIAS, ICAO, International Air Transport Association (IATA), and
other stakeholders.

Safety intelligence is a key attribute of IASMS and how it pertains to different aspects of the NAS. Air carriers
can assess the benefits and limitations of IASMS as the business case for compliance with SMS pillars. The business
scope includes  identifying and prioritizing uses  of,  and  refinements  to,  predictive  analytics  and  prototype  data
decision  dashboards.  Capabilities  such  as  these  can  enable  human  safety  intelligence  and  learning  from  all
operations to strengthen compliance with SMS pillars. In particular, safety policy and safety promotion could be
more closely bridged through IASMS to more effectively advance organizational continuous learning approaches
involving proactive and predictive safety intelligence. 

Safety intelligence builds on predictive analytics and ML. The expected increase in demand for digital data for
predictive analytics and ML is not limited to enabling new operations as a critical part of transforming the future
aviation system safely. Today’s air carriers with their existing safety management systems will need to evolve their
safety business strategies to take advantage of the anticipated increased data volume using an architecture designed
to provide for access and data aggregation. These strategies will also seek to take advantage of opportunities that
may be afforded by new data analytical methods and novel ways of system safety thinking.
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Safety intelligence is inherent to the IASMS architecture with services, functions, and capabilities (SFCs) that
integrate risk mitigation in design with operational safety assurance. In addition, to meet airworthiness standards for
Part 25 transport category aircraft, learning from all operations and safety intelligence provide a lens to assess and
validate  designed  risk  mitigation  controls,  identify  related  changes  to  operational  procedures  and  training,  and
improve dissemination of SMS information and safety culture. The SFCs that develop with the IASMS architecture
will add primarily automated sources of information with options for assessment and mitigation within the flow of
risk management and safety assurance (see Fig. 1) [31].

As part of the building blocks for developing safety intelligence and continuous learning, ICAO SMS provisions
use of the following: 

1) Proactive safety activities to collect safety information and safety data 
2) Proactive methods for hazard identification
3) Predictive safety indicators focused on processes and activities to improve and maintain safety
4) Predictive analysis based upon current operations
For safety risks to be identified from patterns in precursors, anomalies, and trends in new types of data and the

increased volume of data, SFCs are required that enable predictive safety management with its new data analytical
methods  and  novel  ways  of  system safety  thinking.  Safety  risks  may  appear  as  validated  concerns  known to
designers and operators and known to be detected and mitigated by assured SFCs (i.e., knowns). Emergent risks may
be new and heretofore unknown to designers and operators (e.g., an unexpected and surprising situation) but SFCs
could understand, adapt, and manage them through ML. Other emergent risks could be recognized by designers or
operators even though these are outside the envelope for assured SFCs to detect and mitigate them. Lastly, there
could be unforeseen risks that are not recognizable by designers or addressed in training and procedures for pilots
and maintenance technicians, or by safety assurance SFCs and await discovery (unknowns). 

Another  part  of  the  building  blocks  for  conceptualizing  development  of  safety  intelligence  and  continuous
learning in IASMS involves considering systems for reactive, proactive, and predictive safety management. The
IASMS  SFCs  provide  for  faster  and  more  responsive  protections  and  mitigations  using  proactive  hazard
identification and predictive safety indicators [31]. These multiple channels provide critical understanding, analysis,
and design of IASMS for monitoring, assessing, and mitigating risk. 

Airline SMS was initially designed as an entirely reactive response to safety events and has evolved today
through the ICAO SMS pillar of Safety Promotion into a more proactive safety management approach for risk
identification, mitigation, and assurance. Gaining international community consensus among safety organizations
focused on SMS and achieve an effective IASMS will require a range of assured SFCs to enable predictive safety
management. ICAO Annex 19 and Safety Management System document 9589 already provide provisions for the
use of (a) proactive safety activities to collect safety information and safety data, (b) proactive methods for hazard
identification, (c) predictive safety indicators focused on processes and activities to improve and maintain safety,
and (d) predictive analysis based upon current operations [7].

A. Reactive Safety Management Systems
Originally, ICAO safety management was limited to the reactive response to safety events that attempts to “do

something to  address  the  risk identified  in  an  accident,  incident,  or  safety  concerning  event,  where  mitigation
happens but after  it  has already occurred.”  Reactive SMS, sometimes referred  to as  Safety I,  provides for  risk
mitigation after the hazard has occurred with the objective to minimize the impact from safety critical situations.
The approach has been successful in rapid response to undesired system states through reaction to safety data risks,
threats, and hazards identified. However, reactive SMS provides learning based on only a small number of accidents
and incidents  that  limits generalizing  to normal  everyday operations.  SMS has evolved since early adoption of
Annex 19 and the airline safety community recognized that a complementary proactive safety management approach
was also needed.

B. Proactive Safety Management Systems
Whereas reactive SMS has an objective to mitigate safety events after the hazard is detected and the system is

exposed  to  it,  proactive SMS seeks to “provide  mitigating action to something before  an accident  happens by
evaluating all available safety operational data to identify risks from historical/latent data from past accidents or
incidents or safety concerning events.” What differentiates proactive SMS from reactive SMS is the use of aviation
leading  indicators  to  directly  assess  underlying  factors  and  precursors  to  create  a  range  of  acceptable  safety
performance, and a framework for future risk exposure, mitigations, and safety assurance. The objective of proactive
SMS, also referred to as Safety II, is to identify precursors and anomalies and potential causal factors, through data
markers, system behaviors, passive sensors, and predictive human performance modeling that may lead to unsafe
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conditions  and  hazardous  operations  and  attempt  to  preemptively  stop  the  event  progression  of  causal  and
contributory  factors  before  a  safety  risk event  occurs.  Proactive  safety  is  also referred  to  as  productive safety
reflecting learning from everyday operational successes, e.g., LOSA data show that adverse weather is a threat in
almost 60% of normal flights [29]. Reactive and proactive safety management work collectively to quickly address
previously undetected safety events, and continuously monitor and assess actionable safety data to identify root
causes that may lead to more timely mitigation and/or prevention of specific risk event occurrence.

C. Predictive Safety Management Systems
Historical analyses evince that patterns of critical safety events, accident causation, and types of countermeasures

have changed significantly over time and at present more random or unique factors generally contribute to accidents
and incidents than in the past. Early safety management focused on prescriptive rules and regulations to manage
more  common  system  component  failures.  This  has  evolved  into  a  more  comprehensive  safety  management
approach  that  addresses  organizational  factors,  processes,  and human performance across  the four SMS pillars.
Contemporary SMSs are now characterized by reactive and proactive safety management, which has improved data-
informed approaches to systematically examine safety events and conditions more effectively in real-time, based on
the actionable data identified. What is challenging today’s SMS is the significant growth in data volume and, more
importantly, the increasing uncertainty and complexity of etiological factors of modern safety events that can be
identified and understood if the large volume of data can be properly analyzed. However, current SMS do not yet
possess  sufficient  capability  to  continuously learn  from the  high volume of  safety data.  One significant  factor
limiting the full advantage of very large data sets is the lack of requisite advanced data analytical SFCs specifically
designed and tailored for big data analytics. Big data analytics concern the use of advanced analytical techniques on
large amounts of data to help uncover hidden patterns to unmask otherwise unidentified actionable data markers to
predict potential latent safety risks for which traditional reactive and proactive approaches are less effective.

Predictive safety management attempts to identify all possible risks in different scenarios based on both observed
but  also  hypothesized  situations/circumstances  to  anticipate  future  risk  controls,  risk  mitigation  options,  safety
assurance, and organizational needs. Importantly, predictive SMS is complementary to, and not replacement for,
both reactive and proactive SMS. Each is an important safety management approach, and all SMSs are intended to
work collectively to enhance airline safety.

D. Predictive Safety Management — IASMS
Key to evolving towards commercial aviation predictive safety management will be safety intelligence that can

integrate and fuse large disparate data from many diverse reporting systems and accessible database repositories.
The IASMS is intended to provide prognostic and predictive safety intelligence through SFCs that can act “in-time”
for reactive, proactive, and now predictive safety management. The challenge will be to leverage the many available
safety occurrence reporting systems (e.g., airlines, FAA and other ANSPs, and other safety organizations), system
monitored data (e.g., AIS, FDM, and A-CDM), and human monitored data (e.g., safety surveys, just culture, safety
audits, and accident investigations). For example, the ASIAS program currently collects data from more than 100
sources with over 300 data feeds and manages tens of millions of records. 

The  growing  prevalence  of  digital  data  systems,  system-wide  safety  data  networks,  and  accessible  digital
platforms have enabled the explosive growth in available safety data, which is projected to significantly increase by
time when the 2045 Sky for All vision occurs. A consequence is the recognized need to manage this vast amount of
information that is currently distributed across multiple systems. Some of these systems will need to be modified to
provide compatibility and accessibility for data sharing that is requisite for true system-wide safety management.
Increasingly, all aviation stakeholders (e.g., airlines, airports, FAA, and international organizations such as ICAO,
EASA, IATA, and other ANSPs) are challenged to ensure that highly dispersed/scattered safety data are monitored
and managed effectively despite often distributed siloed-source systems that have different data quality (e.g., 80% of
data is estimated to be unstructured), formats, rules, taxonomies/ontologies, and other factors. Such management of
data is critical to fully exploit and utilize them to identify safety risks and take predictive action to mitigate them.

Today, safety data collection, extraction, and interpretation are highly laborious and time-consuming processes
that,  in  the  highly  dynamic and  quickly  changing  environment  of  commercial  aviation,  is  not  efficient  and  is
unwieldy. Safety data is projected to become unmanageable in the future based on forecasts of ever-increasing big
data  generation.  The opportunity  to  take  advantage  of  the  richness  of  these  data  is  very  appealing,  but  if  not
addressed now, the effective use of these big data sets for data-driven and informed safety decision-making may
become increasingly challenging. The potential for mass data fragmentation could lead unintentionally to new safety
events being missed, and safety blind spots triggering unexpected safety critical events. To address this need, the
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international aviation community has called for the need to harmonize and standardize the management of safety
information through the concept of “safety intelligence.” For example, Flight Safety Foundation’s “Global Safety
Information Program” and ICAO’s Safety Intelligence “Safety Information Monitoring System” and “Smart Sky”
data intelligence and information system initiatives advocate for, among other needs, the use of novel advanced ML
data analytics and mining methods, tools, techniques, and approaches. The IASMS ConOps is at a critical juncture
for filling this need.

By  effectively  transforming  their  SMS  to  an  IASMS,  air  carriers  will  be  able  to  more  effectively  mine
operational data and reduce iterative review cycle times between design and performance as shown in Figure 1. In-
time decision making will be enabled by ML that will automatically detect and elevate critical risks for immediate
attention. As decision makers gain confidence and trust in the IASMS, a subsequent concern may emerge relative to
over-reliance on ML for safety critical decisions with drift toward always accepting recommended risk mitigations
regardless of unique situational factors.

Safety intelligence is a growing theme among air carriers that are moving toward a more seamless, integrated global
SMS. ICAO, as part of its SMS approach, emphasizes the global need for developing safety intelligence that leverages
safety data and information to develop predictive and actionable insights leading to “in-time” data-driven decisions.
Sharing safety information, including both Safety I  and Safety II  data,  will  be increasingly important  to not only
identifying emergent risks as aviation evolves internationally to different markets and missions with new entrants such as
AAM, but  to  also inform new designs  and  approaches  to  optimize  safety  and  performance.  For  example,  mixed
operations at and around airports are expected to grow as electric Vertical Take-Off and Landing (eVTOL) aircraft speed
the local transport of passengers and cargo. All these operators will share in understanding operational risks and their
mitigations.

Tools  that  help  to  establish  safety  intelligence,  such  as  an  IASMS-enabled  safety  dashboard  that  seeks  to
characterize  system-wide  risk  in-time  could  provide  a  portal  to  advanced  predictive  analytics  and  improve
knowledge acquisition and management.  Domestic and international  safety dashboards enabled by IASMS data
services enhanced by learning from all operations offer the potential to provide in-time information important to
manage operational safety risks and risk controls.

VII.   Learning from All Operations 
Goals of SMS include identification of hazards and proactive management of threats to an acceptable level,

which over past years has led to development of new data programs, such as safety reporting systems and flight
operational data monitoring, and numerous risk assessment methods. This traditional safety management approach,
however, focuses principally on “absence of safety” rather than its presence. While it is important to continue to
learn  from what  goes wrong,  there has  been  a growing call  to expand the types of  safety  data that  should be
collected and included to inform commercial aviation SMS to not only learn from “what goes wrong” but also to try
to learn from “what goes right” to cultivate an organizational culture of continuous learning [30, 32]. In other words,
data and analytics are needed to progress the understanding of “what goes right,” such as in terms of capturing the
human decisions and actions for ensuring and maintaining safe operations and trapping potential drift in operational
practices away from nominal procedures and training.

To evolve SMS to an effective IASMS for commercial aviation, the IASMS ConOps provides a path that applies
advances in data analytics and the inclusion of novel actionable data types to better aid aviation safety organizations
to look more broadly at system safety. The continuous learning organization is predicated on data-informed safety
intelligence that builds on IASMS in-time predictive data analytics to provide a more systematic and comprehensive
learning-based  approach.  With  IASMS,  this  “learning  from  all  operations”  viewpoint  looks  broadly  across
traditional but also new and underexploited data types, providing the overarching perspective for how organizations
may maximize opportunities to “learn from safety” rather than merely “knowing about safety.” This novel inspired
way of system safety thinking reflects a shift in not only how we view safety data, but more fundamentally how we
characterize safety generally. 

Today’s aviation safety organizations must continuously learn to cope with increasing and changing operational
demands and conditions. Moreover, as we consider the future of aviation and how to achieve the visions safely, it is
necessary but not adequate to learn only what not to do, but also to anticipate past mistakes and failures and act to avoid
them. This is the hallmark of the predictive SMS. Although the traditional approach may provide some bulwark to
minimize the recurrence of certain hazardous events, learning only from infrequently occurring safety events results in
the  organization  learning  only  rarely.  Learning  only  from mishaps  does  not  enable  an  organization  to  take  full
advantage of all opportunities to address safety even though learning from all operations is not easily accomplished
[30, 32]. 
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To foster the continuous learning organization, it is essential that an IASMS capable of in-time and predictive
(integrated with reactive and proactive) safety management also involves cardinal changes in the language of safety
employed  for  a  novel  in-time  predictive  safety  intelligence  approach.  The  advantage  is  that  this  systematic
transformation of SMS to IASMS builds in safety intelligence as part of the continuous learning organization. It is
posited that this will better allow for learning about safety to enable the aviation SMS community to make data-
informed adjustments to operations and safety policy and promotion in-time while informed by the SMS pillars of
risk mitigation and safety assurance. In other words, it can enable transformation of all four SMS pillars to evolve to
become an integrated IASMS capable of “in-time” reactive,  proactive,  and predictive safety intelligence that  is
fostered through an organizational culture of continuous safety learning. The IASMS can serve as the magnet for
establishing a  common vision for  air  carriers  and  the  aviation  community working  toward  a  common goal  of
learning from all operations.

A. Data-Informed Decisions 
The goal is for safety decision makers to make better decisions informed by data. SMSs provide a structure for

the identification, collection, analysis, and dissemination of those data. Successful safety management depends (in
part) on being aware of current performance, continually identifying opportunities for safety learning, establishing
processes to evaluate safety performance and impacts of interventions, and communicating what is learned across all
aspects of the SMS process. Because of the dynamic nature of operations and ever-expanding capabilities to collect
and analyze both existing and novel types of safety-relevant data,  the SMS process must also adapt,  and these
adaptations can impact all pillars of safety management. Consequently, these adaptations can enable an SMS that
continually learns as reactive, proactive, and predictive safety intelligence grows. 

The IASMS, therefore, can help organizations make data-informed safety adjustments without having to wait for
something to go wrong or for a proactive action to save an operational situation to assure operational safety. As
shown in Figure 5, most commercial operations end well with the vast majority being normal everyday operations
falling along curves 1 and 2 [32]. However, most data analytical resources are put toward safety learning, focused on
curves  3  and  4.  The  factors  that  precede  both  successes  and  failures  can  occur  in  much  the  same  way.  The
delineation of these factors is made more challenging by the highly adaptive and resilient performance of human
operators that can mask anomalies, which complicates their detection using a traditional safety lens.

Fig. 5  Safety-Relevant Occurrence Types [32].

Changing how we define safety by expanding our understanding of what constitutes a safety-relevant issue can
inform this learning. Through open- and closed-loop recursive feedback from in-time predictive safety intelligence, the
IASMS can help to ensure the safety of operations as well as guide system safety design. One result of this paradigm
shift in system safety is thinking in terms of “productive safety” and not limited to only “protective prescriptive safety.”
Productive safety springs from the concept of operational drift towards the safety boundary and countering that with the
pull of safety culture for producing safety as part of operations, not just maintaining safety [33, 34]. This sea change in

12



“learning from all operations” moves the state-of-the-art in ML data analytics to form the new state-of-the-art of an
IASMS capable of in-time predictive safety intelligence for the continuous learning aviation safety organization.

B. Use of Data in Learning from All Operations
When organizational  learning is systematically restricted or limited by focusing only on rare  failure events,

learning  opportunities  occur  less  often.  Consequently,  this  low frequency  of  occurrence  leads  to  an  increased
possibility of drawing misleading, even dangerous, conclusions by relying on a non-representative sample of how
humans perform and contribute to safety. The absence of safety evidence (data) does not equate to evidence of the
absence, or presence, of safety [30, 32]. 

Changes in how we define and think about safety can highlight new opportunities for collection and analysis of
novel and currently unexploited safety-relevant data. Developing an integrated safety picture to better inform safety-
related decision making and policies depends upon identifying, collecting, and interpreting behaviors that helps to
ensure to safety of operations in addition to safety-reducing behaviors. The traditional safety lens approach does not
currently examine such types of data although there is a growing recognition in the airline SMS community of the
potential value of looking at such underexploited data and exploring other yet unidentified productive safety data
types and sources.

Examining  unexploited  safety-relevant  data  presents  an  opportunity to  integrate  such  data  types  into safety
management systems, including addressing the challenges in collecting and analyzing the largely unexploited data
on desired, safety-producing operator behaviors and looking at how to fuse these data with more traditional data
sources. This opportunity would provide benefit to growing safety intelligence and facilitate a culture of continuous
organizational learning. Changes in how we define and think about safety can highlight new methods for collection
and analysis of safety-relevant data with the goals to minimize opportunities for undesired operational states and
maximize opportunities for desired states. 

While learning from frequent successes has the advantages of increasing sample rate, granularity of operational
data, and timeliness of safety learning, it poses important research issues about determining what data to capture, how
to analyze and manage this potentially massive expansion of safety data, what data analytics methods work best on
these novel data types, and how to translate learned insights into policy and design decisions. The technical challenge is
to look deeply and systematically across the distributional pattern of the data as opposed to individual safety events as
is more common with contemporary airline SMS. This approach is well-suited for ML data analytics techniques and
methods. ML provides a more systematic capability to look not just at outcomes but also processes latent to today’s
SMS that are critical to better inform design, implementation, and practice of IASMS for commercial aviation and
enable in-time and predictive safety management in the continuous learning safety organization.

VIII.   Human-System Integration 
Systems  have  become  more  autonomous,  and  proposed  calls  to  supplant  human  expertise  with  increasingly

automated systems take different forms under the rubrics of semi-autonomous and fully autonomous systems. Design
of  these  systems  is  expected  to  add  more  capabilities  and  increase  complexity  including  emergence  of  novel
opportunities for new types of human-system failures. Historical evidence has shown the impacts that lack of early and
careful considerations of the human role when interacting with highly complex systems has on design success and
ultimately its safe use. Furthermore, the commonly reported 80% of aviation accidents caused by humans is often
reported incorrectly in terms of actual data and can be misleading relative to the specific human contribution to aviation
safety [35, 36]. It is understood that humans provide resilience to systems in the event of unexpected off-nominal
situations. Human operators routinely manage off-nominal situations every day and respond to these events without
compromise  of  safety  [30].  Unfortunately,  such  instances  are  rarely  documented  and  tracked,  thereby  limiting
opportunities for organizational continuous learning. In addition, early studies suggest that the introduction of semi-
autonomous systems has the potential to reduce operator engagement, possibly leading to increased loss of situation
awareness [37].

Systems for  today’s  commercial  aviation SMS are  often designed to require  highly specialized  and  trained
personnel or need significant accommodation for use across a wide population of human capabilities that need to be
considered. The eventual implementation and use of IASMS will show these challenges may be more acute given
the use of ML that can be difficult for even experts to decipher and understand how these algorithms classify very
large data sets. With the human analyst in the safety critical decision loop, there will be a for need specialized
training with continuous learning. 

To help ensure the IASMS addresses the above design considerations and potential challenges, Human-System
Integration  (HSI)  efforts  will  need  to  focus  on  early  life-cycle  design  requirements  as  informed  from  MBSE
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activities [31]. HSI has been defined as “a required interdisciplinary integration of the human as an element of a
system  to  ensure  that  the  human  and  software/hardware  components  cooperate,  coordinate,  and  communicate
effectively to perform a specific function or mission successfully [38].” As a discipline, IHSI is a natural evolution
of Human Factors Engineering (HFE), to include Human-Computer Interaction (HCI) through application of many
decades of user interface design and human-centered systems engineering.  An HSI approach that  addresses the
entire NPR 7120.5 system life cycle could contribute to development of an IASMS Human Systems Integration Plan
(HSIP) [39]. The HSIP could include development of a set of human interfaces and management of information
(HIMI) design recommendations for planned IASMS prototype leading to development of requirements necessary
for full deployment of commercial aviation IASMS by targeted future vision timelines. 

C. Human Interfaces and Management of Information
Design of HIMI will be critical to successful deployment of IASMS. Management of safety information may be

a key enabling portal through which humans can team with increasingly autonomous systems for safety assurance
and in-time risk management.  For example,  as in-time system-wide safety assurance data becomes increasingly
available, a challenge posed is how these data support humans through trustworthy decision support in the context of
a substantially increased number of available data streams, volume of data, rate of information, variation in data
quality, validation and verification, edge computing, and more complex and nuanced risk factors that may impact
operational safety. Today, safety managers and review boards often must sequentially review these siloed, stove-
piped data sets. Transitions to in-time data analytics will require fused data to identify known precursors, anomalies,
and trends as well as emergent risks more quickly and effectively.

As automated systems increasingly make use of ML to handle big data, the underlying algorithms will evolve in
sophistication. This may exceed what humans are able to understand if HIMI is not considered early in the system
design lifecycle of IASMS development. Research has shown the difficulties experts have in understanding the non-
deterministic  “black  box” methods  of  neural  networks  and  other  advanced  data  analytical  capabilities.  Human
decision makers will be trained to trust a system, but in a manner that may exclude or limit understanding of the
underlying algorithms making HIMI a critical  consideration for  IASMS design. The human-autonomy teaming
(HAT) design approach is also expected to be a cornerstone for IASMS design guidance that supports operator
information  requirements.  HIMI  will  shape  the  design  for  these  information  requirements,  and  training  and
procedures will help to avoid well-documented potential for poor use, and/or misuse, disuse, and abuse observed
today of human-system interactions using advanced automation/autonomous technologies. New and different HIMI
standards and guidelines will need to be updated to support the information requirements of an IASMS [40, 41]. 

As the aviation system and in-time system-wide safety assurance  methods become more capable  as well  as
complex, some key questions about HIMI include how should information be scaled for display and how should the
human operator drill down for more details? How should safety dashboards be tailored for information requirements
of different users? How should time critical information be pushed to the display, even to interrupt whatever was
being  displayed  at  that  time?  How  much  training  and  education  should  be  required  relative  to  the  level  of
understanding needed of the underlying algorithms? How does the cognitive state of the human alter engagement
with systems? IASMS addresses  these and other key concerns in a manner that  leverages best  practices  where
available. The design process may identify opportunities for new types of interactions and highlight knowledge gaps
for a more comprehensive design approach for IASMS. HIMI design recommendations are needed to technically
guide  development  of  IASMS prototypes.  Additionally,  a  more  comprehensive  HSIP  for  commercial  aviation
IASMS could guide and inform needed HSI research and formal specification of IASMS HSI design requirements.

D. System-Wide IASMS
Safety  intelligence  is  a  fast-growing  theme  among  air  carriers  that  are  moving  toward  a  more  seamless,

integrated global SMS, and multiple organizations have called for efforts toward predictive SMS and ML-based
safety  intelligence.  Developing accessible  digital  information platforms and IASMS dashboards to  share safety
information will become increasingly important for identifying emergent risks for commercial aviation operators.
These platforms could be extensible to other emerging concepts of operation, such as AAM, Class E long-duration
fleet operation, and commercial space launch and reentry that is spreading internationally to different markets and
missions. 

IASMS dashboards are intended to provide a portal to predictive analytics and improve knowledge consolidation
and management.  Multiple domestic and international  dashboards are envisioned to provide in-time information
important  to  operational  risk  assessment  and  risk  controls.  Development  of  the  IASMS  ConOps  involves
collaboration with partners, external stakeholders, and the SMS community to develop a roadmap toward a system-
wide, IASMS capability intended for all airspace users. Prior research on predictive analytics focused on building an
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initial, limited data-sourced dashboard developed in collaboration with a U.S. major airline partner [19]. The IASMS
ConOps substantially extends this foundational research by defining multivariate data analysis and decision SFCs
for predictive data analytics in support of continuous learning organization safety management. New intersections
can be identified through interchanges with other research projects and leading international SMS organizations on
safety intelligence. These collaborations can address information access, digital data platforms, and system-wide
IASMS SFCs. As an example of demonstrated need for predictive SMS, the FAA ASIAS ConOps 3.0 identified
future changes required including use of advanced data analytics that leverage data fusion capabilities developed in
ASIAS 2.0, along with improved collaborative activities and improved responsiveness for requested information and
studies.

IX.   Opportunities to Demonstrate IASMS with Air Carriers 
The integrated IASMS capability addresses the need for more advanced methods and tools critical to enable

efficient and deeper analyses of safety data. Use of predictive analytics goes beyond how air carriers analyze data in
today’s operations. Integration of data mining tools providing advanced predictive analytics could be demonstrated
for assessing convergence across multiple data sources to identify operationally significant anomalies, precursors,
and trends involving system and human behaviors as well as new emergent risks. IASMS SFCs use these different
data sources for monitoring, assessment, and mitigation of operational risks. The design and prototyping of a data
decision dashboard would address cognitive requirements for in-time monitoring and identification of nominal and
off-nominal system and human performance.

There will be opportunities for assessing the benefits and limitations with the business case for commercial air
carriers.  These  targeted  demonstrations  are  important  for  identifying  and  prioritizing  capabilities  and  design
requirements  for  advanced  predictive analytics and the prototype data decision dashboard.  At a  strategic level,
research must investigate how to integrate and fuse targeted data streams that offer the highest potential to enable
effective predictive analytics capable of quickly identifying and characterizing known and emergent risks. Further
development  and  refinement  are  also  needed  to  address  and  reduce  missed,  overlooked,  or  masked  risks  in
predictive analytics output, and to integrate the safety dashboard as an efficient and effective tool for the executive
authority agent in the system. Future research needs include the following considerations:

1) An  integrated  risk-based  decision  fusion  assessment  and  mitigation  capability  through  identified
representative commercial airline operations use cases 

2) Anomaly detection, precursor identification, identification of human contributions to safety, and prediction
algorithms using simple to increasingly complex data sources

3) Different types of data to identify unusual events and their nature (e.g., statistical anomaly, operationally
significant anomaly, recovery action)

4) Prototype system for visualizing results of the risk assessment and mitigation decision fusing capability
combined with human input and feedback

5) Prototype system that describes the state of the aviation system and human cognitive state described by
current data sets, and how far the system is from known anomalies or unknown anomalies (i.e., how close
in time and circumstances the system is to show anomalous operations)

6) Initial recommendations for interoperable IASMS system requirements and guidelines through use case of
commercial aviation operations within a shared airspace

X.   Change Management in the New Vision
Change management is the collective term for concepts, methods, and approaches for the coordination of periods

of  system transitions  and  associated  processes  governing  oversight,  facilitation,  and  execution  of  changes,  the
management  of  emergent  complexities,  and the diverse set  of  change drivers  for  effectual  change in the NAS
through envisioned, intended outcomes and mitigation of unintended outcomes. The creation and evolution of the
IASMS will be subject to managing architecture changes as separate implementation types for commercial carriers
and other operators, such as small urban UAS operations and disaster management, that in the future will merge into
the application appropriate to a single, more seamless aviation system. NASA is developing a “Sky for All” vision
to  enable  a  safe,  resilient,  sustainable,  and  adaptable  future  aviation  system  through  innovations  realized  by
advanced  and  continually  emerging  capabilities  for  agile,  optimizable,  scalable,  and  increasingly  diverse  and
equitable operations in a shared negotiated airspace [1]. The vision reimagines the future of aviation for a mid-
century targeted date of 2045 that  recognizes  the transformation required to reshape the future aviation system
through bold, new approaches to meet the demands of new concepts of operations, increased volume of air traffic,
novel and emerging vehicles, and potential envisioned complexities and uncertainties. Mega-drivers influencing the
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NASA  vision  include  diversity,  dynamic  convolutions,  and  increasing  complexity  of  vehicles,  operations,
performance,  and  missions;  increased  density  and  volume  of  operations;  and  highly  integrated  heterogenous
collaborative and more autonomous airspace. The NASA Sky for All vision will necessitate and introduce new SFCs
to  include:  (a)  augmented  operations  via  intelligent/adaptive  automation  and  autonomy;  (b)  cooperative  and
coordinated digital flights; (c) transformed digital airspace; (d) accessible integrated digital platforms; (e) micro-
services for flight operations; and (f) anywhere, anytime all-weather operations. Key to achieving the vision will be
considerations on how to do this safely to include establishment of change management processes and safeguards. 

The  FAA,  as  part  of  its  Next  Generation  Air  Transportation  System  (NextGen),  continues  to  envision
transformation of the NAS to a system very different from today’s NAS. The future NAS entails continuous and
ubiquitous data fusion and exchange, increasing use of ML, expanded autonomous aircraft  operations, and new
integral human-machine teaming all in the same volume of airspace [2]. This future NAS will also involve changes
associated with UAS traffic management (UTM) to address unique challenges such as airspace design and vehicle
operations [42]. Another type of operation that will need to be included in a future IASMS is Upper Class E airspace
defined  in  the  FAA ConOps  for  Upper  Class  E  traffic  management  as  60,000 feet  and  above  and  represents
increased operational  complexity [43].  Upper E airspace includes supersonic and suborbital  flights,  such as the
Virgin Galactic flight that reached 282,000 feet. Lastly, change management will be required to accommodate the
increasing number of space launch and reentry operations. The above examples represent just a few of the potential
number of changes that are possible for the future global aviation system, underscoring the importance of change
management.

XI.   Conclusions 
In sum, transforming the SMS for Part 121 commercial air carriers with evolution of the IASMS as part of the

future visions proposed for aviation requires significant changes and challenges for in-time safety. An incremental
path using building blocks will facilitate  and speed refinements toward SMS responsive to the new envisioned
concepts of operations and technological innovations expected. IASMS will advance aviation safety across the four
pillars of the ICAO-defined SMS. Predictive analytics will advance the state-of-the-art  capabilities in detecting,
assessing, and mitigating anomalies, precursors, and trends for air carriers as well as identifying emergent risks
exposed by the transformation of the NAS. Safety intelligence will expand the data available and offer insight to
new approaches  for  safety  enhancements  and  safety  promotion to  mitigate  risk,  with more  seamless  “in-time”
integration across the policy, promotion, risk management, and safety assurance of the SMS pillars.

Today’s rapidly evolving aviation markets and envisioned new concepts of operations pose new critical safety
risks with novel types of vehicles (e.g., eVTOL) having frequent flights each day, with typically short durations,
within proximity of  one another  carrying  people and cargo,  and in  more congested and operationally  complex
airspace. To move toward this vision, there is a need for concomitant changes to how safety is assured by increasing
the fusion and integration of “in-time” operational data displayed while still managed by human decision makers. A
key attribute of an IASMS is that it supports the human to quickly manage known or predicted operational risks
through highly automated systems that integrate SFCs across operator and federated architectures. These on-board,
ground-based,  and  cloud digital  information  systems collect,  fuse,  model,  and  distribute  data  that  are  used  by
IASMS subsystems. These safety subsystems monitor and assess the data for detected risk with risk mitigations
executed in-time. Identifying and mitigating emergent risks necessitate innovative solutions involving advanced data
analytics including ML that integrate proactive methods, built on precedent and predictive methods that intercede to
disrupt the projected time series of causal and contributing factors. Lastly, an IASMS will quickly inform system
design as emergent hazards are identified so that effective risk controls are developed

The IASMS provides risk management and safety assurance utilizing system-wide data to provide alerting and
mitigation strategies much more effective and responsive to resolving known and unknown risks than possible with
today’s SMS. Emerging technologies and capabilities are enabling new ways for humans to interact with data that
have  not  been  possible  before.  To  achieve  the  IASMS  objectives,  the  human’s  roles  and  responsibilities  are
envisioned to transform in pace with the equally transformative changes required to achieve the aviation future
vision. A critical challenge for moving IASMS from concept to actual practice, as part of commercial aviation SMS
implementation,  necessitates  considering  the  proper  human  role  and  responsibilities  in  these  systems.  These
considerations include remedying observed limitations found with SMS today as well as accounting for changes
associated with the NASA Sky for All and other future organizational visions. 

Importantly, the human is still expected to have critical, safety operational, over-the-loop roles of some nature as
well as data analyst roles in future commercial aviation SMS. Research is needed to tackle important questions
including assessing the necessary and proper role of humans as part of an IASMS. Considerations include use of
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system modeling and early definition of HSI requirements for the IASMS to better understand and design for human
performance and HIMI. This human-centered design of IASMS defines the data portals through which humans will
interact and team with ML and other data analytical SFCs as part of the joint cognitive decision-making processes
required to maintain safety under increasing operational conditions of safety uncertainty. As aviation embraces new
advances and technological innovation to address mobility and sustainability needs, the IASMS provides a keystone
to ensuring the future global air transportation system is a revolutionary and safe “Sky for All.” 

Acknowledgments
The  authors  extend  their  appreciation  to  Ms.  Laura  Bass  (Analytical  Mechanics  Associates,  Inc.)  for  her

important and numerous contributions in the development of this paper. 

References
[1] National Aeronautics and Space Administration, “Sky for All Portal,” 2022. Retrieved from 

https://nari.arc.nasa.gov/skyforall/.
[2] MITRE CORPORATION (2020). “The Future of Aerospace: Interconnected from Surface to Space.” FAA 

Managers Association Managing the Skies. Retrieved from www.faama.org
[3] National Academies of Sciences, Engineering, and Medicine. 2018. In-time Aviation Safety Management: 

Challenges and Research for an Evolving Aviation System. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/24962  .  

[4] K. Ellis, P. Krois, J. Koelling, L. Prinzel, M. Davies, and R. Mah, “A Concept of Operations and Design 
Considerations for an In-time Aviation Safety Management System (IASMS) for Advanced Air Mobility 
(AAM),” AIAA Sci Tech, 2021.

[5] K. Ellis, P. Krois, J. Koelling, L. Prinzel, M. Davies, R. Mah, and S. Infeld, “Defining Services, Functions, and 
Capabilities for an Advanced Air Mobility (AAM) In-time Aviation Safety Management System (IASMS),” 
AIAA Aviation, 2021.

[6] Ellis, K., Prinzel, L., Koelling, J., Davies, M., Mah, R., Krois, P., & Infeld, S.I. (2021). An Ontological Approach 
to Integrate Commercial Space Operations with an In-time Aviation Safety Management System (IASMS).  
AIAA-2021-4087. Aerospace Traffic Management I Session. ASCEND 2021. November 15-17, 2021. Las Vegas,
NV: AIAA. https://doi.org/10.2514/6.2021-4087 

[7] International Civil Aviation Organization, “Safety Management, Standards and Recommended Practices–Annex 
19,” in Convention on International Civil Aviation, 2nd Edition, 2016.

[8] International Civil Aviation Organization (ICAO), “Safety Management Manual,” Document 9859, 4th Edition, 
2018.

[9] Federal Aviation Administration (FAA), “Safety Management Systems for Aviation Service Providers,” AC No. 
120-92B, 2015.

[10] Federal Aviation Administration (FAA), “Flight Operational Quality Assurance,” AC No. 120-82, 2004.
[11] Federal Aviation Administration (FAA), “Aviation Safety Action Program,” AC No. 120-66C, 2020.
[12] Civil Air Navigation Services Organization, “CANSO Standard of Excellence in Safety Management Systems,” 

2018. Retrieved from https://canso.org/publication/canso-standard-of-excellence-in-safety-management-systems/
[13] Federal Aviation Administration (FAA), “Summary of the FAA’s Review of the Boeing 737 MAX,” November 

18, 2020.
[14] National Transportation Safety Board, “Descent below visual glidepath and impact with Seawall, Asiana Flight 

214, Boeing 777-200ER, HL 7742, San Francisco, California, July 6, 2013,” Aircraft Accident Report 
NTSB/AAR-14/01, 2014.

[15] National Transportation Safety Board, “Taxiway Overflight Air Canada Flight 759 Airbus A320-211, C-FKCK, 
San Francisco, California, July 7, 2017,” Aircraft Accident Report NTSB/AIR-18/01, 2018.

[16] International Civil Aviation Organization (ICAO), “Global Aviation Safety Plan 2020-2022,” Document 10004, 
2019. ISBN 978-92-9258-815-1

[17] Global Aviation Safety Roadmap: A Strategic Action Plan for Future Aviation Safety Developed Jointly by ACI, 
Airbus, Boeing, CANSO, FSF, IATA, and IFALPA for ICAO (2016). Montreal: Canada: ICAO.

[18] Federal Aviation Administration, “Concept of Operations, Aviation Safety Information Analysis and Sharing 3.0 
(ASIAS 3.0),” AVP-220, Program Management Branch, Office of Accident Investigation and Prevention, 2019.

[19] Das S., Matthews, B., Srivastava, A., and Oza, N., Multiple Kernel Learning for Heterogeneous Anomaly 
Detection: Algorithm and Aviation Safety Case Study, Proceedings of the SIGKDD International Conference on 
Knowledge Discovery and Data Mining (KDD-2010), pp. 47-56, 2010., doi:10.1145/1835804.183513.

[20] Melnyk, I., Banerjee, A., Matthews, B., and Oza, N., Semi-Markov Switching Vector Autoregressive Model-Based 
Anomaly Detection in Aviation Systems, Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery, and Data Mining (KDD), 2016.

[21] Memarzadeh, M., Matthews, B., and Avrekh, I., Unsupervised Anomaly Detection in Flight Data Using 
Convolutional Variational Auto-Encoder, Aerospace, Vol. 7, p.115 doi:10.3390/aerospace7080115.

17

https://canso.org/publication/canso-standard-of-excellence-in-safety-management-systems/
https://doi.org/10.2514/6.2021-4087
https://doi.org/10.17226/24962
http://www.faama.org/
https://nari.arc.nasa.gov/skyforall/


[22] J. Gluck, A. Tyagi, A Grushin, D. Miller, S.Voronin, J. Nanda, and N. C. Oza, “Too Fast, Too Low, and Too 
Close: Improved Real Time Safety Assurance of the National Airspace Using Long Short-Term Memory,” AIAA 
Sci Tech, 2019.

[23] N. Oza, K. Bradner, D. Iverson, A. Sahasrabhojanee, and S. Wolfe, “Anomaly Detection, Active Learning, 
Precursor Identification, and Human Knowledge for Autonomous System Safety,” AIAA Sci Tech 2021.

[24] Loyola-Gonzalez, O., “Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses from a 
Practical Point of View,” IEEE Access, 2019, Digital Object Identifier 10.1109/ACCESS.2019.2949286.

[25] Guidotti,R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi. D., “A Survey of Methods for 
Explaining Black Box Models,” ACM Comput. Surv. 51, 5, Article 93 (2018). DOI: 
https://doi.org/10.1145/3236009.

[26] Sharma, M., Das, K., Bilgic, M., Matthews, B., Nielsen, D., and Oza, N., “Active Learning with Rationales for 
Identifying Operationally Significant Anomalies in Aviation,” Proceedings of European Conference on Machine 
Learning and Principles and Practice of Knowledge Discovery (ECML-PKDD), 2016. URL 
http://www.cs.iit.edu/~ml/pdfs/sharma-ecmlpkdd16.pdf. 

[27] Das, K., Avrekh, I., Matthews, B., Sharma, M., and Oza, N., “ASK-the-Expert: Active Learning Based 
Knowledge Discovery Using the Expert,” Proceedings of European Conference on Machine Learning and 
Principles and Practice of Knowledge Discovery (ECML-PKDD), 2017.

[28] Bharadwaj, R., Mylaraswamy, D., Cornhill, D., Biswas, G., Koutsoukos, X., and Mack, D., “Vehicle Integrated 
Prognostic Reasoner (VIPR) Final Report,” NASA/CR–2013-217972, 2013. Retrieved from 
https://ntrs.nasa.gov/api/citations/20130011181/downloads/20130011181.pdf  .  

[29] Operational Use of Flight Path Management Systems. Final report of the performance-based operations Aviation 
Rulemaking Committee/Commercial Aviation Safety Team Flight Deck Automation Working Group. September 
5, 2013. PARC/CAST Flight Deck Automation WG Final Report. Washington, DC: PARC/CAST

[30] Flight Safety Foundation, “Learning from All Operations: Expanding the Field of Vision to Improve Aviation 
Safety,” White Paper, 2021.

[31] S. Mbaye, G. Jones, S. Infeld, M. Davies , “A Model-Based Systems Engineering Evaluation of the Evolution to 
an In-Time Aviation Safety Management System,” AIAA Aviation 2022.

[32] Holbrook, J., “Learning from All Operations: Expanding the Field of Vision to Improve Aviation Safety,” 
presentation at Flight Safety Foundation InfoShare conference, 2021.

[33] Rasmussen, J., “Risk Management in a Dynamic Society: A Modelling Problem,” Safety Sciences, Vol 27, No 
2/3, 1997. Retrieved from http://sunnyday.mit.edu/16.863/rasmussen-safetyscience.pdf. 

[34] Morrison, J.B., and Wears, R.L., “Modeling Rasmussen’s dynamic modeling problem: draft towards a boundary 
of safety,” Cognition, Technology & Work, 2021. Retrieved from 
https://link.springer.com/article/10.1007/s10111-021-00668-x. 

[35] Shappell, S.A. and Weigmann, D. A., “The Human Factors Analysis and Classification System – HFACS,” 
DOT/FAA/AM-00/7, 2000.

[36] Holbrook, J. B., Stewart, M. J., Smith, B. E., Prinzel, L. J., Matthews, B. L., Avrekh, I., Cardoza, C. T., Amman, 
O. C., Adduru, V., & Null, C. H. (2019). Human performance contributions to safety in commercial aviation. 
NASA TM-2019-220417.

[37] Smith, P.J. and Baumann, E. (2020). Human-automation teaming: Unintended consequences of automation on 
user performance. Proceedings of the 2020 Digital Avionics Systems Conference (DASC).

[38] National Aeronautics and Space Administration, “Human Systems Integration Handbook,” NASA/SP-
20210010952, 2021. Retrieved from https://ntrs.nasa.gov/citations/20210010952.

[39] National Aeronautics and Space Administration, “NASA Space Flight Program and Project Management 
Handbook,” NPR 7120.5, 2010. Retrieved from  https://www.nasa.gov/pdf/423715main_NPR_7120-
5_HB_FINAL-02-25-10.pdf.

[40] Ahlstrom, V., “Human Factors Design Standard,” Federal Aviation Administration, HF-STD-001B, 2016.
[41] Federal Aviation Administration, “Avionics Human Factors Considerations for Design and Evaluation,” AC No. 

00-74, 2019.
[42] Federal Aviation Administration, “Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Concept of 

Operations v2.0,” FAA, Washington, DC, 2020.
[43] Federal Aviation Administration, “Upper Class E Traffic Management v1.0,” May 26, 2020.

18

https://www.nasa.gov/pdf/423715main_NPR_7120-5_HB_FINAL-02-25-10.pdf
https://www.nasa.gov/pdf/423715main_NPR_7120-5_HB_FINAL-02-25-10.pdf
https://ntrs.nasa.gov/citations/20210010952
https://link.springer.com/article/10.1007/s10111-021-00668-x
http://sunnyday.mit.edu/16.863/rasmussen-safetyscience.pdf
https://ntrs.nasa.gov/api/citations/20130011181/downloads/20130011181.pdf
http://www.cs.iit.edu/~ml/pdfs/sharma-ecmlpkdd16.pdf
https://doi.org/10.1145/3236009

	A. In-Time Predictive Safety Intelligence
	A. Reactive Safety Management Systems
	B. Proactive Safety Management Systems
	C. Predictive Safety Management Systems
	D. Predictive Safety Management — IASMS
	A. Data-Informed Decisions
	B. Use of Data in Learning from All Operations
	C. Human Interfaces and Management of Information
	D. System-Wide IASMS
	Acknowledgments
	References

