Sans NEEs 2022

Nuclear Thermal Propulsion Turbomachinery Modeling

Dennis Nikitaev (Analytical Mechanics Associates, Inc.)

Corey D. Smith, Kelsa B. Palomares (Analytical Mechanics Associates, Inc.)

Acknowledgements

This work was supported by NASA's Space Technology Mission Directorate (STMD) through the Space Nuclear Propulsion (SNP) Project

Contract No. 80LARC17C0003

Task No. 10.020.000

Agenda

- Introduction to Nuclear Thermal Propulsion (NTP) Modeling
- Component Level Modeling
- System Integration
- Transient Consideration
- System Mass Modeling
- Conclusions/Future Work

Nuclear Thermal Propulsion (NTP) Modeling Overview

NTP is a monopropellant system that relies on convective heat transfer from a reactor to the propellant to enable high in-space thrust and specific impulse

- NTP engines provide thrust levels comparable to chemical engines while doubling the specific impulse with a hydrogen propellant.
- The propellants used are only limited by the material compatibilities.
- Heat is produced via nuclear fission and the heat distribution along the flow channels must be considered.
- The non-nuclear engine may leverage components previously developed through liquid chemical rocket engine development programs.
- Both bleed and expander cycles are applicable.

Pumps

Non-dimensional parameter approach (affinity relations)

• Three pump definition parameters:

- Change in pressure: ΔP
- Physical pump diameter: D_p
- Pump specific speed characterizes pump type and pump rotational velocity: n_{s_p}

• Pump speed:

-
$$\omega = \frac{n_{sp}(g_0 H_p)^{3/4}}{\sqrt{\dot{\forall}_p}} = \frac{n_{sp} \Delta P^{3/4}}{\rho^{1/4} \sqrt{\dot{m}_p}}$$

• Specific diameter:

-
$$d_{sp} = \frac{D_p (g_0 H_p)^{1/4}}{\sqrt{\dot{\forall}_p}} = \frac{D_p [\rho \Delta P]^{1/4}}{\sqrt{\dot{m}_p}}$$

• The n_{sp} and D_p values are changed to determine the highest pump efficiency to automatically find the pump parameters.

Turbines

Non-dimensional parameter approach (affinity relations)

Nuclear Thermal Propulsion Turbomachinery Modeling

Nuclear and Emerging Technologies for Space (NETS) Conference 2022

Reactor Heat Transfer

1st Law of Thermodynamics enthalpy approach with upwind nodal temperature determination [2-6]

Nuclear Thermal Propulsion Turbomachinery Modeling

Nozzle

Driving temperature difference is that which is between the plume and regenerative cooling flow

- Bartz Correlation [7]:
 - $\hbar_{\chi} = \frac{0.026}{D_t^{0.2}} \left(\frac{\mu^{0.2} c_p}{Pr^{0.6}}\right)_0 \left(\frac{\dot{m}}{A_t}\right)^{0.8} \left(\frac{D_t}{r_c}\right)^{0.1} \left(\frac{A_t}{A_{\chi}}\right)^{0.9} \sigma$
 - Where:

•
$$\sigma = \left\{ \left[\frac{1}{2} \frac{T_w}{T_0} \left(1 + \frac{\gamma - 1}{2} M^2 \right) + \frac{1}{2} \right]^{0.8 - \frac{s}{5}} \left[1 + \frac{\gamma - 1}{2} M^2 \right]^{\frac{s}{5}} \right\}^{-1}$$

• $\mu = \mu_0 \left(\frac{T}{T_0} \right)^s$

- *s* was determined from using temperatures and viscosities of a reference state and a state of interest inside the Power-Law Force equation.
- Standard Compressible Flow Relations [8]:

Turbomachinery Modeling

Nuclear and Emerging Technologies for Space (NETS) Conference 2022

System Integration

Standalone components defined by a set of parameters with fluid states as inputs and outputs

operating characteristics and fluid outputs INDEPENDENT of the model itself.

Nuclear Thermal Propulsion Turbomachinery Modeling

Iterative Solution

The NTP system performance is solved by performing double iteration

Transient Analysis

The iterative model provides performance parameters at different conditions for transient analysis

Engine Mass Estimations

If engine materials are known, mass can be estimated

- Engine mass estimating relationships are used for various components based on reference components and their operation regimes.
- The reactor masses should be evaluated using other reactor/neutronics software.

$$\begin{split} m_{duct} &= m_{duct_{ref}} \left(\frac{P_{max}}{P_{max_{ref}}}\right)^{0.3} \left(\frac{\rho_{mat}}{\rho_{mat_{ref}}}\right)^{1} \left(\frac{\sigma}{\sigma_{ref}}\right)^{-1} \left(\frac{\dot{m}}{\dot{m}_{ref}}\right)^{0.625} \left(\frac{\rho}{\rho_{ref}}\right)^{-0.625} \qquad m_{tp} = 1.5 \left(\frac{W_{tp}}{\omega}\right)^{0.6} \\ m_{nozzle} &= m_{nozzle_{ref}} \left(\frac{P_c}{P_{cref}}\right)^{1} \left(\frac{\rho_{mat}}{\rho_{mat_{ref}}}\right)^{1} \left(\frac{\sigma}{\sigma_{ref}}\right)^{-1} \left(\frac{AR}{AR_{ref}}\right)^{1} \left(\frac{d_t}{d_{tref}}\right)^{2} \qquad m_{struct} = m_{struct_{ref}} \left(\frac{F}{F_{ref}}\right)^{0.92068} \\ m_{misc} &= m_{misc_{ref}} \left(\frac{\rho_{mat}}{\rho_{mat_{ref}}}\right)^{1} \left(\frac{\sigma}{\sigma_{ref}}\right)^{-1} \left(\frac{d_t}{d_{tref}}\right)^{1} \end{split}$$

Conclusion

Standalone component based NTP model

- The outlined procedure could be used for low/medium fidelity analysis of the NTP engine system at the component level.
- Transient analysis of varying fidelity can be implemented.
- Variable fluid properties can be incorporated if a fluid property library such as CoolProp is implemented.
- The level of detail of the model can vary.
- The pump depends on the desired chamber pressure.
- The turbine depends on the required pump work and inlet fluid properties.

References

[1] Emrich, W. Principles of Nuclear Rocket Propulsion. Butterworth-Heinemann, an imprint of Elsevier, Oxford, United Kingdom, 2016.

[2] Çengel, Y. A., and Ghajar, A. J. Heat and Mass Transfer: Fundamentals & Applications. McGraw Hill Education, New York, NY, 2015.

[3] Thomas, G. R. *An Interim Study of Single Phase Heat Transfer Correlations Using Hydrogen*. Publication WANL-TNR--056, 4233809. 1962, p. WANL-TNR--056, 4233809.

[4] Churchill, S. W. "Friction-Factor Equation Spans All Fluid-Flow Regimes." *Journal of Chemical Engineering*, Vol. 84, No. 24, 1977, pp. 91–92.

[5] Thome, John R. Engineering Data Book III. Wolverine Tube, Inc., 2004.

[6] Bell, I. H., Wronski, J., Quoilin, S., and Lemort, V. "Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp." *Industrial & Engineering Chemistry Research*, Vol. 53, No. 6, 2014, pp. 2498–2508. https://doi.org/10.1021/ie4033999.

[7] Bartz, D. R. "A Simple Equation for Rapid Estimation of Rocket Nozzle Convective Heat Transfer Coefficients." *Journal of Jet Propulsion*, Vol. 27, No. 1, 1957, pp. 49–53. https://doi.org/10.2514/8.12572.

[8] Anderson, J. D. Modern Compressible Flow: With Historical Perspective. McGraw-Hill, Boston, 2003.

[9] Tizón, J. M., and Roman, A. A Mass Model for Liquid Propellant Rocket Engines. Presented at the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2017.

