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Nuclear Thermal Propulsion (NTP) Modeling Overview

• NTP engines provide thrust levels comparable to
chemical engines while doubling the specific
impulse with a hydrogen propellant.

• The propellants used are only limited by the material
compatibilities.

• Heat is produced via nuclear fission and the heat
distribution along the flow channels must be
considered.

• The non-nuclear engine may leverage components
previously developed through liquid chemical rocket
engine development programs.

• Both bleed and expander cycles are applicable.

NTP is a monopropellant system that relies on convective heat transfer from a reactor to the propellant to 

enable high in-space thrust and specific impulse
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Radial Francis Mixed Axial

Pumps
Non-dimensional parameter approach (affinity relations)
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• Three pump definition parameters:

- Change in pressure: Δ𝑃

- Physical pump diameter: 𝐷𝑝
- Pump specific speed – characterizes pump 

type and pump rotational velocity: 𝑛𝑠𝑝

• Pump speed:

- 𝜔 =
𝑛𝑠𝑝 𝑔0𝐻𝑝

Τ3 4

ሶ∀𝑝

=
𝑛𝑠𝑝Δ𝑃

Τ3 4

𝜌 Τ1 4 ሶ𝑚𝑝

• Specific diameter:

- 𝑑𝑠𝑝 =
𝐷𝑝 𝑔0𝐻𝑝

Τ1 4

ሶ∀𝑝

=
𝐷𝑝 𝜌Δ𝑃 Τ1 4

ሶ𝑚𝑝

• The 𝑛𝑠𝑝 and 𝐷𝑝 values are changed to determine 

the highest pump efficiency to automatically find 
the pump parameters.



Turbines
Non-dimensional parameter approach (affinity relations)
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• The pumps guide the turbine design at steady 
state.

• The same equations apply for turbines.

• The required work and shaft rotational velocity 
guide the mass flow rate.

• The resulting efficiency guides the pressure ratio.

Turbine

Turbines consist of a turbine 

circuit

Turbine

Turbine Bypass 

Valve

Drag Radial

Axial



Reactor Heat Transfer
1st Law of Thermodynamics enthalpy approach with upwind nodal temperature determination [2-6]
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𝛿 ሶ𝑄𝑖 = ℏ∆𝐴𝑠 𝑇𝑠𝑖 − 𝑇𝑖 +
∆𝑇

2

∆𝑃 = 𝑓
𝜌∆𝑥𝑉𝑎𝑣𝑔

2

2𝐷
+
𝜌

2
𝑉𝑖+1
2 − 𝑉𝑖

2

∆𝑥

ሶ𝑚ℎ𝑖 ሶ𝑚ℎ𝑖+1

𝑇𝑖 , 𝑃𝑖 𝑇𝑖+1, 𝑃𝑖+1

𝑇𝑠 =

𝑇𝑖exp
ℏ𝜋𝐷∆𝑥

ሶ𝑚𝑐𝑝
− 𝑇𝑖+1

exp
ℏ𝜋𝐷∆𝑥

ሶ𝑚𝑐𝑝
− 1

𝑁𝑢𝑖 = 0.025𝑅𝑒0.8𝑃𝑟0.4 1 + 0.3
𝐷

𝑥

0.7 𝑇𝑖
𝑇𝑠

0.55

𝑓 = 8
8

𝑅𝑒

12
+

1

𝐴+𝐵 1.5

Τ1 12

Where:  𝐴 = 2.457 ln
1

7

𝑅𝑒

0.9
+0.27

𝜀

𝑑

16

and 𝐵 =
37530

𝑅𝑒

16

𝛿 ሶ𝑄𝑖

Both pressure losses and changes in 

temperatures are calculated with varying 

heat transfer rates and variable fluid 

properties.



Nozzle
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• Bartz Correlation [7]:

• ℏ𝑥 =
0.026

𝐷𝑡
0.2

𝜇0.2𝑐𝑝

𝑃𝑟0.6 0

ሶ𝑚

𝐴𝑡

0.8 𝐷𝑡

𝑟𝑐

0.1 𝐴𝑡

𝐴𝑥

0.9
𝜎

• Where:

• 𝜎 =
1

2

𝑇𝑤

𝑇0
1 +

𝛾−1

2
𝑀2 +

1

2

0.8−
𝑠

5
1 +

𝛾−1

2
𝑀2

𝑠

5

−1

• 𝜇 = 𝜇0
𝑇

𝑇0

𝑠

• 𝑠 was determined from using temperatures and viscosities of a 
reference state and a state of interest inside the Power-Law Force 
equation.

• Standard Compressible Flow Relations [8]:
𝑇0
𝑇𝑒

= 1 +
𝛾 − 1

2
𝑀𝑒

2
𝑃0
𝑃𝑥

= 1 +
𝛾 − 1

2
𝑀𝑥

2

𝛾
𝛾−1

𝐴∗

𝐴𝑥
= 𝑀𝑥

𝛾 + 1
2

1 +
𝛾 − 1
2

𝑀𝑥
2

𝛾+1
2 𝛾−1

ሶ𝑚 = 𝑃0𝐴
∗

𝛾

𝑅𝑇0
∙

2

𝛾 + 1

𝛾+1
2 𝛾−1

𝐹 = 𝜂𝑛𝑜𝑧 ሶ𝑚𝑣𝑒 + 𝑃𝑒 − 𝑃𝑎 𝐴𝑒

𝐼𝑠𝑝 =
𝐹

ሶ𝑚𝑔



System Integration
Standalone components defined by a set of parameters with fluid states as inputs and outputs 
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𝜔 =
𝑛𝑠𝑝 𝑔0𝐻𝑝

Τ3 4

ሶ∀𝑝

=
𝑛𝑠𝑝Δ𝑃

Τ3 4

𝜌 Τ1 4 ሶ𝑚𝑝

Governing Equations

𝑑𝑠𝑝 =
𝐷𝑝 𝑔0𝐻𝑝

Τ1 4

ሶ∀𝑝

=
𝐷𝑝 𝜌Δ𝑃 Τ1 4

ሶ𝑚𝑝

ሶ𝑚, 𝑇1, 𝑃1 ሶ𝑚, 𝑇2, 𝑃2

Parameters

𝐷, ∆𝑃, 𝑛𝑠

Based on the component parameters and fluid state inputs, the component provides its 

operating characteristics and fluid outputs INDEPENDENT of the model itself.

Example:

Operating 

Characteristics

ሶ𝑊, 𝜂, 𝜔



Iterative Solution
The NTP system performance is solved by performing double iteration

10
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Transient Analysis
The iterative model provides performance parameters at different conditions for transient analysis
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Desired Temperature: 

𝑇𝑐𝑑𝑒𝑠 = 𝑇𝑐𝑑𝑒𝑠 𝑥, 𝑦, 𝑧

𝑇𝑠𝑚𝑎𝑥𝑑𝑒𝑠
= 𝑇𝑠𝑚𝑎𝑥𝑑𝑒𝑠

𝑥, 𝑦, 𝑧

𝑇𝑓𝑚𝑎𝑥𝑑𝑒𝑠
= 𝑇𝑓𝑚𝑎𝑥𝑑𝑒𝑠

𝑥, 𝑦, 𝑧

AS FUNCTIONS OF ENGINE 

PARAMETERS 𝑥, 𝑦, and 𝑧

Record Engine 
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Parameters
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psuedotransient engine response that 
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𝑑𝑋

𝑑𝑡

Set transient 

gradient of a 
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𝑑𝑋

𝑑𝑡



Engine Mass Estimations
If engine materials are known, mass can be estimated

Nuclear Thermal Propulsion 

Turbomachinery Modeling
Nuclear and Emerging Technologies for Space (NETS) Conference 2022 12

• Engine mass estimating relationships are used for various components based on
reference components and their operation regimes.

• The reactor masses should be evaluated using other reactor/neutronics software.

𝑚𝑑𝑢𝑐𝑡 = 𝑚𝑑𝑢𝑐𝑡𝑟𝑒𝑓

𝑃𝑚𝑎𝑥

𝑃𝑚𝑎𝑥𝑟𝑒𝑓

0.3
𝜌𝑚𝑎𝑡

𝜌𝑚𝑎𝑡𝑟𝑒𝑓

1 𝜎

𝜎𝑟𝑒𝑓

−1
ሶ𝑚

ሶ𝑚𝑟𝑒𝑓

0.625
𝜌

𝜌𝑟𝑒𝑓

−0.625
𝑚𝑡𝑝 = 1.5

𝑊𝑡𝑝

𝜔

0.6

𝑚𝑠𝑡𝑟𝑢𝑐𝑡 = 𝑚𝑠𝑡𝑟𝑢𝑐𝑡𝑟𝑒𝑓

𝐹

𝐹𝑟𝑒𝑓

0.92068

𝑚𝑚𝑖𝑠𝑐 = 𝑚𝑚𝑖𝑠𝑐𝑟𝑒𝑓

𝜌𝑚𝑎𝑡

𝜌𝑚𝑎𝑡𝑟𝑒𝑓

1 𝜎

𝜎𝑟𝑒𝑓

−1
𝑑𝑡

𝑑𝑡𝑟𝑒𝑓

1

𝑚𝑛𝑜𝑧𝑧𝑙𝑒 = 𝑚𝑛𝑜𝑧𝑧𝑙𝑒𝑟𝑒𝑓

𝑃𝑐
𝑃𝑐𝑟𝑒𝑓

1
𝜌𝑚𝑎𝑡

𝜌𝑚𝑎𝑡𝑟𝑒𝑓

1 𝜎

𝜎𝑟𝑒𝑓

−1
𝐴𝑅

𝐴𝑅𝑟𝑒𝑓

1
𝑑𝑡

𝑑𝑡𝑟𝑒𝑓

2



Conclusion

• The outlined procedure could be used for low/medium fidelity analysis of the
NTP engine system at the component level.

• Transient analysis of varying fidelity can be implemented.

• Variable fluid properties can be incorporated if a fluid property library such as
CoolProp is implemented.

• The level of detail of the model can vary.

• The pump depends on the desired chamber pressure.

• The turbine depends on the required pump work and inlet fluid properties.

Standalone component based NTP model 
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