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A novel approach for modeling the aero-propulsive characteristics of an electric vertical
takeoff and landing (eVTOL) aircraft was developed and demonstrated in wind tunnel testing.
The approach was applied to the NASA LA-8 tandem tilt-wing eVTOL aircraft, using an
efficient, hybrid experiment design composed of a static I-optimal response surface design for
slowly-varying test variables, and dynamic orthogonal phase-optimized multisine excitations for
the control surfaces and electric propulsors. Both the static and dynamic experiment designs
were executed simultaneously to collect informative data for model identification. Statistically-
weighted multivariate orthogonal function modeling was used to combine local modeling results
computed in the frequency domain using data collected with dynamic excitations operating on
the control effectors to form an aggregate aero-propulsive model. The final identified model
exhibited good predictive capability when compared to validation data acquired separately
from the data used to develop the model. The required test time using these new techniques
was reduced by at least a factor of five compared to previous static wind tunnel testing for the
LA-8 aircraft, while providing more informative data, greater parameterization flexibility, and
high-quality models.

Nomenclature

𝐿, 𝑀 , 𝑁 = body-axis aero-propulsive moments, ft·lbf
𝑛1, 𝑛2,..., 𝑛8 = LA-8 propulsor rotational speed, revolutions/s
𝑞 = freestream dynamic pressure, lbf/ft2
𝑢, 𝑣, 𝑤 = body-axis translational velocity components, ft/s
𝑉 = freestream airspeed, ft/s
𝑋 , 𝑌 , 𝑍 = body-axis aero-propulsive forces, lbf
𝛼 = angle of attack, rad
𝛽 = angle of sideslip, rad
𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 = LA-8 elevon deflections, rad
𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 = LA-8 flap deflections, rad
𝛿𝑟1 , 𝛿𝑟2 = LA-8 ruddervator deflections, rad
𝛿𝑤1 , 𝛿𝑤2 = LA-8 front and rear wing angles, rad
𝜂1, 𝜂2,..., 𝜂8 = LA-8 motor pulse width modulation commands, 𝜇s

Superscripts
𝑇 = transpose
−1 = matrix inverse
ˆ = estimate
¤ = time derivative
˜ = Fourier transform
† = complex conjugate transpose
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I. Introduction

Many novel aircraft designs∗ are currently under investigation to support a future Urban Air Mobility (UAM)
transportation system [1, 2]. Vehicles supporting UAM operations require precise hover and efficient cruise

capabilities as well as the ability to safely transition between flight regimes. Hybrid and electric vertical takeoff and
landing (eVTOL) aircraft are a clear fit for this new transportation model. In general, eVTOL aircraft are a combination
of traditional fixed-wing and rotary-wing aircraft leveraging certain attributes from each type of vehicle. Rotary-wing
aircraft features provide the ability to takeoff and land vertically, hover, and precisely maneuver in confined areas. Longer
endurance, better efficiency, and the ability to operate at high speeds is derived from fixed-wing aircraft attributes.
Distributed hybrid and electric propulsion technology used in many eVTOL aircraft concepts has further broadened the
traditional aeronautical vehicle design space and resulted in many unique vehicle designs [3–9].

Although the operational utility of eVTOL aircraft has great potential, there are many research areas to be addressed
prior to introduction into a UAM environment. One essential research area is accurate eVTOL vehicle aero-propulsive
modeling enabling flight dynamics simulation development to support flight control system design and certification,
research on practical flight operations, and many other areas. Efficient and accurate vehicle aero-propulsive model
development, however, is challenged by several vehicle attributes, including: many control surfaces and propulsors,
propulsion-airframe interactions, propulsor-propulsor interactions, high-incidence angle propulsor aerodynamics, vehicle
instability, rapidly changing aerodynamics through transition, and large flight envelopes that need to be characterized
by a global aero-propulsive model. Compared to many conventional aircraft, eVTOL aircraft designs exhibit greater
aero-propulsive complexity and many interacting factors requiring development of new testing and model development
strategies. For conventional fixed-wing aircraft, the propulsion aerodynamics and airframe aerodynamics can generally
be studied separately because the interaction effects are relatively small. In contrast, integrated aero-propulsive modeling
is performed for eVTOL aircraft because the propulsion aerodynamics, airframe aerodynamics, and propulsion-airframe
interactional aerodynamics are generally highly coupled. Previous research has investigated methods for efficient
eVTOL aircraft aero-propulsive modeling across their wide flight envelopes using computational fluid dynamics
simulations [10, 11], wind tunnel testing [12–16], and simulated flight testing [17].

The present work builds on previous eVTOL aircraft modeling research to develop an effective aero-propulsive
modeling strategy for eVTOL aircraft using novel, efficient wind tunnel testing. Consequently, the following
discussion focuses on methods used to develop mathematical models from experimental data, termed aircraft system
identification [18–20]. The distributed propulsion, tilt-wing aircraft modeling approach proposed in Ref. [16] is combined
with a more efficient, hybrid wind tunnel experiment designed using modern response surface methods [21, 22] and
dynamic programmed test input (PTI) excitations [23–25]. This multilayered testing and modeling strategy is similar to
previous fixed-wing aircraft modeling research using flight testing [26] and flight simulations [27]. The present work is
also inspired by recent NASA Learn-to-Fly Project [28, 29] wind tunnel testing [30] and flight testing [31–33] used for
modeling fixed-wing aircraft and extends efficient model development strategies to eVTOL aircraft. Reference [30]
presents a related wind tunnel testing and modeling approach leveraging a combination of response surface designs and
PTI excitations used for fixed-wing aircraft aerodynamic modeling. The new contributions of this work include a new
experimental design methodology and a novel, multistep model identification procedure tailored to the data collection
methods, as well as application to a complex eVTOL aircraft with significant aero-propulsive coupling.

The paper is organized as follows: Section II introduces the experimental aircraft. Section III describes the
experimental design methodology, followed by a description of the wind tunnel test and data processing methods
in Sec. IV. The aero-propulsive modeling approach and the model identification strategy are described in Sec. V.
Section VI provides sample modeling results, followed by discussion of the results and modeling approach in Sec. VII.
Overall conclusions are summarized in Sec. VIII.

II. Aircraft
The modeling approach developed in this paper is applied to the Langley Aerodrome No. 8 (LA-8) vehicle [9].

The LA-8, pictured in Fig. 1, is a subscale, tandem tilt-wing, distributed electric propulsion aircraft configuration built
as a testbed for eVTOL aircraft technology. The LA-8 was developed at NASA Langley Research Center as one of
several eVTOL research aircraft intended to explore their unique flight characteristics and resolve implementation
challenges to help bring similar full-scale vehicles into mainstream operation. The LA-8 project has enabled research in
rapid vehicle development [9, 34], computational predictions [35], wind tunnel testing [15, 36, 37], aero-propulsive
modeling [16, 17, 38], flight controls [39], and flight test strategies [17, 40].

∗Information available online at https://evtol.news/aircraft [accessed 29 October 2021]
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(a) LA-8 front view (b) LA-8 rear view

Fig. 1 LA-8 mounted in the NASA Langley 12-Foot Low-Speed Tunnel.

The LA-8 is equipped with 20 control effectors, including two tilting wings, four elevons, four flaps, two ruddervators,
and eight electric motors/propellers. Figure 2 is a photo of the LA-8 with annotations showing the vehicle propulsor and
control surface definitions. Wing, elevon, flap, and ruddervator deflections are defined positive trailing edge downward.
Propellers 1, 3, 6, and 8 rotate clockwise and propellers 2, 4, 5, and 7 rotate counterclockwise, as viewed from the rear.
All propellers are 16-inch diameter, 8-inch pitch, fixed-pitch, 3-bladed propellers.
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Fig. 2 LA-8 propulsor and control surface definitions.

III. Experiment Design
The factors under test were divided into static factors and dynamic factors for the wind tunnel experiment design

based on the frequency band of typical variations in flight, as well as the capabilities of the wind tunnel testing apparatus.
Static and dynamic test factor experiment designs were developed separately, but the designs were run simultaneously
for test execution. The respective experiment design methods forming the hybrid testing strategy are discussed in the
following subsections. Note that this study was exploratory in nature with an objective of refining the proposed testing
approach to guide future wind tunnel tests for eVTOL vehicles. Consequently, the wind tunnel experiment was expected
to yield excess data with the goal of determining the data collection requirements enabling development of satisfactory
aero-propulsive models in an efficient manner.

A. Static Experiment Design
The static test factors were angle of attack 𝛼, angle of sideslip 𝛽, front wing angle 𝛿𝑤1 , and rear wing angle 𝛿𝑤2 .

These factors were held at constant settings during data collection due to their slow relative movement and for operational
convenience in wind tunnel testing. Moving the airflow orientation angles and wing angles dynamically changes the tare
values and introduces additional dynamic modeling complexity. The factor settings for each of the four static test factors
were independently commanded by the wind tunnel control system at each test point. Although previous research
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suggests parameterizing eVTOL aircraft models using body-axis velocity components [11, 16], the test matrices were
specified using 𝛼 and 𝛽 for ease of envelope definition and simplified integration into the wind tunnel test apparatus.
The freestream velocity was held at a constant setting for the testing described in this paper, but would need to be varied
to develop an aero-propulsive model valid throughout the operational flight envelope.

A set of five sequential static test blocks was developed using design of experiments (DOE) [21] and response
surface methodology (RSM) [22] theory to acquire the data necessary to identify and validate increasingly complex
aero-propulsive models. Modeling block design was accomplished with the aid of Design-Expert®, a commercially
available statistical software package.† Previous model identification results for the LA-8 aircraft suggested that at least
pure quadratic and two-factor interaction model terms are needed to characterize the slow moving test factors [16], but
additional model complexity in the form of higher-order model terms was not investigated in that study. The hybrid
testing strategy employed in this work allows identification of higher-order models, while still conducting efficient
testing.

The static factor settings were chosen using sequential, completely randomized I-optimal response surface designs,
which are designs that minimize the average prediction variance for a predefined model order over the range of factor
settings [21, 22]. The four blocks used for modeling were I-optimal designs for:

1) a quadratic design model (up to pure quadratic and two-factor interaction model terms),
2) a cubic design model (up to pure cubic terms and all arrangements of cross terms up to a total of third order),
3) a quartic design model (up to pure quartic terms and all arrangements of cross terms up to a total of fourth order),

and
4) a quintic design model (up to pure quintic terms and all arrangements of cross terms up to a total of fifth order).

The I-optimal block designs were composed of the minimum number of test points needed to fit a full model of the
specified complexity. Three additional center points were also included in each block to allow estimation of pure error
and to aid in stabilization of the prediction variance at the center of the experimental region [21]. Each sequential
I-optimal design augmented the collective design from previous blocks to sequentially increase the identifiable model
complexity, improve the model prediction, and avoid duplicating previously tested combinations of factor settings. All
modeling blocks were executed to investigate the model complexity needed to characterize eVTOL aircraft, but not all
blocks were expected to be needed to identify a satisfactory aero-propulsive model.

An additional fifth block consisting of 20 static test points selected using a random number generator was used as
validation data withheld from model identification. The choice of randomized test points makes the validation test
impartial to the experimental design. This validation block was found to provide a good estimate of prediction error
while using a modest number of test points for the present application.

Figure 3 shows two-dimensional slices of the factor space for the four static test factors. Each block is plotted
sequentially with points from the previous blocks to show how the higher complexity I-optimal designs fill the design
space. The randomized validation test points are also shown on each plot. Figure 4 shows a four-dimensional
representation for all static test factors and all test blocks. Although the factors are displayed in coded units in the figure,
the variables would be converted into engineering units for test execution.

Assessment of the prediction variance of a response surface design for a given model structure provides insight into
its precision of prediction and allows comparison of different response surface designs. The variance of the predicted
response is

Var[ 𝑦̂(𝒙0)] = 𝜎2𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (1)

where 𝑦̂(𝒙0) is the predicted response evaluated at the design space location 𝒙0 expanded to the form of the model
structure, 𝑿 is a matrix composed of the designed test points in the form of the model structure, and 𝜎2 is the
measurement error variance [22]. From Eq. (1), the prediction variance is a function of the experiment design, the model
structure, the location in the design space, and the measurement facility error variance. The scaled prediction variance
(SPV) and unscaled prediction variance (UPV) are used to compare experiment designs prior to experimentation, which
removes the dependence on 𝜎2. SPV is defined as

SPV =
𝑁 Var[ 𝑦̂(𝒙0)]

𝜎2 = 𝑁 𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (2)

where the number of test points 𝑁 penalizes a larger design size [22]. The SPV considers the prediction accuracy as
†Information available online at https://www.statease.com/software/design-expert/ [accessed 29 October 2021]
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Fig. 3 Sequential two-dimensional slices of the coded factor space for the static test factors.

Fig. 4 Four-dimensional representation of the coded factor space for the static test factors.

well as the expense of test points when comparing designs. The UPV, defined as

UPV =
Var[ 𝑦̂(𝒙0)]

𝜎2 = 𝒙𝑇0

(
𝑿𝑇𝑿

)−1
𝒙0 (3)
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provides an assessment of the prediction precision independent from the size of the experimental design.
Graphical presentation of the distribution of prediction variance throughout the design space is an effective way to

assess experimental designs. Each test block design used for this work was assessed using fraction of design space (FDS)
plots [41]. FDS graphs depict the prediction variance distribution over the design space in a concise manner, where
the prediction variance metrics are plotted against the FDS encompassing a prediction variance less than or equal
to a particular value. It is also useful to consider the FDS including a particular model precision, quantified by the
confidence interval half-width 𝛿 [42–44]. The model precision 𝛿 normalized by the response standard deviation 𝜎
plotted against FDS provides further insight into the prediction capability of the model developed from a particular
experiment design, prior to conducting the experiment. For this study, a design was deemed to be adequate for fitting a
particular model complexity if 𝛿/𝜎 was less than two for greater than 95% of the design space. The prediction variance
threshold PV∗ used to determine the FDS within a given model precision level is

PV∗ =

(
𝛿/𝜎

𝑡𝛼/2,𝑁−𝑝

)2
(4)

where 𝑁 is the number of test points, 𝑝 is the number of parameters in the model, and 𝛼 is the significance level (chosen
as 𝛼 = 0.05 for this study).

Table 1 lists the number of test points for each block, as well as the FDS with 𝛿/𝜎 ≤ 2 for quadratic, cubic, and
quartic evaluation models. An adequate FDS (FDS ≥ 0.95) for a normalized model precision 𝛿/𝜎 ≤ 2 is obtained with
a design order one power larger than the evaluation model order. Figures 5, 6, and 7 show the UPV, SPV, and 𝛿/𝜎
threshold values against FDS for a quadratic, cubic, and quartic model evaluation model order, respectively. Each block
is analyzed sequentially, meaning that the analysis for each block includes the design points in the current block and all
previous blocks. The UPV and 𝛿/𝜎 threshold curve decreases in value and becomes more uniform (flat) as the design
order increases. The SPV curves for each block are similar for the quadratic evaluation model. For the cubic and quartic
evaluation models, a lower and more uniform SPV is obtained with a design complexity greater than the evaluation
model complexity.

Table 1 Cumulative experimental design properties for each test block

Design Block Cumulative Quadratic Model Cubic Model Quartic Model
Block Order Points Points FDS with 𝛿/𝜎 ≤ 2 FDS with 𝛿/𝜎 ≤ 2 FDS with 𝛿/𝜎 ≤ 2
1 Quadratic 18 18 0.448 0.000 0.000
2 Cubic 23 41 0.999 0.215 0.000
3 Quartic 38 79 1.000 0.998 0.151
4 Quintic 59 138 1.000 1.000 0.994

Fig. 5 FDS plots for a quadratic evaluation model.
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Fig. 6 FDS plots for a cubic evaluation model.

Fig. 7 FDS plots for a quartic evaluation model.

B. Dynamic Experiment Design
The ten control surfaces (four elevons, four flaps, and two ruddervators) and eight propulsors present on the LA-8

aircraft were treated as dynamically changing factors at each static test point. Orthogonal phase-optimized multisine
inputs [18, 23–25] were the excitation input type, or PTI, used for these 18 individual control effectors. Multisine inputs
have been used successfully in previous aircraft system identification work to simultaneously characterize the effects of
many individual control effectors [45–48].

A multisine input is defined as a sum of multiple sinusoidal functions with different amplitudes, frequencies, and
phase angles, where the frequencies are chosen to encompass the frequency range corresponding to the system dynamics
of interest. To make all inputs orthogonal in both the time domain and frequency domain, the multisine signal for each
𝑗 th control effector is assigned sinusoids with a unique subset of discrete harmonic frequency indices 𝐾 𝑗 selected from
the complete set of available frequency indices, 𝐾 . The available frequencies are 𝑓𝑘 = 𝑘/𝑇, 𝑘 = 1, 2, ..., 𝐾 , where 𝑇 is
the fundamental period. For 𝑚 total control effectors, each 𝑗 th input signal 𝒖 𝑗 is defined as

𝒖 𝑗 =
∑︁
𝑘∈𝐾 𝑗

𝐴
√︁
𝑃𝑘 sin

(
2𝜋𝑘 𝒕
𝑇

+ 𝜙𝑘
)

𝑗 = 1, 2, ..., 𝑚 (5)

where 𝐴 is the signal amplitude, 𝑃𝑘 is the 𝑘th power fraction, 𝜙𝑘 is the 𝑘th phase angle defined on the interval (−𝜋, +𝜋],
and 𝒕 is the time vector containing 𝑁 discrete points. The relative peak factor (RPF), defined as

RPF
(
𝒖 𝑗

)
=

1
√

2

[
max

(
𝒖 𝑗

)
− min

(
𝒖 𝑗

) ]
/ 2√︃

𝒖𝑇
𝑗
𝒖 𝑗/𝑁

(6)

is the range of input amplitude divided by the root-mean-square of the signal, referenced to the peak factor for a
single-frequency sinusoid. Minimum RPF is preferred for system identification flight testing to prevent perturbing the
aircraft far from the reference flight condition. For wind tunnel testing, minimum RPF also approximately minimizes
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the peak-to-peak amplitude of the multisine signals, which keeps the rate of change low. This is important for repeated
dynamic use of the control surface actuators and electric motors during wind tunnel testing. The relative peak factor for
a multisine signal is minimized by optimizing the phase angles using the simplex algorithm because the optimization
problem is not convex [23]. Minimizing the RPF by phase-shifting the sinusoidal components of a multisine input does
not affect the excitation input energy or the mutual orthogonality of the inputs.

For this study, individual multisine signals were generated for each of the LA-8 control surfaces and propulsors, for
a total of 18 different excitation signals. The multisine design process followed similar steps to those shown in Ref. [17]
for simulated LA-8 flight experiments. The difference in the design process for this current work is a consideration
placed on identification of pure quadratic and interaction model terms among control effectors, in addition to the linear
model terms considered in Ref. [17]. Several harmonic components were assigned to each control surface and propulsor
multisine signal, where the overall frequency range was set to between 0.05 Hz and 1.8 Hz in accordance with frequencies
that would be used in flight. The propulsion harmonic components were focused into lower frequencies below 1.2
Hz to adhere to the lower bandwidth of the propulsors [38]. Focusing the propulsor excitation frequencies below this
limit avoids over-stressing the motors and prevents the propulsor excitation power from being attenuated by the motor
dynamics. Six different sets of multisine input frequency components were considered for the experiment by varying
the fundamental period 𝑇 from 30 seconds to 180 seconds in 30-second increments. A larger fundamental period results
in a finer frequency resolution, Δ 𝑓 = 1/𝑇 Hz, which allows assigning more frequency components to each individual
multisine signal. The design with the shortest fundamental period (𝑇 = 30 seconds) had three harmonic components
assigned to each propulsor and control surface signal; the design with the longest fundamental period (𝑇 = 180 seconds)
had 16 harmonic components assigned to each propulsor signal and 18 harmonic components assigned to each control
surface signal. Because the starting phase angles for each harmonic component in the non-convex RPF optimization
are generally chosen randomly in (−𝜋, +𝜋], a different set of phase angles optimized for minimum RPF is generally
obtained each time a multisine signal is designed. Multisine optimization with randomly chosen starting phase angles
was performed 30 times for each different set of frequency components and the design with the shortest time to decrease
the maximum absolute pairwise correlation among up to quadratic and two-factor interaction control effector model
terms was selected to compare to signals developed with different fundamental periods.

Multisine signals are orthogonal in the time-domain at integer multiples of 𝑇 , which might be interpreted to suggest
using a multisine design with a small fundamental period. However, obtaining high quality modeling results requires
low correlation rather than zero correlation [25], meaning that good modeling results can be obtained by using a data
collection time shorter than the fundamental period of the multisine signal. Also, using a larger number of frequency
components provides more diverse dynamic information, which has been shown to improve modeling results [45].
Following an approach similar to Refs. [17, 25], correlation metrics were used as criteria to assess the quality of each
multisine design as data collection time progresses.

Correlation between two signals can be assessed using the pairwise correlation coefficient. The correlation coefficient
𝑟𝑖 𝑗 between two signals, 𝒙𝑖 and 𝒙 𝑗 , is defined as

𝑟𝑖 𝑗 =
(𝒙𝑖 − 𝑥𝑖)𝑇 (𝒙 𝑗 − 𝑥 𝑗 )√︁

(𝒙𝑖 − 𝑥𝑖)𝑇 (𝒙𝑖 − 𝑥𝑖)
√︁
(𝒙 𝑗 − 𝑥 𝑗 )𝑇 (𝒙 𝑗 − 𝑥 𝑗 )

(7)

where 𝑥𝑖 and 𝑥 𝑗 are the respective mean signal values. A correlation coefficient value of zero means the signals are
uncorrelated, or orthogonal, and an absolute correlation coefficient of one indicates that the signals are completely
correlated, or linearly dependent. Lower absolute correlation generally results in better modeling results [25]. A
correlation coefficient between signals used for modeling with magnitude greater than 0.9 indicates that data collinearity,
or correlation between signals high enough to cause corrupted model identification, may be encountered [18, 20].
Another metric that can be used to assess signal correlation is the variance inflation factor (VIF). For the signal 𝒙 𝑗 , the
respective VIF is

VIF 𝑗 =
1

1 − 𝑅2
𝑗

(8)

where 𝑅2
𝑗

is the coefficient of determination obtained through creating a regression model of 𝒙 𝑗 as a function of all other
regressor signals. A VIF value greater than 10 suggests that data collinearity may be present [18, 42, 49]. The 𝑟𝑖 𝑗 , VIF 𝑗 ,
and 𝑅2

𝑗
metrics only quantify correlation between pairs of signals and, thus, cannot diagnose collinearity among more

than two signals [18, 50].
An alternative method that can be used to assess multiple correlation between more than two inputs is analysis

of the eigenvalues of 𝑿𝑇𝑿, where 𝑿 is a matrix composed of column vectors of the signals in the regression model.
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The inverse of the 𝑿𝑇𝑿 matrix is required to compute the ordinary least-squares regression solution. The ratio of the
maximum eigenvalue and minimum eigenvalue, 𝜅 = 𝜆max/𝜆min, is the condition number of the 𝑿𝑇𝑿 matrix. A value
of 𝜅 close to one indicates low multiple correlation whereas a large value of 𝜅 indicates an ill-conditioned estimation
problem due to data collinearity. Values of 𝜅 indicating adverse effects from data collinearity range anywhere from 100
to 100,000 depending on the particular data set [18, 20, 49, 50].

The evolution of correlation metrics over time for four multisine designs with a different fundamental period is
shown in Fig. 8. A linear and full quadratic model (every possible linear, quadratic, and two-factor interaction model

(a) Maximum absolute 𝒓𝒊 𝒋 (linear model) (b) Maximum absolute 𝒓𝒊 𝒋 (quadratic model)

(c) Maximum VIF𝒋 (linear model) (d) Maximum VIF𝒋 (quadratic model)

(e) Maximum 𝑹2
𝒋 (linear model) (f) Maximum 𝑹2

𝒋 (quadratic model)

(g) Condition number of 𝑿𝑻 𝑿 (linear model) (h) Condition number of 𝑿𝑻 𝑿 (quadratic model)

Fig. 8 Input signal correlation metrics against time.
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term) for all the control surfaces and propulsors are considered for this analysis. This represents a conservative analysis
performed prior to the experiment that assumes all candidate regressors are included in the model. Many candidate
model terms considered here, particularly for the full quadratic model, were expected to be excluded through model
structure determination after data collection. The PTI excitations were run in a continuous loop for testing, meaning
that different set points contained different portions of the full PTI signals. Consequently, the analysis here shows the
highest value of each metric for time segments evaluated throughout the full duration of the periodic signal, as opposed
to just from the start of the signal at 𝑡 = 0.

Figures 8a and 8b show the maximum absolute pairwise correlation value, max( |𝑟𝑖 𝑗 |), for each multisine design as a
function of time for a linear and quadratic evaluation model, respectively. The maximum correlation for each different
multisine design shows a similar rate to decrease below 0.5, which is achieved in roughly 10 seconds for the linear model
and roughly 25 seconds for the quadratic model. Figure 8a shows that the pairwise correlation values are zero at integer
multiples of the fundamental period of the respective multisine design for a linear model. For the quadratic model, the
correlation pairwise correlation values decrease until passing the fundamental period for the multisine design where the
pairwise correlation value remains relatively constant thereafter. Multisine designs with a larger fundamental period
ultimately achieve lower correlation among quadratic model regressors. Similar character is observed for the maximum
VIF 𝑗 and 𝑅2

𝑗
variation with time shown in Figures 8c-8f. For a linear model, all multisine designs achieve a maximum

VIF of less than 10 in roughly 7 seconds. For a quadratic model, the multisine designs with a longer fundamental period
achieve a maximum VIF of less than 10 in roughly 40 seconds.

Figures 8g-8h show the condition number 𝜅 of 𝑿𝑇𝑿 for each multisine design as a function of time. For the linear
model, all multisine designs achieve a condition number less than 100 in approximately 7 seconds at nearly the same
rate and, thereafter, the condition numbers continue to decrease at a slower rate. For the quadratic model, the condition
number for each multisine design is seen to decrease until reaching the fundamental period, and a nearly constant
condition number is observed thereafter. The multisine designs with longer fundamental periods achieve a condition
number less than 1,000 in roughly 40 seconds. Again, this analysis assumes that all candidate regressors are included in
the model. If a subset of the model terms is selected for the model, then the condition number is typically reduced.

The overall takeaway from Fig. 8 is that multisine designs with different fundamental periods reduce correlation
metric values at a similar rate up to the respective fundamental period of each design. Also, multisine designs with longer
fundamental periods obtain lower correlation metrics over time for a quadratic model. Informed by these time-dependent
correlation analysis results and previous research showing the benefits of increased frequency resolution [45], the
multisine design with the largest fundamental period (𝑇 = 180 seconds) was selected to be used for the wind tunnel
experiment.

The input spectra for the final set of orthogonal phase-optimized multisine signals with a fundamental period of
𝑇 = 180 seconds is shown in Fig. 9. There are 308 total harmonic components, with 16 frequencies assigned to each
propulsor and 18 frequencies assigned to each control surface in an alternating manner. The overall frequency range
is between 𝑓min = 0.05 Hz and 𝑓max = 1.756 Hz with a frequency resolution of Δ 𝑓 = 1/𝑇 = 0.00556 Hz. The input
spectra plot shows that the propulsor harmonic components are in a lower frequency range, reflecting that the input
excitations were designed to be within the bandwidth of the propulsion system. Figure 10 shows the first 20 seconds of
the input excitation signals normalized to have a maximum absolute value of one. The RPF values for the propulsor
inputs were below 1.32 and the RPF values for the control surface inputs were below 1.60. A gain is applied to scale
each input signal to a sufficient amplitude to obtain a good signal-to-noise ratio for model identification.

Fig. 9 Multisine input spectra for the LA-8 control effectors.
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Fig. 10 Normalized multisine inputs for the LA-8 control effectors.

IV. Data Collection and Signal Processing
The experiment described in the previous section was executed at the NASA Langley 12-Foot Low-Speed Tunnel.‡

The static test points, consisting of 𝛼, 𝛽, 𝛿𝑤1 , and 𝛿𝑤2 settings, were run using an automated data collection procedure
developed for previous testing using DOE/RSM techniques [12, 15]. The PTI excitations for control surface and
propulsor commands were run in a continuous loop while traversing through the static test matrix, but data were only
collected at each static test point. Experiments used for this paper were executed at a dynamic pressure of 3.5 psf
(freestream airspeed of 54.3 ft/s at standard sea-level conditions), with the test factor ranges shown in Table 2. This
condition represents a high-speed transition phase of flight for the LA-8 aircraft. Note that multiple dynamic pressure
settings need to be tested to develop a full-envelope aero-propulsive model.

Data collected for model identification included sting orientation, control surface deflection angles, propulsor
rotational speeds, and applied forces and moments. The six force and moment components were measured using a strain
gage balance, and a propeller rotational speed measurement was provided by the electronic speed controller. Direct
control surface position measurements were not available, so a calibration curve was developed for each control surface
to convert the desired deflection angles to commanded pulse width modulation (PWM) signal values for testing. Data
were collected at a sample rate of 50 Hz for 60 seconds at each static test point, with less overall time expected to be
needed for model identification.

Table 2 Test factor ranges at 𝒒̄ = 3.5 psf (𝑽 = 54.3 ft/s)

Factor(s) Units Minimum Maximum
𝛼 deg −6 +6
𝛽 deg −5 +5

𝛿𝑤1 , 𝛿𝑤2 deg 0 +25
𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 deg −15 +15
𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 deg 0 +20

𝛿𝑟1 , 𝛿𝑟2 deg −15 +15
𝜂1, 𝜂2, ..., 𝜂8 𝜇s 1400 1500

The dynamic nature of the data used for this study required multiple signal processing steps to condition the data for
model identification. First, the propulsor speed and control surface deflection angle signals were found to have a time lag
relative to the force and moment measurements. The time lag was determined by finding the peak of the cross-correlation
function between the control surface and propulsor signals and the dominant force or moment component where the

‡Information available online at https://researchdirectorate.larc.nasa.gov/12-foot-low-speed-tunnel-12-ft-lst/ [accessed 29 October 2021]
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control effects manifested. The cross-correlation was computed using data collection runs executed with a reduced
number of control effectors being dynamically excited to clarify time lag estimation. After determining the time lag,
time skew corrections were made for the signals used for model identification.

The force and moment signals were also found to contain significant measurement noise and suspected structural
modes. An analog sixth-order low-pass Butterworth anti-alias filter with a cutoff frequency of 10 Hz was applied to the
balance measurements prior to sampling. Nonetheless, residual frequency content outside of the excitation frequencies
was observed in the data. To mitigate these effects, the model identification from the dynamic data was performed using
only information content contained in the dynamic excitation frequency range, as will be discussed further in Sec. V.
For time-domain model validation, data were smoothed using a zero-phase shift digital filtering technique,§ with a
digital sixth-order low-pass Butterworth filter with a cutoff frequency of 3.1 Hz applied both forward and backward
in time [51]. The cutoff frequency was selected to preserve lower frequency information associated with the control
effector excitation frequencies, but reject most higher frequency noise. The frequency response of the zero-phase shift
digital smoother is shown in Fig. 11 (phase is not shown because it is zero across the frequency range). The linear
magnitude at 1.756 Hz (the highest PTI excitation frequency) is greater than 0.999 and −20 dB attenuation is achieved
at 3.7 Hz.

Fig. 11 Frequency response for the zero-phase shift digital low-pass Butterworth smoother.

Sample measured and smoothed force and moment data in the time and frequency domain are shown in Figs. 12-13.
The power spectra shown in Fig. 13 were computed using Welch’s method.¶ The power spectra of the original force and
moment measurements show evidence of structural modes and measurement noise above the PTI excitation frequencies,
which are avoided by only performing model identification using the frequency band corresponding to the control
effector excitation frequencies, indicated by the shaded areas on the plot. The figures also show that the smoother
suppresses the structural modes and measurement noise above the PTI excitation frequencies while preserving the
lower-frequency information attributed to the dynamic excitation inputs.

Furthermore, the reaction torque effects in the rolling and yawing moment signals must be accounted for because
the propulsors are being dynamically excited [17, 38]. The combination of aero-propulsive moments and moments due
to the angular momentum rate of the propulsors is measured by the balance. Therefore, to model the aero-propulsive
moments, the angular momentum rate effects must be removed. This is accomplished using the expressions

𝐿 = 𝐿𝐸 + ¤ℎ𝑥 = 𝐿𝐸 +
𝑛𝑝∑︁
𝑘=1

¤ℎ𝑝𝑘 cos 𝛿𝑤𝑘
= 𝐿𝐸 +

𝑛𝑝∑︁
𝑘=1

𝐼𝑝𝑘
¤Ω𝑝𝑘 cos 𝛿𝑤𝑘

(9)

𝑁 = 𝑁𝐸 + ¤ℎ𝑧 = 𝑁𝐸 +
𝑛𝑝∑︁
𝑘=1

¤ℎ𝑝𝑘 (− sin 𝛿𝑤𝑘
) = 𝑁𝐸 +

𝑛𝑝∑︁
𝑘=1

𝐼𝑝𝑘
¤Ω𝑝𝑘 (− sin 𝛿𝑤𝑘

) (10)

where 𝐿𝐸 and 𝑁𝐸 are the uncorrected balance measurements. The angular momentum of the 𝑘th propulsor about
its axis of rotation is ℎ𝑝𝑘 = 𝐼𝑝𝑘Ω𝑝𝑘 , where 𝐼𝑝𝑘 is the moment of inertia of the rotating portion of the propulsor and
Ω𝑝𝑘 = 2𝜋𝑛𝑘 is the rotation rate in radians per second, with clockwise rotation when viewed from behind the rotating
propulsor being positive. For use in the above equations, the angular momentum rate for each propulsor is rotated into
the aircraft body axes through the corresponding wing angle 𝛿𝑤𝑘

, and then summed to compute the components of net
angular momentum rate for all 𝑛𝑝 propulsors ( ¤ℎ𝑥 , ¤ℎ𝑧). Note that if the vehicle orientation was dynamically changing
during data collection, propulsor gyroscopic effects would also need to be taken into account.

§Information available online at https://www.mathworks.com/help/signal/ref/filtfilt.html [retrieved 5 April 2022]
¶Information available online at https://www.mathworks.com/help/signal/ref/pwelch.html [retrieved 5 April 2022]
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Fig. 12 Sample balance force and moment measurement histories (𝒗 = 𝒘 = 0 ft/s, 𝜹𝒘1 = 𝜹𝒘2 = 12.5 deg).

Fig. 13 Sample balance force and moment measurement power spectra (𝒗 = 𝒘 = 0 ft/s, 𝜹𝒘1 = 𝜹𝒘2 = 12.5 deg).

V. Aero-Propulsive Modeling Approach
Aero-propulsive modeling for this effort focuses on developing a polynomial representation of the aero-propulsive

forces and moments as a function of vehicle state and control variables. Factors under test, or close variants, are defined
as explanatory variables, and the model is identified from the wind tunnel data collected using the techniques described
in Secs. III-IV. Aero-propulsive modeling for tilt-wing, distributed electric propulsion aircraft requires a different
approach compared to conventional fixed-wing and rotary-wing aircraft modeling approaches. eVTOL vehicles can
be considered a fixed-wing/rotary-wing hybrid suggesting that a combination of modeling approaches will facilitate
suitable model development. Accordingly, the modeling variable formulation described in Ref. [16], and applied here,
merges appropriate fixed-wing and rotary-wing modeling attributes with new strategies to model the LA-8 and other
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similar vehicles.
The modeled responses are the dimensional body-axis aero-propulsive forces 𝑋,𝑌, 𝑍 in lbf and moments 𝐿, 𝑀, 𝑁

in ft·lbf. The explanatory variables are defined as the body-axis velocity components 𝑣, 𝑤 in ft/s, propeller speeds
𝑛1, 𝑛2, ..., 𝑛8 in revolutions per second, wing angles 𝛿𝑤1 , 𝛿𝑤2 in radians, elevon deflections 𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 in radians,
flap deflections 𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 in radians, and ruddervator deflections 𝛿𝑟1 , 𝛿𝑟2 in radians. Note that it is important to
perform modeling with explanatory variables centered on a reference value to maintain low correlation among candidate
regressors in time or spacial domain analysis and to avoid spectral leakage in frequency domain analysis [52]. For this
work, the centering reference values were the explanatory variable mean values in the data used for modeling.

Identified models typically use the test factors as the explanatory variables; however, due to unique characteristics of
eVTOL aircraft, test facility integration limitations, and operational convenience, analysis was instead performed by
defining certain alternative explanatory variables for modeling. For example, as mentioned in Secs. III-IV, wind tunnel
testing was performed by varying 𝛼 and 𝛽 directly for operational convenience. Although testing was performed with
experimental factors of 𝛼 and 𝛽, modeling was performed using body-axis velocity components 𝑣 and 𝑤 to make the
modeling strategy valid from hover through forward flight. Since body-axis velocity components are closely related to
airflow angles, this variable change does not affect the ability to identify a model from the data because the regressors
retain their low correlation when testing is conducted at a constant forward speed [16]. Similarly, testing was performed
by varying motor PWM commands (𝜂1, 𝜂2, ... , 𝜂8), but modeling was performed using measured propeller rotational
speeds (𝑛1, 𝑛2, ... , 𝑛8) because propeller speed is more relevant to describe propeller aerodynamics.

The following subsections provide an overview of the methods used for model structure development, parameter
estimation, and model validation. The model structure identification and parameter estimation methods used for this
work were adapted from the System IDentification Programs for AirCraft (SIDPAC) software toolbox.� The model
identification approach occurs in two stages. First, the continuous time series data at each static test point, or set point,
are analyzed using frequency domain methods to determine the model structure and parameter estimates associated with
the dynamically changing explanatory variables (𝑛1, 𝑛2, ..., 𝑛8, 𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 , 𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 , 𝛿𝑟1 , 𝛿𝑟2) using the
aero-propulsive force and moments (𝑋 , 𝑌 , 𝑍 , 𝐿, 𝑀 , 𝑁) as the response variables. Then, in the second step, the parameter
estimates for the models identified from the dynamically changing explanatory variables become the responses to be
modeled as a function of the static explanatory variables (𝑣, 𝑤, 𝛿𝑤1 , 𝛿𝑤2 ). Model structure determination and parameter
estimation are performed in a weighted least-squares formulation using the parameter uncertainty estimates from the
first model identification step. This framework ultimately yields a two-layer model to predict the aero-propulsive force
and moments as a function of the static and dynamic explanatory variables, as will be explained further throughout the
remainder of the paper.

To the best knowledge of the authors, this paper presents the first development and application of a compound
modeling strategy leveraging frequency-domain and weighted least-squares regression methods for model structure
determination to combine the static and dynamic data information content for aggregate model identification. Previous
work presented in Refs. [26, 27] implemented a similar two-layered aerodynamic modeling approach using time-domain
ordinary least-squares regression methods. Reference [33] developed a global aerodynamic model using a tabulated
representation of local parameters estimated using the same frequency-domain equation-error method used in this work.

A. Part I: Frequency-Domain Modeling at Each Set Point
The first step in the modeling process involves analyzing the continuous time series data collected during each

individual set point. As mentioned in Sec. IV, the sampled data contained measurement noise and structural dynamics
outside of the range of the PTI excitations. Application of frequency domain estimation techniques allows model
identification to be performed only in the frequency band associated with the input excitations, which effectively smooths
the modeling data [18, 52, 53]. Additional benefits of model identification in the frequency domain include accurate
parameter uncertainty estimation, increased computational speed, estimation of nearly unbiased parameter estimates
when the regressors contain noise, and least-squares weighting based on frequency components as opposed to individual
data points.

Model identification was performed using the equation-error method formulated in the frequency domain [18, 52, 54].
The regressor and response data are detrended and transformed into the frequency domain using a Fourier transform
technique leveraging time-domain cubic interpolation and the chirp-𝑧 transform to produce a high accuracy transform
with an arbitrary frequency range and resolution [18, 55]. For this study, the transform frequency range was selected
to match the excitation input design with a fundamental period of 𝑇 = 180 s (see Sec. III.B). The Fourier transform

�Information available online at https://software.nasa.gov/software/LAR-16100-1 [accessed 29 October 2021]
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frequencies were set between 𝑓min = 0.05 Hz and 𝑓max = 1.756 Hz with a frequency resolution of Δ 𝑓 = 0.00556 Hz,
resulting in 𝑀 = 308 transform frequencies. A parameter sensitivity study indicated that a coarser frequency resolution
resulted in parameter estimation errors, as explained in [52], whereas a finer frequency resolution provided minimal
additional parameter estimation accuracy.

1. Model Structure Determination
Multivariate orthogonal function (MOF) modeling, described in Refs. [18, 56], was selected as the model structure

identification technique for this work. Although MOF modeling was originally developed for model structure
determination using real-valued data in the time domain (or spacial domain), the method can also be formulated in the
frequency domain, while still allowing nonlinear model terms to be considered for the model structure [52, 57, 58].
The key modifications, developed in Refs. [57, 58], are applied to the candidate regressor and response variable data
used in the MOF modeling algorithm. The nonlinear candidate regressors are assembled in the time domain using
detrended explanatory variables and are subsequently detrended again before transforming the candidate regressor data
into the frequency domain. After the Fourier transform is applied to the candidate regressor data, the real and imaginary
components of the complex candidate regressor matrix 𝑿̃ are concatenated to form a real vector:

𝑿′ =

[
𝑅𝑒( 𝑿̃)
𝐼𝑚( 𝑿̃)

]
(11)

Similarly, the detrended response variable vector is transformed to the frequency domain and then the real and imaginary
components of the complex response variable vector 𝒛 are concatenated to form a real vector:

𝒛′ =

[
𝑅𝑒(𝒛)
𝐼𝑚(𝒛)

]
(12)

The real candidate regressor matrix 𝑿′ and response variable vector 𝒛′ assembled from complex data are then used in
the standard MOF modeling algorithm, which is now briefly summarized.

The multivariate orthogonal function (MOF) modeling algorithm [18, 56] starts by orthogonalizing a predefined set
of candidate regressors using an algorithm such as Gram-Schmidt orthogonalization or QR decomposition. Orthogonal
regressors are convenient for model structure development because of the ability to independently assess the potential of
the orthogonalized candidate regressors to model the response variable. This facilitates selecting only the model terms
that significantly contribute to model effectiveness. The orthogonal regressors are then ranked from greatest to least
decrease in the mean squared fit error (MSFE):

MSFE =
1
𝑁

(𝒛 − 𝒚̂)𝑇 (𝒛 − 𝒚̂) (13)

In other words, this ranks the orthogonalized regressors from highest to lowest ability to improve the model. Candidate
orthogonal regressors are brought into the model structure in this order.

Deciding which terms to include in the final model can then be done using one or more statistical metrics. A
common threshold for MOF modeling is to minimize the predicted squared error (PSE) [18, 59]. The PSE is the sum of
the MSFE and a model complexity penalty related to the number of terms included in the model,

PSE = MSFE + 𝜎2
max

𝑝

𝑁
(14)

where 𝑝 is the number of terms in the current model structure and 𝜎2
max is an estimate of the upper-bound of mean

squared error for the model prediction of data not used to develop the model. The quantity 𝜎2
max is estimated here using

the variance between the measured response 𝒛 and mean measured response 𝒛:

𝜎2
max =

1
𝑁 − 1

𝑁∑︁
𝑖=1

[𝒛(𝑖) − 𝒛]2 (15)

After the orthogonal regressors were ranked by their ability to reduce the MSFE, the cutoff for model term addition
was chosen to be the candidate model term where the PSE was minimized. When the orthogonalized regressors are
ranked as stated above, the PSE metric is guaranteed to have a single global minimum [18].
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For this work, MOF modeling was applied separately to the time series data collected at each individual set point.
Although the model structure determined for each response at each set point was similar, there were some differences
due to the experimental nature of the study and having a rough estimate of 𝜎2

max. The model structure for each individual
response used to identify the final model parameter estimates at each set point was constrained to be the same. The
model terms selected for the final model for each response were the terms that the MOF algorithm included in the model
for a majority of the set points.

2. Parameter Estimation
After determining the model structure for each response, the final parameter values were estimated using ordinary

least-squares regression with the complex regressor and response data. Ordinary least-squares regression is used to
estimate a vector of 𝑝 unknown model parameters in a vector 𝜽 for a given model 𝒚̃ = 𝑿̃𝜽, where 𝒚̃ is the length 𝑀
complex model response vector and 𝑿̃ is a 𝑀 × 𝑝 matrix consisting of column vectors of the complex regressors
assumed to be error-free [18]. The regression equation, including the complex measured response variable 𝒛 corrupted
by constant variance, zero-mean, and uncorrelated complex error 𝝂̃, is given as:

𝒛 = 𝑿̃𝜽 + 𝝂̃ (16)

For complex least-squares parameter estimation, the optimal estimate of the unknown parameters 𝜽 is determined by
minimizing the cost function:

𝐽 (𝜽) = 1
2
(
𝒛 − 𝑿̃𝜽

)† (
𝒛 − 𝑿̃𝜽

)
(17)

It follows that the solution to compute an optimal estimate of the unknown real-valued parameters is

𝜽 =

[
𝑅𝑒

(
𝑿̃
†
𝑿̃
)]−1

𝑅𝑒

(
𝑿̃
†
𝒛
)

(18)

where 𝜽 is a vector of 𝑝 estimated parameters. The modeled response variable vector is:

ˆ̃𝒚 = 𝑿̃𝜽 (19)

A length 𝑝 vector of standard errors 𝒔(𝜽) corresponding to the estimated parameters 𝜽 is given as:

𝒔(𝜽) =

√︄(
1

2𝑇 ( 𝑓max − 𝑓min)
𝑅𝑒

[(
𝒛 − ˆ̃𝒚

)† (
𝒛 − ˆ̃𝒚

)] )
diag

( [
𝑅𝑒

(
𝑿̃
†
𝑿̃
)]−1

)
(20)

This form of 𝒔(𝜽) accounts for the fact that a frequency range narrower than zero to the Nyquist frequency is used for
analysis [52].

After complex least-squares parameter estimation is completed, an additional step is needed to identify the bias
term in a model equation because the detrended data used to estimate the model parameters contain only dynamic
information [18, 52]. The bias parameter estimate 𝜃𝑜 is found as the mean value of (𝒛 − 𝑿𝜽), where 𝒛 is the measured
response variable in the time domain, 𝑿 is a matrix consisting of column vectors of the regressors in the time domain,
and 𝜽 is the model parameter vector estimated previously using complex least-squares regression. The bias parameter
standard errors were estimated accounting for colored residuals using the method described in Refs. [18, 60] to compute
a more representative estimate of parameter uncertainty.

B. Part II: Weighed Least-Squares Aggregate Modeling
The results from Part I of the model identification yield parameter estimates and uncertainty estimates associated

with the dynamic explanatory variables at each set point. Part II of the model identification procedure developed for this
work uses the Part I modeling results to develop a response surface model for each parameter identified in Part I as
a function of the static explanatory variables held constant at each set point. Contrary to Part I, the explanatory and
response variable data for this step are real and have no meaningful time dependence. Also, each response data point
has an associated uncertainty estimate accurately determined using the methods implemented in Part I. This suggests
using a weighted least-squares framework for identification of the model structure and parameter estimates. The weights
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are stored in a diagonal matrix 𝑾 with the diagonal elements being the inverse of the variance associated with each
response observation (i.e., the uncertainty estimates obtained using the methods described in Sec. V.A.2):

𝑾 =


𝑤1 0 . . . 0
0 𝑤2 . . . 0
...

...
. . .

...

0 0 . . . 𝑤𝑁


=


1/𝑠2

1 0 . . . 0
0 1/𝑠2

2 . . . 0
...

...
. . .

...

0 0 . . . 1/𝑠2
𝑁


(21)

1. Model Structure Determination
The MOF modeling algorithm [18, 56], summarized in Sec. V.A.1, is again used for model structure determination

in Part II of model identification; however, certain modifications are needed to accommodate the fact that the variance
estimates associated with each response measurement are known and not constant, which leads to a weighted least-squares
estimation problem. First, after generation of the candidate regressors, but before orthogonalization, the candidate
regressors and response data for each data point are multiplied by the square root of the diagonal elements of the
diagonal weight matrix 𝑾, or the inverse of the estimated standard error at each data point, as:

𝑿′′ =



√
𝑤1 𝑥11

√
𝑤1 𝑥12 . . .

√
𝑤1 𝑥1𝑝√

𝑤2 𝑥21
√
𝑤2 𝑥22 . . .

√
𝑤2 𝑥2𝑝

...
...

. . .
...

√
𝑤𝑁 𝑥𝑁1

√
𝑤𝑁 𝑥𝑁2 . . .

√
𝑤𝑁 𝑥𝑁 𝑝


=


𝑥11/𝑠1 𝑥12/𝑠1 . . . 𝑥1𝑝/𝑠1

𝑥21/𝑠2 𝑥22/𝑠2 . . . 𝑥2𝑝/𝑠2
...

...
. . .

...

𝑥𝑁1/𝑠𝑁 𝑥𝑁2/𝑠𝑁 . . . 𝑥𝑁 𝑝/𝑠𝑁


(22)

𝒛′′ =



√
𝑤1 𝑧1√
𝑤2 𝑧2
...

√
𝑤𝑁 𝑧𝑁


=


𝑧1/𝑠1

𝑧2/𝑠2
...

𝑧𝑁/𝑠𝑁


(23)

Recall that the response variable data in this step are the model parameter estimates from the frequency-domain modeling
performed at each set point in Part I. Additionally, the PSE expression is reformulated as:

PSE =
1
𝑁

(𝒛 − 𝒚̂)𝑇 𝑾 (𝒛 − 𝒚̂) + 𝑐 𝑝
𝑁

(24)

Here, the weight matrix 𝑾 serves as a model-independent error variance estimate. Due to the scaling by 𝑾, the response
measurement error variance 𝜎̂ is equal to one. Thus, inclusion of the scale factor 𝑐 = 𝑐𝜎̂2 = 𝜎2

max is a similar concept to
the scale factor used in Refs. [61, 62] when a model-independent measurement error variance estimate was available
from wind tunnel testing. A value of 𝑐 = 10 was found to be a good value to develop models with minimum prediction
error.

2. Parameter Estimation
After determining the model structure for each response, weighted least-squares regression is used to compute

the final parameter estimates in ordinary regressor space. Weighted least-squares regression estimates a vector 𝜽 of
𝑝 unknown model parameters for a given model 𝒚 = 𝑿𝜽, where 𝒚 is the length 𝑁 model response vector and 𝑿 is
a 𝑁 × 𝑝 matrix consisting of column vectors of regressors assumed to be measured without error [18, 20, 49]. The
regression equation, including a measurement of the response variable 𝒛, corrupted by zero-mean, uncorrelated error 𝝂
with non-constant variance, is:

𝒛 = 𝑿𝜽 + 𝝂 (25)

For weighted least-squares parameter estimation, the optimal estimate of the unknown parameters 𝜽 is determined by
minimizing the cost function

𝐽 (𝜽) = 1
2
(𝒛 − 𝑿𝜽)𝑇 𝑾 (𝒛 − 𝑿𝜽) (26)
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where 𝑾 is the diagonal matrix given in Eq. (21) and each diagonal element is the inverse of the variance associated
with each response data point which, here, is a parameter estimate from Part I. Consequently, response data with lower
uncertainty have an increased influence for computing the least-squares solution. It follows that the solution to compute
an optimal estimate of the unknown parameters is

𝜽 =

(
𝑿𝑇𝑾𝑿

)−1
𝑿𝑇𝑾𝒛 (27)

where 𝜽 is a vector of 𝑝 estimated parameters. The length 𝑝 vector of standard errors 𝒔(𝜽) corresponding to the
estimated parameters 𝜽 is given as:

𝒔(𝜽) =
√︂

diag
[ (
𝑿𝑇𝑾𝑿

)−1
]

(28)

An alternative way to compute the weighted least-squares solution is to multiply each normal equation by the square
root of the respective diagonal element in 𝑾 (or the inverse of the measurement standard error) and then use ordinary
least-squares regression to compute the parameter estimates. In other words, the same solution is obtained using 𝑿′′

and 𝒛′′ from Eqs. (22)-(23) in an ordinary least-squares regression estimator.

C. Final Model Validation
Model fit metrics and modeling residuals alone do not provide information about the model predictive capability.

Assessment of model performance using validation data not used for modeling provides a more reliable estimate of
model prediction accuracy. Final model validation is performed by comparing the measured response for validation
data to the response predicted by the model for the same explanatory variable inputs. Further assessment is performed
by analyzing the prediction residuals between the measured and predicted response, 𝒆 = 𝒛 − 𝒚̂. Residuals and their
statistical properties can be given further interpretability by normalization. The error normalization metric used in
this work is the range of response variable measurements used to develop the local model, range(𝒛) = 𝒛max − 𝒛min.
Range normalization provides a fair comparison between prediction error metrics for different response variables used
for aircraft modeling because longitudinal responses are generally biased above or below zero and lateral-directional
responses are generally centered about zero. The normalized residual vector is defined as:

𝒆∗ =
𝒛 − 𝒚̂

range(𝒛) (29)

Similarly, the normalized root-mean-square modeling error (NRMSE) is defined as:

NRMSE =
1

range(𝒛)

√︄
(𝒛 − 𝒚̂)𝑇 (𝒛 − 𝒚̂)

𝑁
(30)

For this study, the goal was to develop models minimizing prediction error, where a value of approximately 5% or less
for NRMSE was considered to be adequate based on analyst judgment and previous aerodynamic modeling studies
conducted in the experimental facility used for wind tunnel testing.

VI. Results
This section presents sample results for the aero-propulsive models identified for the LA-8 aircraft. The results

presented here only consider models identified at 𝑞 = 3.5 psf, which corresponds to an airspeed of 54.3 ft/s at standard
sea-level conditions. For eVTOL vehicle simulations, models valid at multiple dynamic pressure (or airspeed) settings
throughout the flight envelope are needed [15, 16].

A. Part I Modeling Results
Following the aero-propulsive modeling approach described in Sec. V, for Part I, a model structure for each force and

moment component was developed using the time series data collected at each set point as a function of the dynamically
changing explanatory variables. The candidate regressors included in the model structure for a majority of the individual
set point models were included in a uniform, final aero-propulsive model structure used to identify the local parameter
values for each set point. In other words, only regressors modeling a significant portion of the variation in the response
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variables throughout the majority of the static test variable space were included, in accordance with the model structure
determination strategy discussed in Sec. V.A.1. The individual set point model structures for each aero-propulsive force
and moment component were determined to be:

𝑋 = 𝑋𝛿𝑒1
𝛿𝑒1 + 𝑋𝛿𝑒2

𝛿𝑒2 + 𝑋𝛿𝑒3
𝛿𝑒3 + 𝑋𝛿𝑒4

𝛿𝑒4 + 𝑋𝛿 𝑓1
𝛿 𝑓1 + 𝑋𝛿 𝑓2

𝛿 𝑓2 + 𝑋𝛿 𝑓3
𝛿 𝑓3 + 𝑋𝛿 𝑓4

𝛿 𝑓4 + 𝑋𝑛1𝑛1 + ...
𝑋𝑛2𝑛2 + 𝑋𝑛3𝑛3 + 𝑋𝑛4𝑛4 + 𝑋𝑛5𝑛5 + 𝑋𝑛6𝑛6 + 𝑋𝑛7𝑛7 + 𝑋𝑛8𝑛8 + 𝑋𝑜

(31)

𝑌 = 𝑌𝛿 𝑓1
𝛿 𝑓1 + 𝑌𝛿 𝑓2

𝛿 𝑓2 + 𝑌𝛿 𝑓3
𝛿 𝑓3 + 𝑌𝛿 𝑓4

𝛿 𝑓4 + 𝑌𝛿𝑟1
𝛿𝑟1 + 𝑌𝛿𝑟2

𝛿𝑟2 + 𝑌𝑛1𝑛1 + 𝑌𝑛2𝑛2 + 𝑌𝑛3𝑛3 + ...
𝑌𝑛4𝑛4 + 𝑌𝑛5𝑛5 + 𝑌𝑛6𝑛6 + 𝑌𝑛7𝑛7 + 𝑌𝑛8𝑛8 + 𝑌𝑜

(32)

𝑍 = 𝑍𝛿𝑒1
𝛿𝑒1 + 𝑍𝛿𝑒2

𝛿𝑒2 + 𝑍𝛿𝑒3
𝛿𝑒3 + 𝑍𝛿𝑒4

𝛿𝑒4 + 𝑍𝛿 𝑓1
𝛿 𝑓1 + 𝑍𝛿 𝑓2

𝛿 𝑓2 + 𝑍𝛿 𝑓3
𝛿 𝑓3 + 𝑍𝛿 𝑓4

𝛿 𝑓4 + 𝑍𝛿𝑟1
𝛿𝑟1 + ...

𝑍𝛿𝑟2
𝛿𝑟2 + 𝑍𝑛1𝑛1 + 𝑍𝑛2𝑛2 + 𝑍𝑛3𝑛3 + 𝑍𝑛4𝑛4 + 𝑍𝑛5𝑛5 + 𝑍𝑛6𝑛6 + 𝑍𝑛7𝑛7 + 𝑍𝑛8𝑛8 + 𝑍𝑜

(33)

𝐿 = 𝐿 𝛿𝑒1
𝛿𝑒1 + 𝐿 𝛿𝑒2

𝛿𝑒2 + 𝐿 𝛿𝑒3
𝛿𝑒3 + 𝐿 𝛿𝑒4

𝛿𝑒4 + 𝐿 𝛿 𝑓1
𝛿 𝑓1 + 𝐿 𝛿 𝑓2

𝛿 𝑓2 + 𝐿 𝛿 𝑓3
𝛿 𝑓3 + 𝐿 𝛿 𝑓4

𝛿 𝑓4 + 𝐿𝑛1𝑛1 + ...
𝐿𝑛2𝑛2 + 𝐿𝑛3𝑛3 + 𝐿𝑛4𝑛4 + 𝐿𝑛5𝑛5 + 𝐿𝑛6𝑛6 + 𝐿𝑛7𝑛7 + 𝐿𝑛8𝑛8 + 𝐿𝑜

(34)

𝑀 = 𝑀𝛿𝑒1
𝛿𝑒1 + 𝑀𝛿𝑒2

𝛿𝑒2 + 𝑀𝛿𝑒3
𝛿𝑒3 + 𝑀𝛿𝑒4

𝛿𝑒4 + 𝑀𝛿 𝑓1
𝛿 𝑓1 + 𝑀𝛿 𝑓2

𝛿 𝑓2 + 𝑀𝛿 𝑓3
𝛿 𝑓3 + 𝑀𝛿 𝑓4

𝛿 𝑓4 + 𝑀𝛿𝑟1
𝛿𝑟1 + ...

𝑀𝛿𝑟2
𝛿𝑟2 + 𝑀𝑛1𝑛1 + 𝑀𝑛2𝑛2 + 𝑀𝑛3𝑛3 + 𝑀𝑛4𝑛4 + 𝑀𝑛5𝑛5 + 𝑀𝑛6𝑛6 + 𝑀𝑛7𝑛7 + 𝑀𝑛8𝑛8 + 𝑀𝑜

(35)

𝑁 = 𝑁𝛿𝑒1
𝛿𝑒1 + 𝑁𝛿𝑒2

𝛿𝑒2 + 𝑁𝛿𝑒3
𝛿𝑒3 + 𝑁𝛿𝑒4

𝛿𝑒4 + 𝑁𝛿 𝑓1
𝛿 𝑓1 + 𝑁𝛿 𝑓2

𝛿 𝑓2 + 𝑁𝛿 𝑓3
𝛿 𝑓3 + 𝑁𝛿 𝑓4

𝛿 𝑓4 + 𝑁𝛿𝑟1
𝛿𝑟1 + ...

𝑁𝛿𝑟2
𝛿𝑟2 + 𝑁𝑛1𝑛1 + 𝑁𝑛2𝑛2 + 𝑁𝑛3𝑛3 + 𝑁𝑛4𝑛4 + 𝑁𝑛5𝑛5 + 𝑁𝑛6𝑛6 + 𝑁𝑛7𝑛7 + 𝑁𝑛8𝑛8 + 𝑁𝑜

(36)

Although pure quadratic and two-factor interaction candidate regressors were considered for Part I model structure
determination, the final model describing the variation of the force and moment components at each test point is linear
in the dynamic explanatory variables. This makes sense because the variables were excited over a relatively small
range of values. The method, however, is also capable of modeling nonlinear effects, such as propulsor-control surface
interactions, which can be considered for future studies with a greater excitation range. As was found in Ref. [16],
tilt-wing vehicles exhibit significant nonlinearity with body-axis velocity and wing angle variation, which is captured in
the Part II model identification strategy.

Figure 14 shows the 𝑍 parameter estimates and error bars of ±2𝑠(𝜽) computed using the parameter estimation
techniques described in V.A.2 against the amount of data collection time used for modeling at a sample set point.
The parameters appear to converge to reasonably consistent values by the time 40 seconds has elapsed, which was
also determined to be a satisfactory data collection time in a simulated flight test system identification study for the
LA-8 aircraft [17]. A similar parameter convergence rate was observed for the parameters corresponding to the other
aero-propulsive forces and moments, and at different set points. In view of the parameter convergence analysis shown in
Fig. 14, the findings in Ref. [17], and with the knowledge that 40 seconds is the amount of time needed to complete two
full periods of the lowest frequency sinusoidal component of the multisine signals ( 𝑓min = 0.05 Hz), 40 seconds was
selected as the amount of data collection time to use for modeling at each set point. Although the actual data collection
time at each set point was greater than 40 seconds, providing additional information for modeling, a goal of this study was
to inform future wind tunnel testing efforts with practical, efficient data collection strategies. Consequently, modeling
was performed with the recommended data collection time of 40 seconds based on the present reasoning, as opposed to
using all available data. Note that the parameter estimates shown in Fig. 14 contain asymmetries that are not apparent
from the LA-8 vehicle configuration, such as differences in the reflected flap parameter estimates. This is a result
of manufacturing differences between the clockwise and counterclockwise propellers, which resulted in a significant
difference in thrust production between the propeller variants [37]. Since the propulsion-only and propulsion-airframe
interaction effects are significant, this propulsion asymmetry is manifested in many of the model terms [16].

Figure 15a shows the model fit in the frequency domain using a modeling time of 40 seconds at a sample set point.
The corresponding control surface deflection and propulsor rotational speed signals are shown in Fig. 16. A good
model fit is observed for each response. The 𝑅2 metric shown on the subplot for each response is approximately 95% or
higher, indicating that most of the variation of the response variable about its mean value is characterized by the model.
Figure 15b shows the corresponding time-domain model fit compared to the smoothed, measured aero-propulsive forces
and moments. The modeled responses are close to the measured responses, indicating that the model is able to describe
a large amount of the variation in each response. The modeling performance at other set points was similar.
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Fig. 14 Variation of 𝒁 parameter estimates with data collection time used for modeling at a sample set point
(𝒗 = 𝒘 = 0 ft/s, 𝜹𝒘1 = 𝜹𝒘2 = 12.5 deg).

(a) Model fit in the frequency domain (b) Model fit in the time domain

Fig. 15 Comparison of response data and model fit at a sample set point (𝒗 = 𝒘 = 0 ft/s, 𝜹𝒘1 = 𝜹𝒘2 = 12.5 deg).
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Fig. 16 Control effector signals at a sample set point (𝒗 = 𝒘 = 0 ft/s, 𝜹𝒘1 = 𝜹𝒘2 = 12.5 deg).

B. Part II Modeling Results
After identification of the model parameters associated with the dynamic explanatory variables at each set point,

models were developed to characterize the variation in those model parameters across the static variable space. As
discussed in Sec. V.B, the parameter estimates associated with the dynamic explanatory variables were treated as the
response variables for Part II of the modeling approach. In Part II, the static test variables associated with each set point
(𝑣, 𝑤, 𝛿𝑤1 , 𝛿𝑤2) were the explanatory variables. The models for each Part II response variable were developed using
weighted least-squares regression techniques because uncertainty estimates for each response variable data point were
available from the Part I parameter estimation results.

As an example of a polynomial model structure developed in this modeling stage, the final model structure identified
for 𝑍𝛿 𝑓1

using MOF modeling in a weighted least-squares formulation was:

𝑍𝛿 𝑓1
= 𝑍𝛿 𝑓1 (𝑤)

𝑤 + 𝑍𝛿 𝑓1 (𝛿𝑤1 )
𝛿𝑤1 + 𝑍𝛿 𝑓1 (𝑤𝛿𝑤1 )

𝑤𝛿𝑤1 + 𝑍𝛿 𝑓1 (𝛿2
𝑤1 )
𝛿2
𝑤1

+ 𝑍𝛿 𝑓1 (𝑜)
(37)

The bias parameters (e.g., 𝑍𝑜) had the largest number of model terms because they characterize the direct effects of the
static explanatory variables on the aero-propulsive forces and moments. For example, a model structure identified for
the 𝑍𝑜 model was:

𝑍𝑜 = 𝑍𝑜(𝑤)𝑤 + 𝑍𝑜(𝑣) 𝑣 + 𝑍𝑜(𝛿𝑤1 ) 𝛿𝑤1 + 𝑍𝑜(𝛿𝑤2 ) 𝛿𝑤2 + 𝑍𝑜(𝑤2 )
𝑤2 + 𝑍𝑜(𝑤𝑣)𝑤𝑣 + 𝑍𝑜(𝑣2 )

𝑣2 + ...

𝑍𝑜(𝑤𝛿𝑤1 )𝑤𝛿𝑤1 + 𝑍𝑜(𝛿2
𝑤1 )
𝛿2
𝑤1

+ 𝑍𝑜(𝑤𝛿𝑤2 )𝑤𝛿𝑤2 + 𝑍𝑜(𝛿𝑤1 𝛿𝑤2 ) 𝛿𝑤1𝛿𝑤2 + 𝑍𝑜(𝛿2
𝑤2 )
𝛿2
𝑤2

+ 𝑍𝑜(𝑜) (38)

For use of the final model equations to predict the aero-propulsive forces and moments as a function of all static
and dynamic explanatory variables, each of the models identified in Part II are used to compute the values of the
parameters in Eqs. (31)-(36) as a function of the centered static explanatory variables (𝑣, 𝑤, 𝛿𝑤1 , 𝛿𝑤2 ). Then, the total
aero-propulsive forces and moments are computed using the Eqs. (31)-(36) polynomial expressions as a function of the
centered dynamic explanatory variables (𝑛1, 𝑛2, ..., 𝑛8, 𝛿𝑒1 , 𝛿𝑒2 , 𝛿𝑒3 , 𝛿𝑒4 , 𝛿 𝑓1 , 𝛿 𝑓2 , 𝛿 𝑓3 , 𝛿 𝑓4 , 𝛿𝑟1 , 𝛿𝑟2 ).

Several models were developed to explore the utility of using a different number of modeling blocks and different
model complexities. The same general modeling approach was used for each model, with the only difference being
the data volume associated with the sequential blocks of static test points described in Sec. III.A. Figure 17 shows the
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modeling NRMSE (NRMSE𝑚), the validation NRMSE (NRMSE𝑣), and the cumulative execution time for each block
(including the data collection time from all preceding blocks) with a different model complexity determined based on
the analysis presented in Sec. III.A and with the knowledge that at least quadratic model, or up to pure quadratic and
two-factor interaction model terms, are needed to model the LA-8 aircraft over the static explanatory variable range
tested for this study [16]. Consequently, up to a quadratic model is used for Block 1, even though the model evaluation
metrics do not meet the FDS criteria explained in Sec. III.A. Blocks 2-4 are assigned the highest model complexity
meeting the FDS criteria for this comparison (see Table 1 and the accompanying discussion). The test execution time
shown in Fig. 17b indicates the amount of time needed to complete the data collection with a sample time of 40 seconds
per set point, including the amount of time to conduct a static tare run. Block 1 generally has the highest validation
NRMSE value for each response; there is also a significant increase in the values of the validation NRMSE compared to
the modeling NRMSE for the Block 1 model, suggesting that the model is deficient due to the sparsity of data points.
For the 𝑋 , 𝑌 , and 𝑍 responses, the Block 4 model has the lowest prediction error. For 𝐿 and 𝑀 , the Block 2 and Block 3
models, respectively, have the lowest prediction error. The prediction error for 𝑁 is similar for each number of modeling
blocks. For the Block 2 to 4 models, the respective modeling NRMSE and validation NRMSE for each response have
similar values, which provides confidence that model development was successful.

(a) Modeling and validation NRMSE (b) Cumulative test execution time

Fig. 17 Comparison of NRMSE metrics and test time for each modeling block with different model complexity.

Balancing prediction performance, test execution time, and model parsimony, using data up to Block 2 (a cubic
design order) with a quadratic model complexity was selected as the final modeling strategy. Given these results, it is
recommended to use a cubic I-optimal experiment design with up to a quadratic polynomial structure for modeling
similar aircraft over a similar range of test variables. For the Block 2 quadratic model, the prediction error, quantified by
the NRMSE𝑣 metric, is less than 6% for every response, and 𝑋 , 𝑌 , 𝑍 , 𝑀 , and 𝑁 have NRMSE𝑣 values of approximately
3% or less, indicating that high-quality models have been developed.

Figure 18a shows the model fit and model prediction compared to the smoothed, measured aero-propulsive force and
moment histories. Figure 18b shows the same plot zoomed in on a single validation set point, which better conveys the
dynamic prediction capability. The model fits and model predictions are close to the measured responses, indicating that
the model is able to describe a large amount of the variation in each response. Figure 19 shows a history of normalized
modeling residuals and normalized validation residuals. The modeling and prediction residuals have similar magnitudes,
supporting the claim that good predictive models have been identified.
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(a) Modeling and validation data (two modeling blocks) (b) Sample validation set point

Fig. 18 Model fit and model prediction compared to smoothed, measured response data.

Fig. 19 Normalized modeling and prediction residuals against time.
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VII. Discussion
The preceding results show that good models have been identified for the LA-8 eVTOL aircraft using the hybrid

testing and compound modeling approach developed in this paper. Furthermore, the final aero-propulsive model at
𝑞 = 3.5 psf was developed from a total of 48 minutes of test execution time. If the test technique and modeling approach
were to be applied to model the LA-8 transition envelope tested in Refs. [15, 16] by executing testing and developing
models at several dynamic pressure settings, then a global transition model could be developed in a single day of wind
tunnel testing. This approach is significantly faster than previous testing conducted to characterize the LA-8 aircraft
using purely static DOE/RSM testing, which was already vastly more efficient compared to using one-factor-at-a-time
testing [15]. The amount of test time needed for modeling data collection and tare runs for a purely static DOE/RSM
wind tunnel experiment to develop aero-propulsive models at 𝑞 = 3.5 psf described in Ref. [16] took approximately
267 minutes (4.45 hours). The hybrid DOE/RSM and PTI wind tunnel test technique described in this paper is 5.6 times
more efficient in terms of test execution time for the data used to develop the model. Note that the models developed in
Ref. [16] included additional quadratic and interaction model terms for the control effectors; however, that is largely
because of the reduced range of excitation for those variables in this study. The control effector amplitude used for the
results presented in this paper could be increased without requiring additional test time.

In addition to reduced test time, the models developed using the approach presented in this paper allow characterization
of additional important aero-propulsive phenomena for tilt-wing aircraft. The tilting wings add significant modeling
challenges not seen in conventional aircraft designs because the propellers, wings, and wing-fixed control surfaces all
change orientation with respect to the modeling frame of reference in the body axes. Furthermore, there will also be
interactions with the magnitude and orientation of oncoming airflow, suggesting that up to four-factor interactions may be
present among the explanatory variables. One way of handling this complexity is to develop a different aero-propulsive
model at each combination of wing angle settings, treating each different combination of wing angle orientation as a
vehicle configuration change. This method would be ideal when a transition wing angle schedule has been defined;
however, this is impractical when the identified aero-propulsive model is used to develop the flight controller and
informs the transition wing angle schedule. In previous LA-8 modeling work [16], the propeller, control surface, wing,
and airflow interactions were modeled using only two-factor interaction effects and were limited by the purely static
DOE/RSM testing strategy. Alternatively, the experimental design and compound modeling strategy developed in this
paper supports modeling additional interactions among the explanatory variables. This is possible because of the way
the model parameters associated with the dynamic test variables are modeled as a function of the static test variables.

As an example of how the compound modeling approach supports characterization of additional complexity, consider
Eq. (37), where 𝑍𝛿 𝑓1

is modeled as a function of 𝑤 and 𝛿𝑤1 including variation with a 𝑤𝛿𝑤1 interaction and a 𝛿2
𝑤1

quadratic term. Note that these are effectively cubic model terms because of the multiplication of the 𝑍𝛿 𝑓1
parameter by

𝛿 𝑓1 . For a static DOE/RSM experiment supporting up to a quadratic model, the only model terms involving 𝑤 and
𝛿𝑤1 that could model an interaction with 𝛿 𝑓1 are 𝛿 𝑓1𝑤 and 𝛿 𝑓1𝛿𝑤1 . Suppose also that a larger range of the dynamic
test variables were tested and the interaction term 𝑛2𝛿 𝑓1 was included in the Part I model. Then, by the same process,
the 𝑛2𝛿 𝑓1 interaction could be modeled as a function of 𝑤 and 𝛿𝑤1 including nonlinear model terms. This additional
parameterization flexibility enabled by the testing and modeling approach described herein provides significant benefits
to modeling complex eVTOL aircraft. Furthermore, the range of each static explanatory variable, determined as
described in Ref. [15], could be increased to model a larger range of aero-propulsive phenomena. This might require
additional design complexity beyond the Block 2 cubic experiment design order, but this increase in static experiment
design complexity could be accommodated with only modest increases in the amount of test time (cf. Fig. 17b) while
allowing characterization of a broader range of flight conditions and aero-propulsive complexity using the same model
identification framework.

When using the modeling approach developed in this work, a few limitations and drawbacks should be considered.
First, the models are based on a quasi-steady assumption, where aero-propulsive effects at the current point in time are
only dependent on the current states and controls. Second, the data were collected in the wind tunnel with zero vehicle
angular velocity, and consequently, no damping terms could be identified. Identification of models dependent on vehicle
angular rates and the history of the explanatory variables will be needed to improve model predictive capability in
dynamic maneuvering. Also, integrating the PTI excitation technique into an existing wind tunnel test facility typically
requires significant time and engineering effort. After the PTI excitation capability is integrated, however, the test
efficiency gains are significant. Finally, the compound model identification approach is more complex than ordinary
least-squares regression analysis, which is generally used for model development from conventional static DOE/RSM
experiments and is readily available in commercial statistical software packages. However, the model identification
approach described in this paper is still tractable to implement using algorithms available in SIDPAC� to develop
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models leveraging the much more efficient hybrid test technique. Ultimately, the ability to develop a higher complexity
aero-propulsive model and significantly reduce the amount of required test time can easily justify the steps required to
implement the new approach.

VIII. Conclusions
A novel wind tunnel testing and model identification strategy was developed and applied for eVTOL aircraft

aero-propulsive modeling to support flight dynamics simulation development. The LA-8 tandem tilt-wing eVTOL
aircraft that was used for this exploratory study exhibits aero-propulsive complexity representative of many current
and future eVTOL aircraft. A wind tunnel experiment was developed in two parts. A four-factor static experiment
was designed in a set of test blocks allowing identification of response surface models of increasing complexity for
slow-moving airflow and wing angle test variables. A dynamic experiment composed of 18 simultaneous orthogonal
phase-optimized multisine signals was designed for the propulsors and control surfaces, and executed at each set point.
A cubic I-optimal response surface design for the static test factors executed simultaneously with dynamic excitations
running for 40 seconds at each static test point was found to be a good testing strategy for model development, balancing
test time and model prediction capability. Using this approach, all data collection at a reference airspeed condition can
be completed in under 48 minutes, which is significantly faster than previous eVTOL aircraft modeling efforts using
purely static test techniques.

The model identification approach consisted of two parts in accordance with the data collection strategy. First, a
local model was identified at each set point as a function of the dynamically changing explanatory variables using
multivariate orthogonal function modeling and ordinary least-squares regression in the frequency domain. The model
structure for each force and moment component was chosen to be identical for each set point based on the model terms
deemed significant for a majority of the set points. Second, response surface models were developed for each model
parameter associated with the dynamic test variables identified in the first stage of modeling as a function of the static test
variables, using multivariate orthogonal function modeling and weighted least-squares regression leveraging available
uncertainty estimates. The identified models were shown to have good predictive capability and small normalized model
fit error. In addition, the model form supports parameterization of nonlinear aero-propulsive effects that cannot be
captured in alternative modeling approaches.

Accurate and efficient modeling of eVTOL aircraft with inherently complex aero-propulsive characteristics is
essential for effective flight control system design, handling qualities evaluation, and realistic flight simulation. These
activities are required to enable safe and effective eVTOL aircraft flight operations. Modern eVTOL aircraft designs
have many control effectors and complex aero-propulsive coupling, which require both efficient testing and general
nonlinear modeling capability. The wind tunnel testing and modeling approach described in this work addresses these
requirements.
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