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The objective of this work is to optimize scramjet inlet designs under uncertainty at multiple
fidelity levels. Optimizations are performed for both deterministic and stochastic conditions.
For stochastic conditions, robust design is used to minimize the variance in system performance
in addition to optimizing mean system performance. Uncertainty quantification is performed
using non-intrusive polynomial chaos. Comparisons are made between low-fidelity analysis and
high-fidelity analysis, as well as deterministic optimization and robust optimization. Results
indicate that the general design trend of previous inlet optimization techniques is recovered for
the external compression portion of an inlet. For the internal compression portion of an inlet,
when viscous effects become more significant and boundary layer separation becomes more
likely, the optimal trend departs from previous results. Multifidelity uncertainty quantification
methods are found to substantially reduce the computation time of robust design while obtaining
results that nearly match those of high-fidelity analysis. Robust optimization is found to
decrease the standard deviation of throat Mach number by up to 40% compared to deterministic
optimization. Changes in the design variables and total turning that lead to robust scramjet
inlets are identified and linked back to fundamental physical principles through the \-𝛽-𝑀
function.

Nomenclature

𝐵 Interaction polynomial
𝐶 Multifidelity additive correction
𝑫 Deterministic variables
𝐹𝑠 Factor of safety
𝑓 Generalized quantity of interest
𝐽𝐷𝑒𝑡 Deterministic objective function
𝐽𝑅𝑜𝑏𝑢𝑠𝑡 Robust objective function
𝑀 Mach number
𝑁𝑑 Number of design variables
𝑁𝑡 Number of terms in expansion
𝑃 Number of dispersed sample points
𝑃𝑞,𝑛 Polynomial chaos expansion
𝑝 Pressure
𝑅 Response function
𝑇 Temperature
𝑈 Uncertainty estimate
𝑊 Weighting coefficient
𝑥 Streamwise coordinate
𝒙 Design variables
𝛼 Deterministic component of random variable
𝛽 Oblique shock wave angle

𝛾 Specific heat ratio
𝜖𝑒𝑒 Early exit numerical error
\ Inlet ramp angle
` Mean
b Random variables
Π Total pressure recovery
𝜌 Density
𝜎 Standard deviation
Ψ Random variable basis function

Subscripts
1 Pre-shock quantity
2 Post-shock quantity
𝐻 High-fidelity response
𝐿 Low-fidelity response
𝑛 Quantity normal to shock
𝑡 Total, or stagnation, condition
𝑡𝑎𝑟𝑔𝑒𝑡 Target quantity for optimization
𝑡ℎ𝑟𝑜𝑎𝑡 Quantity at the inlet throat
𝑤𝑜𝑟𝑠𝑡 Worst feasible value
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I. Introduction
One of the primary challenges of hypersonic airbreathing vehicles is the design of the engine inlet. In order for the

overall propulsion system to be effective, the inlet must compress the freestream airflow to the desired Mach number
while minimizing losses. For a vehicle that accelerates across a range of Mach numbers, single point optimization at the
expense of other conditions is insufficient. Rather, the design should be optimized for the entire trajectory. Additionally,
performance margins are typically small enough that uncertainty must be accounted for and preferably minimized.
The first step in reducing uncertainty at the vehicle level is reducing uncertainty at the component level. Component
level uncertainty can be reduced by employing robust optimization, or design under uncertainty, instead of classical
deterministic optimization.

The first attempt at optimizing supersonic inlet designs was made by Oswatitsch [1]. Oswatitsch analytically
optimized the design of a ramjet inlet through the use of Lagrange multipliers and inviscid gas dynamic relations and
obtained the result that an optimally designed inlet should have successively increasing ramp angles as the Mach number
is reduced such that shock strength remains constant. This design strategy minimizes the losses incurred by excessively
large shocks. After Oswatitsch, Smart [2] extended the analysis from ramjets to scramjets by once again using Lagrange
multipliers and inviscid gas dynamic relations. Hasegawa and Knight [3] used computational fluid dynamics (CFD)
within a gradient-based optimization loop to maximize total pressure recovery. Brown et al. [4] performed robust design
with an evolutionary algorithm and inviscid analysis, then verified their results with CFD. However, they wrote that "the
use of a numerically intensive CFD code embedded in the optimization procedure is not feasible here" [4].

The purpose of the present work is to apply the techniques of optimization under uncertainty to the design of
scramjet inlets. Multiple fidelity levels are used in the analysis. Low-fidelity analysis consists of analytical oblique
shock relations, while high-fidelity analysis consists of viscous CFD. The low-fidelity analysis is able to capture
most of the physics of the problem in a time-efficient manner, but there are some effects that are only captured with
high-fidelity analysis. Multifidelity uncertainty quantification is used to reduce the computational expense of uncertainty
quantification. Low-fidelity analysis, grid generation, high-fidelity CFD, and uncertainty quantification are all performed
entirely within the optimization loop. The remainder of the paper is organized as follows. Section II describes the
theory and methodology used in this work, including the low-fidelity analysis, the high-fidelity analysis, the uncertainty
quantification technique, the optimization algorithm, and a numerical uncertainty estimation technique. Section III
describes the computational setup and formulation of the optimization problem, and Section IV presents the results of
several studies. Finally, Section V describes the conclusions of this work.

II. Methodology
The following sections describe the background theory used in the present work. Section II.A provides the

compressible gas dynamic relations which form the foundation of the low-fidelity analysis technique, while Section II.B
describes the details of the computational fluid dynamics solver used as a high-fidelity analysis technique. Section II.C
describes multifidelity uncertainty quantification through the use of non-intrusive point collocation polynomial chaos
expansions. Section II.D describes the optimization algorithm used in the present work, Efficient Global Optimization
(EGO). Finally, Section II.E describes a numerical uncertainty estimation technique used for interpreting the EGO
results.

A. Compressible Gas Dynamics
For a two-dimensional scramjet inlet composed of angled ramps, the key inviscid physics are given by the well-known

oblique shock relations for a calorically perfect gas [5]. Given an upstream Mach number 𝑀1 and a ramp angle \, the
oblique shock wave angle 𝛽 can be calculated by iterating on the well-known \-𝛽-𝑀 function,

tan(\) = 2 cot(𝛽)
[

𝑀2
1 sin2 (𝛽) − 1

𝑀2
1 (𝛾 + 2 cos(2𝛽)) + 2

]
. (1)

There is also an equivalent formulation, known as the 𝛽-\-𝑀 relation, which allows for explicit numerical calculation of
𝛽 without iterating. The 𝛽-\-𝑀 relation is

tan(𝛽) =
𝑀2

1 − 1 + 2_ cos[(4𝜋𝛿 + cos−1 (𝜒))/3]

3
(
1 + 𝛾−1

2 𝑀2
1

)
tan(\)

, (2)
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where the weak shock solution is given by 𝛿 = 1, the strong shock solution is given by 𝛿 = 0, and

_ =

[
(𝑀2

1 − 1)2 − 3
(
1 + 𝛾 − 1

2
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1

) (
1 + 𝛾 + 1

2
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1

)
tan2 (\)

]1/2
, (3)

𝜒 =

(𝑀2
1 − 1)3 − 9

(
1 + 𝛾−1
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1

) (
1 + 𝛾−1

2 𝑀2
1 + 𝛾+1

4 𝑀4
1
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_3 . (4)

With the shock wave angle 𝛽 known from either of the above approaches, the Mach number normal to the shock, 𝑀𝑛,1,
can be found with

𝑀𝑛,1 = 𝑀1 sin(𝛽). (5)

The properties behind the shock, expressed as ratios of the pre-shock values, are

𝑝2
𝑝1

= 1 + 2𝛾
𝛾 + 1

(𝑀2
𝑛,1 − 1), (6)

𝜌2
𝜌1

=
(𝛾 + 1)𝑀2

𝑛,1

2 + (𝛾 − 1)𝑀2
𝑛,1

, (7)

and
𝑇2
𝑇1

=

(
𝑝2
𝑝1

) (
𝜌1
𝜌2

)
. (8)

The Mach number behind and normal to the shock, 𝑀𝑛,2, is

𝑀𝑛,2 =

(
𝜌1
𝜌2

) (
𝑇1
𝑇2

)1/2
, (9)

and the Mach number behind the shock is
𝑀2 =

𝑀𝑛,2

sin(𝛽 − \) . (10)

Using the Mach number and static property ratios behind the shock, the total properties behind the shock are calculated
with the ratios

𝑇𝑡

𝑇
= 1 + 𝛾 − 1

2
𝑀2, (11)

𝑝𝑡

𝑝
=

(
1 + 𝛾 − 1

2
𝑀2

) 𝛾

𝛾−1

, (12)

and
𝜌𝑡

𝜌
=

(
1 + 𝛾 − 1

2
𝑀2

) 1
𝛾−1

. (13)

Equations (1) through (13) can be applied iteratively for each ramp in the inlet to compute the throat conditions,
assuming that there are no expansion waves or reflected shocks, and that the gas is calorically perfect. This approach
does not account for viscous losses, but the inviscid approximation of inlet exit conditions is acceptable, especially
considering its execution speed compared to viscous CFD.

B. Computational Fluid Dynamics Solver
The CFD software used in this study is Viscous Upwind Algorithm for Complex Flow Analysis (VULCAN-CFD)

[6], which is a multiblock, cell-centered, finite-volume solver widely used for high-speed flow simulations. In the
present work, viscous simulations are performed using the Reynolds-averaged Navier-Stokes (RANS) equations [7]
for thermally perfect air. The Low-Diffusion Flux-Split Scheme (LDFSS) of Edwards [8] is used, and interpolation is
done using the Monotone Upstream-Centered Scheme for Conservation Laws (MUSCL) [9]. The van Leer flux limiter
[9] is used to prevent oscillations in regions near shocks. Turbulence is modeled using the Menter-BSL model [10]
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with wall functions enabled. The implicit incomplete lower-upper (ILU) time-stepping scheme [11] is used with a
Courant-Friedrichs-Lewy (CFL) number of 50 to solve the governing equations.

The two-dimensional grids used in this study have approximately 120,000 cells and are designed to have a 𝑦+ value
at the walls of roughly 200, which is within the log-law portion of the boundary layer and sufficient for using wall
functions. Inflow conditions are set as Mach 6 freestream air with a dynamic pressure of 1500 pounds per square
foot (psf) and an angle of attack of 0 degrees. The boundary conditions at all surfaces are no-slip walls with a fixed
isothermal temperature of 750 Kelvin. The grids are split into multiple blocks to allow for parallel processing. Grids are
generated automatically within the optimization loop using Pointwise [12] and custom scripts.

Because CFD executes within an optimization loop, without the opportunity for manual inspection, a conservative
approach to ensuring iterative convergence is necessary. A sample case using an optimized design from the low-fidelity
analysis of Section II.A was run until the 𝐿2-norm of the residuals, the percent difference between mass inflow and
outflow, and the integrated normal and shear force (𝐹𝑥 and 𝑆𝑥) at the wall boundaries had all converged. Plots of these
quantities from the sample case are shown in Figure 1. Convergence occurred at roughly 6,000 iterations. To ensure
adequate convergence for all optimization cases, the CFD simulations within the optimization loop are set to run for
10,000 iterations using the same settings.

Once a CFD simulation converges, post-processing is performed. A one-dimensionalization algorithm, Massflow-3D,
is run to compute a mass-weighted average of all flow properties as a function of the streamwise coordinate [13]. The
location of the inlet throat is known, and the one-dimensionalized quantities of interest are extracted for the throat plane.
Scalar values produced from the one-dimensionalization are input to the optimization objective function. Unlike the
low-fidelity analysis of Section II.A, this high-fidelity method can account for the effects of viscosity, varying specific
heats, turbulence, boundary layer separation, and the presence of reflected shocks and expansion waves.

C. Uncertainty Quantification via Polynomial Chaos Expansion
Uncertainty quantification (UQ) in computational modeling is the process of determining how uncertainty in input

quantities, numerical errors, and modeling assumptions and limitations will affect the output responses [14]. Uncertainty
can be classified into two types: aleatory and epistemic [15]. Aleatory uncertainty, also called irreducible uncertainty, is
inherent to a system and cannot be reduced. Examples of aleatory uncertainty include sensor noise and fluctuations in
wind speed. Epistemic uncertainty, sometimes called reducible uncertainty, results from either a lack of knowledge or
an intentional simplification of modeling. An example of epistemic uncertainty is using a RANS turbulence model,
rather than resolving all of the scales of turbulence as in direct numerical simulation (DNS). In principle, epistemic
uncertainty can be reduced, however, doing so is not always feasible or practical due to lack of budget, computational
time, experimental data, or other finite resources. Aleatory uncertainty is well-handled by probabilistic methods, while

(a) 𝐿2-norm of the residuals and mass flow error. (b) Integrated normal and shear forces at the walls.

Fig. 1 CFD iterative convergence for a representative sample case.
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epistemic uncertainty is less straightforward to model.
The technique used to forward propagate input uncertainties in the present work is the polynomial chaos expansion

(PCE). Polynomial chaos expansions start with the Cameron-Martin theorem [16] by representing a finite variance
random variable or response function 𝑅 as an infinite expansion [17]

𝑅 = 𝑎0𝐵0 +
∞∑︁
𝑖1=1

𝑎𝑖1𝐵1 (b𝑖1 ) +
∞∑︁
𝑖1=1

𝑖1∑︁
𝑖2=1

𝑎𝑖1𝑖2𝐵2 (b𝑖1 , b𝑖2 ) +
∞∑︁
𝑖1=1

𝑖1∑︁
𝑖2=1

𝑖2∑︁
𝑖3=1

𝑎𝑖1𝑖2𝑖3𝐵3 (b𝑖1 , b𝑖2 , b𝑖3 ) + ... (14)

with real coefficients 𝑎 and interaction polynomial terms 𝐵. As stated by Eldred [14], the above expression with
polynomial order-based indexing can be replaced with term-based indexing to yield a simpler expression,

𝑅(𝑫, 𝝃) =
∞∑︁
𝑗=0

𝛼 𝑗 (𝑫)Ψ 𝑗 (𝝃), (15)

where 𝛼 𝑗 is a deterministic component as a function of deterministic variables 𝑫, and Ψ 𝑗 is a random variable basis
function using the random variables 𝝃. With polynomial chaos, the basis functions of the random variables are
determined by using the Askey key [18], which relates the distributions of the uncertain parameters to specific orthogonal
polynomials. In order to make this approach feasible, the above infinite series is truncated at a finite number of dominant
terms,

𝑅(𝑫, 𝝃) ≈ 𝑃𝑞,𝑛 =

𝑁𝑡−1∑︁
𝑗=0

𝛼 𝑗 (𝑫)Ψ 𝑗 (𝝃) (16)

where 𝑃𝑞,𝑛 is the PCE of highest order 𝑞 for 𝑛 random dimensions.
With the random variable basis functions Ψ 𝑗 known from the Askey key, the expansion coefficients 𝛼 𝑗 must now be

determined. This is done through non-intrusive point collocation [19, 20], which requires only the system response
values at 𝑃 dispersed sample points. If the sample points are linearly independent, then the result is the following linear
system 

𝑅(𝑫, 𝝃0)
𝑅(𝑫, 𝝃1)

...

𝑅(𝑫, 𝝃𝑃)


≈


Ψ0 (𝝃0) Ψ1 (𝝃0) · · · Ψ𝑃 (𝝃0)
Ψ0 (𝝃1) Ψ1 (𝝃1) · · · Ψ𝑃 (𝝃1)

...
...

. . .
...

Ψ0 (𝝃𝑃) Ψ1 (𝝃𝑃) · · · Ψ𝑃 (𝝃𝑃)



𝛼0

𝛼1
...

𝛼𝑃


. (17)

Note that the minimum value for 𝑃 is 𝑃 = 𝑁𝑡 − 1 where the number of terms, 𝑁𝑡 , is given by

𝑁𝑡 = 𝑂𝑆𝑅
(𝑛 + 𝑞)!
𝑛!𝑞!

, (18)

where an oversampling ratio𝑂𝑆𝑅 ≥ 1.0 may be used. If more sample points are available through using an oversampling
ratio greater than 1, then the system can be solved with a least squares method. In this work, an oversampling ratio of
1.5 is used for the purpose of providing additional data. For this work, including up to second-order polynomial terms,
𝑞 = 2, was found to be sufficient based on cross-validation and test points.

Once the 𝛼 𝑗 coefficients have been computed, the response mean and variance can be determined from closed form
analytical expressions [21]

` = ⟨𝑅⟩ ≈
𝑃∑︁
𝑗=0

𝛼 𝑗 ⟨Ψ 𝑗 (𝝃)⟩ = 𝛼0 (19)

𝜎2 = ⟨(𝑅 − `)2⟩ ≈ ⟨(
𝑃∑︁
𝑗=1

𝛼 𝑗Ψ 𝑗 (𝝃))2⟩ =
𝑃∑︁
𝑗=1

𝑃∑︁
𝑘=1

𝛼 𝑗𝛼𝑘 ⟨Ψ 𝑗 (𝝃)Ψ𝑘 (𝝃)⟩ =
𝑃∑︁
𝑗=1

𝛼2
𝑗 ⟨Ψ 𝑗 (𝝃)2⟩ (20)

If multiple analysis fidelity levels are available, then multifidelity UQ can be performed. The advantage of
multifidelity UQ is in achieving results that closely approximate those of purely high-fidelity UQ at a substantially
reduced computational cost. Reducing the cost of UQ makes multifidelity analysis appealing for use within robust
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optimization due to the large computational burden. As stated by West and Philips [20], the goal of multifidelity PCE is
to use a small number of high-fidelity training points to correct a low-fidelity PCE model. If the high-fidelity correction
is additive, then

𝑅𝐻 = 𝑅𝐿 + 𝐶 ≈ 𝑃𝑞,𝑛 + 𝐶 (21)

where the high-fidelity response 𝑅𝐻 is equal to the low-fidelity response 𝑅𝐿 plus a correction term 𝐶. Using the PCE
approach described previously, the low-fidelity response can be approximated by a polynomial chaos expansion of order
𝑞 and random dimensions 𝑛. Rearranging Eq. (21), the additive correction can be expressed as

𝐶 = 𝑅𝐻 − 𝑅𝐿 ≈ 𝑃𝑟 ,𝑛 (22)

where 𝑃𝑟 ,𝑛 is a polynomial chaos expansion of order 𝑟 , with 𝑟 < 𝑞.
Observe that the above discussion mentioned that a PCE model of order 𝑞 = 2 was found to be sufficient for capturing

the high-fidelity physics of this problem, thus using a PCE of order 𝑟 < 𝑞 in the multifidelity approach may at first seem
concerning. However, the PCE of Eq. (22) does not need to capture all of the physics of the high-fidelity model. The
PCE model of order 𝑞, built from the low-fidelity model, should already capture most of the physics. The PCE model of
order 𝑟 thus only needs to capture the difference in physics between the fidelity levels in order to approximate 𝑅𝐻 ,

𝑅𝐻 = 𝑅𝐿 + 𝐶 ≈ 𝑃𝑞,𝑛 + 𝐶 ≈ 𝑃𝑞,𝑛 + 𝑃𝑟 ,𝑛. (23)

With this approximation of 𝑅𝐻 , a system of equations similar to Eq. (17) can be constructed and the response statistics
solved for using Eqs. (19) and (20). Note that the goal of multifidelity UQ is to reduce the number of high-fidelity model
evaluations, computed from Eq. (18). Therefore, if 𝑟 ≥ 𝑞, no high-fidelity evaluations are saved compared to purely
high-fidelity UQ, and the multifidelity approach does not contribute any value. Further discussion of polynomial chaos
expansions and multifidelity techniques are available from Ng and Eldred [19], Ng and Willcox [22], and Peherstorfer et
al [23]. An extension of multifidelity techniques for when high and low fidelity models have different uncertainties is
available from West and Phillips [20].

D. Optimization Algorithm
Classical gradient-based optimization works well when the function being optimized is convex and gradients are

efficiently and accurately obtained. However, many practical problems can be non-convex and multimodal such that local
minima exist and cause difficulty in finding the global optimum. When a gradient-based optimizer is initialized with a
poor starting point, it may descend into a local minima and terminate, therefore missing the global optimum. Another
issue with gradient-based algorithms, specific to robust design, is that the computation of gradients of uncertainty
statistics can become prohibitively expensive. The large cost is caused by the need to propagate uncertainty for each
finite difference applied to the design variables. Table 1 below demonstrates the large cost by carrying out calculations
for the number of function evaluations needed for various optimization methods. Robust gradient-based optimization
with second-order accurate gradients can easily reach hundreds of function evaluations per iteration, and the optimization
algorithm itself may take between dozens and hundreds of iterations to converge. Expensive function evaluations, such
as CFD or finite element analysis (FEA), exacerbate the problem. Both of these problems are jointly addressed by using

Table 1 Number of function evaluations required at each optimization iteration.

Algorithm Type
Design

variations
per iteration

Function
evaluations

per variation

Total function
evaluations

per iteration

Evaluations
per iteration for
sample problem,

𝑁𝑑 = 7 and 𝑁𝑡 = 15
Deterministic gradient-based, 𝑂 (Δ𝒙) (1 + 𝑁𝑑) 1 (1 + 𝑁𝑑) 8
Deterministic gradient-based, 𝑂 (Δ𝒙2) (1 + 2𝑁𝑑) 1 (1 + 2𝑁𝑑) 15
Deterministic derivative-free 1 1 1 1
Robust gradient-based, 𝑂 (Δ𝒙) (1 + 𝑁𝑑) (1 + 𝑁𝑡 ) (1 + 𝑁𝑑) (1 + 𝑁𝑡 ) 128
Robust gradient-based, 𝑂 (Δ𝒙2) (1 + 2𝑁𝑑) (1 + 𝑁𝑡 ) (1 + 2𝑁𝑑) (1 + 𝑁𝑡 ) 240
Robust derivative-free 1 (1 + 𝑁𝑡 ) (1 + 𝑁𝑡 ) 16
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a global surrogate-based derivative-free optimization algorithm, which searches the entire design space for a global
optimum without the need to compute gradients. In this work, the Efficient Global Optimization [24, 25], or EGO,
algorithm is used. The specific implementation of EGO used is that included within the Dakota software package [26].
The remainder of this section provides a brief description of the EGO algorithm.

An important requirement on global optimization methods is the need to balance between improving the current
best-known value, termed exploitation, with sampling points of the design space that are not well-known, termed
exploration. EGO accomplishes this balance with an expected improvement function (EIF). The EIF is the expectation
that a specific point in the feasible design space will provide a better value than the current known best value. The
predicted value for an unknown point comes from a Gaussian process (GP) model, which provides a Gaussian error
distribution for the point being predicted. This distribution permits the expectation to be computed. Points with
near-optimal predicted values and low variances have a good chance of yielding an improvement over the current best
known value, as do points with poor predicted values and large variances. Sampling the former point allows EGO
to exploit current information known about the function, while sampling the latter point allows EGO to explore new
territory in the design space. Thus, by successively sampling whichever point in the design space currently has the
maximum EIF, the EGO algorithm gradually builds an improving surrogate GP model of the function. The algorithm
continues to iterate until the maximum expected improvement is less than 1% of the current best known value.

Note that the original implementation of EGO in Jones et al. [24] uses a branch-and-bound method to maximize the
EIF. The implementation of EGO in Dakota uses the DIRECT algorithm [27] instead. For further information on EGO,
refer to the original work by Jones et al [24].

E. Optimizer Early Exit Error and Uncertainty Estimation
The use of a global surrogate-based derivative-free optimizer has many advantages compared to gradient-based

optimization. However, there is also a disadvantage that must be accounted for. Gradient-based optimization algorithms,
such as steepest descent, conjugate gradient, and sequential quadratic programming (SQP) typically run until a
convergence tolerance on the order of 1 × 10−4 to 1 × 10−6 is reached [28]. As described in the previous section, the
Dakota implementation of EGO runs until the maximum expected improvement is less than 1% of the current best
known value. The user is unable to change the convergence criteria in the Dakota implementation of EGO. As a result
of the difference in convergence criteria, EGO will typically find the valley that contains the global minimum, but it
does not have the required level of tolerance to descend to the bottom of the valley. The difference between the value
returned by EGO and the true optimum at the bottom of the valley is termed early exit error due to it being caused by
EGO terminating earlier than a gradient-based optimizer typically would.

Results from an EGO optimization should have epistemic uncertainty bands applied to them to account for this early
exit error. These uncertainty bands can be calculated by first quantifying the early exit error 𝜖𝑒𝑒. This is done by using
the output design point of EGO as the initial design point of a gradient-based optimizer such as SQP. The gradient-based
optimizer is run until convergence and returns the design point and functionals at the minimum of the valley found by
EGO, considered to be the true optimum. The difference between the EGO results and the gradient-based results is thus
the early exit error,

𝜖𝑒𝑒 = 𝑓𝐸𝐺𝑂 − 𝑓𝑆𝑄𝑃 , (24)

where 𝑓 is the quantity of interest being examined. An estimated uncertainty band𝑈 can be calculated for some quantity
by taking an appropriate norm of the early exit error, such as the 𝐿2 or 𝐿∞ norm, and then multiplying by a factor of
safety 𝐹𝑠

𝑈 = 𝐹𝑠𝐿∞ (𝜖𝑒𝑒). (25)

As discussed in Section II.D, running a gradient-based optimizer is not always feasible, especially for robust design.
In this situation, the early exit error should be quantified for at least one case using the same objective function and
constraints as the desired optimization, and then the results can be applied to other cases. This is similar in practice to
the estimation of numerical uncertainty due to discretization error [15, 29]. In the present work, early exit uncertainty
is calculated using deterministic optimization with the 𝐿∞ norm, a factor of safety 𝐹𝑠 = 1.5, and then the epistemic
uncertainty band is applied to EGO results.

III. Computational Setup
With the background theory described in the previous section, the following section details the solution process for

a specific sample problem. The mathematical formulation of the optimization problem is described in Section III.A,
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while the simulation setup and software configuration are detailed in Section III.B.

A. Optimization Problem Formulation
The problem to be solved in the present work is, given some freestream condition, to find the optimal set of 2D

planar ramp angles for a scramjet inlet. There are seven inlet ramp angles, divided up into four external compression
and three internal compression ramps. This problem is first considered deterministically and then stochastically. The
performance objectives are to compress the freestream air to a target Mach number with minimum total pressure losses
by the inlet throat. The deterministic problem is formulated mathematically as

min 𝐽𝐷𝑒𝑡 = 𝑊𝑀

[ (𝑀𝑡ℎ𝑟𝑜𝑎𝑡 − 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 )
(𝑀𝑤𝑜𝑟𝑠𝑡 − 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 )

]2
+𝑊Π

[ (Π𝑡ℎ𝑟𝑜𝑎𝑡 − Π𝑡𝑎𝑟𝑔𝑒𝑡 )
(Π𝑤𝑜𝑟𝑠𝑡 − Π𝑡𝑎𝑟𝑔𝑒𝑡 )

]2
, (26a)

subject to
∑︁

𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

\ −
∑︁

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

\ = 0, (26b)

2° ≤ \𝑖 ≤ 12°, (26c)
where 𝐽𝑑𝑒𝑡 is the deterministic problem objective function and the inlet ramp angles, \𝑖 , are the design variables.
Π𝑡ℎ𝑟𝑜𝑎𝑡 and 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 are the total pressure recovery and the Mach number at the throat plane, respectively, and are the
values produced by the subsequent analysis. The 𝑡𝑎𝑟𝑔𝑒𝑡 subscript refers to the desired quantities for the optimizer to
obtain for Π𝑡ℎ𝑟𝑜𝑎𝑡 and 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 . 𝑊Π and 𝑊𝑀 are deterministic weighting coefficients that sum up to 1,

𝑊𝑀 +𝑊Π = 1, (27)

and are used to give the design engineer control over which term in the objective function is to be prioritized more. The
𝑤𝑜𝑟𝑠𝑡 subscript refers to a feasible value that an objective can achieve that is furthest away from the target value [30].
This worst value is used to normalize the two terms in the objective function to between 0 and 1, ensuring that they are of
the same magnitude. Constraint Eq. (26b) ensures that the sum of external inlet angles

∑
𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 \ = \1 + \2 + \3 + \4

is equal to the sum of internal inlet angles
∑

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 \ = \5 + \6 + \7 to result in a horizontal inlet exit, parallel to the
freestream. Constraint Eq. (26c) applies upper and lower bounds on the design variables.

Target values for the optimizer are Π𝑡𝑎𝑟𝑔𝑒𝑡 = 1.0 and 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 = 3.0. These values are chosen because they represent
the maximum possible compression efficiency and a moderate amount of compression. The worst values for an inlet
to produce are calculated by taking the total pressure recovery that would result from a normal shock at the given
freestream Mach number, and a Mach number that is unchanged from its freestream value. For this specific problem,
these values are roughly Π𝑤𝑜𝑟𝑠𝑡 = 0.03 and 𝑀𝑤𝑜𝑟𝑠𝑡 = 6.0. An additional parameter is used to provide the physical
scale of the problem, 𝑥𝑐𝑙𝑒, which is the 𝑥 coordinate of the cowl leading edge as measured from the vehicle leading
edge. The sample problem in this work uses a value of 𝑥𝑐𝑙𝑒 = 700 inches. A representative image of the type of inlet
considered in this work is shown in Figure 2.

For the stochastic problem, uncertainty in the freestream conditions is considered. This allows variance in the
trajectory to be accounted. All uncertain parameters are modeled as aleatory. The sample problem of the current work
uses Gaussian distributions for freestream Mach number, angle of attack, and dynamic pressure. Their means are the
same as the values used in the deterministic problem, with standard deviations as shown in Table 2. Using the UQ
techniques described in Section II.C, the mean and standard deviation of 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 and Π𝑡ℎ𝑟𝑜𝑎𝑡 are calculated for the
distributions of Table 2. This yields the values `𝑀 , 𝜎𝑀 , `Π , and 𝜎Π which are used to calculate the robust objective
function 𝐽𝑅𝑜𝑏𝑢𝑠𝑡 . The design under uncertainty problem is formulated as

min 𝐽𝑟𝑜𝑏𝑢𝑠𝑡 = 𝑊𝑀

[
𝑊`

( (`𝑀 − 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 )
(𝑀𝑤𝑜𝑟𝑠𝑡 − 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 )

)2
+𝑊𝜎𝜎𝑀

]
+𝑊Π

[
𝑊`

( (`Π − Π𝑡𝑎𝑟𝑔𝑒𝑡 )
(Π𝑤𝑜𝑟𝑠𝑡 − Π𝑡𝑎𝑟𝑔𝑒𝑡 )

)2
+𝑊𝜎𝜎Π

]
, (28a)

subject to
∑︁

𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

\ −
∑︁

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

\ = 0, (28b)

2° ≤ \𝑖 ≤ 12°, (28c)
where 𝑊` and 𝑊𝜎 are weighting coefficients that allow the design engineer to choose between prioritizing higher mean
performance or minimizing variance of performance. Similar to the deterministic weighting coefficients, the robust
weighting coefficients are constrained such that

𝑊` +𝑊𝜎 = 1. (29)
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Table 2 Freestream condition uncertainties.

Freestream Parameter 𝝁 𝝈

Mach number 6.0 0.1
Angle of attack (deg) 0.0 0.25

Dynamic pressure (psf) 1500.0 15.0

Observe that the robust objective function is of similar form to the deterministic objective function, but the throat
quantities have been replaced with their mean values produced from uncertainty propagation. Additionlly, there is
another tradeoff for the design engineer between high mean performance and low variance of performance. This robust
tradeoff is also affected by the deterministic tradeoff, such that the choice of deterministic weighting coefficients can
influence whether low variance of 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 or low variance of Π𝑡ℎ𝑟𝑜𝑎𝑡 is prioritized more.

B. Simulation Setup
The simulation setup for solving the inlet design under uncertainty problem is composed of several key components.

The first component is the optimization algorithm, EGO, as implemented in the Dakota software package [26]. The next
component is an optimization driver script, which controls fidelity levels, optimization settings, and variable values.
The final component is the analysis wrapper, which performs the inlet analysis for a specified geometry at the requested
fidelity level. A flowchart of the simulation system is shown in Figure 3.

The first step is for Dakota to set the design variables for the current iteration. The design variables are passed into
the optimization driver, which then sets all other parameters in the problem. These parameters include physical values,
the distributions of uncertain parameters, the weighting coefficients for both the deterministic and robust objective
functions, and software settings such as the fidelity level or whether a deterministic or robust optimization should be
performed. Once the optimization driver has set the problem parameters, it calls out to the analysis wrapper. Regardless
of the fidelity level selected, the analysis wrapper runs the low-fidelity analysis because the high-fidelity analysis requires
geometry data output by the low-fidelity analysis.

The low-fidelity analysis uses the compressible gas dynamic relations of Section II.A to compute the total pressure
recovery and the Mach number at the throat of the inlet. This is done using a non-intersecting non-reflecting oblique
shock, or NINROS, design strategy [31]. With a fixed 𝑥𝑐𝑙𝑒 value and a known \1 of the vehicle leading edge, the oblique
shock angle from the leading edge 𝛽1 can be computed. The 𝑦 coordinate of the cowl leading edge, 𝑦𝑐𝑙𝑒, is placed such
that the oblique shock of 𝛽1 impinges upon it at 𝑥𝑐𝑙𝑒, referred to as the shock-on-lip condition. Using the relations of
Section II.A and the design variable \2, the value of 𝛽2 is calculated. An oblique shock of angle 𝛽2 is drawn backwards

Fig. 2 Inlet with four external compression ramps and three internal compression ramps.
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Fig. 3 Flowchart of the inlet design under uncertainty process.
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Fig. 4 Sample inlet grid topology.

from the cowl leading edge until intersecting with the ramp of \1 after the first shock. This intersection point is the
location of the second ramp angle. The coordinates of the remaining external compression angles are found using this
process of working backwards from the shock-on-lip condition. The result is a series of external compression ramps
whose oblique shocks are all impinging upon the cowl leading edge, as shown previously in Figure 2.

The internal compression angles are determined in a slightly modified way. The angle of the cowl leading edge
with respect to the inlet entrance plane flow, \𝑐𝑙𝑒, is known explicitly by the design variable corresponding to the first
internal compression angle, in this case \5. As in the external compression analysis, the oblique shock wave angle
emitted from the cowl leading edge, 𝛽𝑐𝑙𝑒, can be calculated, and its intersection point with the body side of the vehicle
is computed. To ensure that the inlet does not have any reflected or intersecting oblique shocks, the wave of 𝛽𝑐𝑙𝑒 must
be cancelled at the body-side surface. This is done by placing an expansion corner at the intersection point between 𝛽𝑐𝑙𝑒
and the body-side surface. If the expansion corner turns the flow by the same amount as \𝑐𝑙𝑒, then there will be no
reflected oblique shock, nor an emitted expansion wave. The next internal compression corner is placed at the same 𝑥
coordinate as the expansion corner cancelling the previous oblique shock, but on the cowl-side of the inlet. As with the
external compression corners, this process is repeated until all compression and expansion corners have been placed.
The Mach number at the throat and the total pressure recovery at the throat can be calculated by stepping through the
oblique shock calculations, and the resulting geometry data is saved.

After the low-fidelity analysis executes, the analysis wrapper reaches a branch point. If low-fidelity mode is selected,
then the deterministic objective function is calculated using Eq. (26a). If high-fidelity mode is enabled, then the analysis
wrapper feeds the geometry data produced from the low-fidelity analysis to an autogridding routine. This autogridder
routine controls the Pointwise software to build a viscous CFD mesh of the specified geometry. A sample grid that
results from this process is shown in Figure 4. The mesh is exported, and then VULCAN-CFD is executed on the
newly built grid. The Massflow-3D post-processing routine executes after VULCAN-CFD completes and produces
one-dimensionalized mass-weighted averages of flow properties through the inlet as a function of 𝑥. The mass-weighted
averages of total pressure recovery and Mach number at the throat are exported back to the analysis wrapper, which uses
them to compute the deterministic objective function 𝐽𝐷𝑒𝑡 .

Once the deterministic objective function has been computed, regardless of fidelity level selected, another branch
point is reached. If deterministic optimization is enabled, then the optimization driver feeds the deterministic objective
function back into Dakota and convergence is checked. If robust optimization is enabled, then a Latin hypercube
sampling (LHS) [32] method is used to generate dispersed samples of the uncertain parameters according to Table
2. The dispersed samples are fed back to the analysis wrapper, which runs the additional cases at the selected fidelity
level. To maximize efficiency, all dispersed samples are run in parallel with one another. Once all UQ cases have
finished, the optimization driver then uses polynomial chaos expansions to compute the mean and standard deviation of
responses from the dispersed samples. With the response statistics known, the robust objective function is calculated
using Eq. (28a), and 𝐽𝑟𝑜𝑏𝑢𝑠𝑡 is passed back into Dakota. The EIF is updated, and if the maximum EIF is < 1% of the
current best value, the optimization is considered converged and terminates. If not, then another optimization iteration
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is executed.

IV. Results
In this section, optimization results and analysis for several studies are presented. First, Section IV.A presents

results from low-fidelity deterministic sweeps through the deterministic weighting coefficients. Both the EGO and the
SQP algorithms are used to estimate numerical uncertainty in the global surrogate-based derivative-free approach.
The numerical uncertainty estimated from this analysis is critically important and is used throughout the following
studies. Next, Section IV.B presents high-fidelity results for the purpose of understanding how viscous effects influence
inlet optimization. Section IV.C presents uncertainty propagation results using several different fidelity analyses. This
analysis establishes the credibility of using multifidelity UQ techniques to closely approximate high-fidelity UQ. Section
IV.D presents robust optimization results using both low-fidelity and multifidelity UQ approaches. Finally, Section IV.E
discusses the physical cause of robustness in inlet designs and its link to fundamental physical principles.

A. Low-fidelity Deterministic Study
The first study conducted is a low-fidelity deterministic sweep through deterministic weighting coefficients such that

𝑊𝑀 +𝑊Π = 1. The optimization problem being solved consists of Eqs. (26a) through (26c). The primary purpose of
this study is to reveal the tradeoffs that can be made between the two inlet design objectives: 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 and Π𝑡ℎ𝑟𝑜𝑎𝑡 . The
secondary purpose of this study is to solve the optimization problem using both the global surrogate-based derivative-free
EGO and gradient-based SQP algorithms. This allows for estimation of numerical error and uncertainty bands which
are applied to EGO results throughout the following studies.

Results from the low-fidelity deterministic study are shown in Figure 5. Figure 5a shows the optimal design variables
returned by SQP as a function of𝑊𝑀 . The SQP results show a smoothly varying trend that as𝑊𝑀 increases, each design
variable grows larger. This is because as 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 is weighted more heavily, the optimizer must drive this objective
closer to its target value. Conversely, as 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 is weighted less, the optimizer obtains slack in that objective which is
used to increase the performance of Π𝑡ℎ𝑟𝑜𝑎𝑡 . Smaller total pressure losses are caused by weaker oblique shocks which
result from smaller angles. Thus, small values of 𝑊𝑀 will result in smaller ramp angles, while larger values of 𝑊𝑀

force the ramp angles to increase. This trend is not smooth at the upper and lower bounds of the weighting coefficients,
caused by an abrupt change in the objective function due to one of the two terms entirely dropping out. In addition to the
trend seen as 𝑊𝑀 increases, another trend is visible. For a given constant 𝑊𝑀 , each successive ramp angle is slightly
larger than the previous angle. This is the trend noted by Oswatitsch [1] which results in constant strength shocks.
Constant strength shocks across a series of ramps results in minimizing the total pressure losses. This trend is visible at
all weighting coefficients except 𝑊𝑀 = 1.0 because this trend is the most efficient way for a 2D planar inlet to reach a
given Mach number. The reason the Oswatitsch trend is not visible at 𝑊𝑀 = 1.0 is because total pressure recovery
entirely drops from the objective function at this weighting coefficient, thus the optimizer returns a configuration with a
throat Mach number as close to the target value as possible with no regard for thermodynamic efficiency.

Figure 5b shows the optimal design variables that are returned by the EGO algorithm. Unlike the SQP results,
the EGO results are noisy. Neither the smooth growth in design variables trend nor the Oswatitsch trend are clearly
discernible. Comparing Figures 5a and 5b demonstrates the importance of quantifying the numerical error present in
EGO results for this particular problem. Using Eq. (24), the optimizer early exit error in the design variables was found
as a function of 𝑊𝑀 . The minimum early exit error occurs at 𝑊𝑀 = 0.5, which is used as the deterministic weighting
coefficient throughout the rest of this work. The numerical uncertainty due to early exit error at 𝑊𝑀 = 0.5 is calculated
using Eq. (25) and is presented in Table 3 below.

Table 3 Estimated numerical uncertainty due to optimizer early exit.

\𝑖 (°) 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 Π𝑡ℎ𝑟𝑜𝑎𝑡 Total turning (°)
𝑈𝑒𝑒 ±1.117 ±0.0106 ±0.0012 ±0.2098

Figures 5c and 5d show the objectives for the deterministic optimization problem, 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 and Π𝑡ℎ𝑟𝑜𝑎𝑡 respectively.
Results from SQP and EGO are plotted on the same figures to allow for easier comparison between the two. While
there is still some noise present in the objectives returned from EGO, there is a much closer match to SQP results
than is seen in the design variables. The major trends in the objectives are that as 𝑊𝑀 increases, the value of 𝑀𝑡ℎ𝑟𝑜𝑎𝑡
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gets closer to its target value of 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 = 3.0, and as 𝑊𝑀 decreases, then Π𝑡ℎ𝑟𝑜𝑎𝑡 gets closer to its target value of
Π𝑡𝑎𝑟𝑔𝑒𝑡 = 1.0. The optimizer early exit error is calculated and the numerical uncertainty for 𝑊𝑀 = 0.5 is estimated.
Results are given in Table 3. Figure 5e shows the Pareto frontier, a curve in objective-space indicating the optimal
designs. The Pareto frontier clearly illustrates the tradeoffs available to the design engineer. Due to low error in the
EGO results for objectives, there are no major differences between the Pareto frontiers plotted for the two algorithms.

Related to the design variables is the total turning; the sum of all design variables. This quantity is shown in Figure
5f for both EGO and SQP as a function of 𝑊𝑀 . Similarly to the objectives, the EGO results for total turning are less
smooth than the SQP results but still show considerable improvement over the design variables. The trend of increasing
𝑊𝑀 leading to larger ramp angles is clearly visible in both the SQP and the EGO results. As with previous quantities,
the optimizer early exit error is calculated and its resulting numerical uncertainty is estimated. Results are reported in
Table 3. Note that as an integrated quantity, error in design variables tends to cancel out when summed up to the total
turning. This canceling of error is what causes the EGO curve to be smoother for total turning than it is for the design
variables. Accordingly, the numerical uncertainty estimate in total turning is roughly five times lower than it is for the
design variables. This indicates that when trying to observe trends or interpret results from the Dakota implementation
of EGO, the total turning is likely to be a more reliable source of information than the raw design variables.

The final result for the low-fidelity deterministic study is a comparison of the geometries from the extreme ends
of the weighting coefficient scale. Figure 6 shows the inlet visualizations for a highly Π𝑡ℎ𝑟𝑜𝑎𝑡 -focused design and a
highly 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 -focused design. Observe that the Π𝑡ℎ𝑟𝑜𝑎𝑡 -focused design has smaller ramp angles to produce weaker
shocks, as expected from discussion on design variables, while the 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 -focused design has larger angles to produce
the compression required to drive 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 closer to its target value. A side effect of the weighting coefficients, not
clearly discernible from any of the numerical results shown in Figure 5, is that lower values of 𝑊𝑀 tend to elongate
the inlet, even though all designs have a fixed cowl leading edge 𝑥 coordinate. This is because shallower shock angles
emitted from the cowl side of the inlet take more distance to reach the body side of the inlet. The shock-canceling design
strategy requires placing expansion corners at the location of shock impingement on the body side, and successive
compression corners are placed on the cowl side directly below the body side expansion corners. Thus, shallower angles
stretch out the inlet. Accordingly, inlet designs that are more Π𝑡ℎ𝑟𝑜𝑎𝑡 -focused should be expected to weigh more and
require larger vehicles for successful integration. Due to the elongation, and thus longer surface for skin friction to
apply over, Π𝑡ℎ𝑟𝑜𝑎𝑡 -focused designs resulting from inviscid optimization may be expected to suffer from greater viscous
losses than 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 -focused designs when evaluated with high-fidelity analysis.

B. High-fidelity Deterministic Study
The second study conducted is a high-fidelity study. This study has two components. First, the optimal design

from the low-fidelity deterministic optimization with 𝑊𝑀 = 𝑊Π = 0.5 from Section IV.A is evaluated at high-fidelity.
The purpose of this single CFD evaluation is to demonstrate the differences in objective values that are produced for
the same geometry when evaluated using different fidelity levels. The second component is running a deterministic
optimization at high-fidelity with 𝑊𝑀 = 𝑊Π = 0.5. The purpose of this optimization is to understand how optimal inlet
designs change when viscous effects are considered. Due to the substantially greater cost of this optimization than those
conducted in Section IV.A, it is only feasible to complete a single run, rather than sweeping through multiple weighting
coefficient values to obtain a Pareto frontier.

The objective values for the low-fidelity deterministic optimized geometry with 𝑊𝑀 = 𝑊Π = 0.5 are reported below
in Table 4 for both low-fidelity analysis and high-fidelity analysis. For 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 , the low-fidelity analysis gives roughly
8% error relative to the high-fidelity analysis. For Π𝑡ℎ𝑟𝑜𝑎𝑡 , the low-fidelity analysis gives roughly 42% error relative to
the high-fidelity analysis. These discrepancies can be explained by examining the CFD flow contours in Figure 7. Mach
number contours are shown in Figure 7a, while total pressure recovery contours are shown in Figure 7b. Figure 7a
shows that the CFD results agree well with the low-fidelity prediction of 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 , roughly 2.9 compared to 3.1. Figure
7b shows that the low-fidelity analysis is accurately predicting the total pressure recovery of the core flow within the
inlet, roughly 91%, but the boundary layers on both the body side and cowl side of the inlet are imposing substantial
losses. The two boundary layers consist of roughly 30% to 40% of the inlet duct at the throat, and much of the boundary
layers have a total pressure recovery value from roughly 20% to 50%. These viscous losses, unpredicted by the inviscid
low-fidelity analysis, are the source of the error shown in Table 4.
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(a) Optimal design variables from SQP.
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(b) Optimal design variables from EGO.
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(c) 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 objective values.
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(d) Π𝑡ℎ𝑟𝑜𝑎𝑡 objective values.
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(e) The Pareto frontier.
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Fig. 5 Optimization results from the low-fidelity deterministic study as a function of 𝑊𝑀 , with 𝑊𝑀 +𝑊Π = 1,
using both SQP and EGO.
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Table 4 Inlet throat conditions for the low-fidelity deterministic optimal design with 𝑀𝑀 = 𝑊Π = 0.5.

𝑀𝑡ℎ𝑟𝑜𝑎𝑡 Π𝑡ℎ𝑟𝑜𝑎𝑡

Low-fidelity model 3.090 0.9111
High-fidelity model 2.852 0.6429
Relative error in low-fidelity model 8.35% 41.7%

The next component of the high-fidelity study consists of deterministic optimization results for 𝑊𝑀 = 𝑊Π = 0.5.
Results for the two objectives and total turning are compared to the low-fidelity optimal results in Table 5 below. Note
that the high-fidelity optimal values have epistemic uncertainty as estimated from the early exit analysis of Section IV.A
and reported in Table 3. Observe that due to the large viscous losses that can be imposed on Π𝑡ℎ𝑟𝑜𝑎𝑡 in the high-fidelity
analysis, the optimizer is driven to a solution with substantially less total turning than for the same weighting coefficients
at low-fidelity. This tends to penalize performance in 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 , as the lessened total turning results in less compression.
Figure 8 shows a comparison of the design variables that result from deterministic optimization at the two fidelity levels.
The low-fidelity design variables are determined from the SQP algorithm, and thus do not have error bars on them.
The SQP-returned values are taken to be the true optimum values for a given optimization setting. The high-fidelity
design variables, returned from EGO, have epistemic uncertainty associated with them due to optimizer early exit.
Although the first six design variables display the Oswatitsch trend, the epistemic uncertainty allows for the possibility
that the Oswatitsch trend is not maintained. Interestingly, the final design variable shows a significant departure from
the Oswatitsch trend. The magnitude of this departure is larger than the estimated numerical uncertainty due to EGO
early exit, thus the departure should be assumed to be due to viscous effects. Possible reasons for a decrease in the
final design variable, deepest within the inlet and where the boundary layers are at their thickest, are to minimize the
likelihood of boundary layer separation and shock-boundary layer interactions. This observation is a topic of future
research using optimization algorithms with less numerical uncertainty in design variables.

C. Uncertainty Propagation Study
The next study conducted is propagation of input uncertainties from Table 2 to output uncertainties in the objectives.

This study is conducted on the geometry that results from the low-fidelity deterministic optimization of Section IV.A
with 𝑊𝑀 = 𝑊Π = 0.5. The primary purpose of this study is to establish how closely multifidelity UQ can approximate
purely high-fidelity UQ for the inlet design problem. This is because, as discussed in Sections II.C and II.D, robust
optimization can be exceedingly computationally expensive. Thus, there is a strong incentive to use a multifidelity UQ
approach rather than a purely high-fidelity approach when the two yield comparable results. The secondary purpose of
this study is to understand the differences in uncertainty captured by different analysis fidelity levels.

Figure 9a shows the results of propagating input uncertainties on 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 , while 9b shows results for Π𝑡ℎ𝑟𝑜𝑎𝑡 . For
both 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 and Π𝑡ℎ𝑟𝑜𝑎𝑡 the multifidelity UQ approach shows excellent agreement with the purely high-fidelity UQ
approach for this geometry. This agreement suggests that when robust optimization is performed, multifidelity UQ

Fig. 6 Comparison of the optimal geometries resulting from low-fidelity deterministic optimization.
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(a) 𝑀 contours. (b) Π contours.

Fig. 7 High-fidelity CFD contours of the 𝑊𝑀 = 𝑊Π = 0.5 low-fidelity deterministic optimal design.
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Fig. 8 Design variable comparison between low-fidelity and high-fidelity deterministic optimum designs.
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Fig. 9 Uncertainty propagation results for the low-fidelity deterministic optimal design with 𝑊𝑀 = 𝑊Π = 0.5.

can be used in place of purely high-fidelity UQ, assuming that agreement is similar among all geometries analyzed.
Referring to Eq. (18) with an oversampling ratio of 1.5 and 𝑛 = 3 random dimensions, reducing polynomial order 𝑞 from
2 to 1 yields 6 high-fidelity cases for the multifidelity approach, compared to 15 for the purely high-fidelity approach.
This reduces the cost of robust optimization to 40% of what it would be if purely high-fidelity UQ was performed.

The mean and standard deviation for both objectives at all three fidelity levels are reported in Table 6 below. Note
that low-fidelity UQ does not capture all of the uncertainty. For 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 , the low-fidelity uncertainty is roughly 72% of
that for high and multifidelity analysis. For Π𝑡ℎ𝑟𝑜𝑎𝑡 , the low-fidelity analysis captures roughly 87% of the uncertainty
compared to the high and multifidelity analyses.

Table 6 Results from the uncertainty propagation study.

`𝑀 𝜎𝑀 `Π 𝜎Π

Low-fidelity 3.089 0.03860 0.9109 0.003622
High-fidelity 2.852 0.05347 0.6426 0.004148
Multifidelity 2.852 0.05336 0.6427 0.004058
Error in low-fidelity relative to high-fidelity 8.31% 27.8% 41.8% 12.7%
Error in multifidelity relative to high-fidelity 0.00% 0.206% 0.0156% 2.17%

D. Robust Optimization Study
This section presents results from robust optimization using both low-fidelity and multifidelity approaches. The

optimization problem solved is now that of Eqs. (28a) through (28c). The robust optimization study ties in results
from the early exit uncertainty analysis of Section IV.A, viscous effects from Section IV.B, and UQ results from
Section IV.C. First, a low-fidelity sweep through the robust weighting coefficients is performed such that 𝑊` +𝑊𝜎 = 1.
The deterministic weighting coefficients are held constant at 𝑊𝑀 = 𝑊Π = 0.5. The purpose of the robust weighting

Table 5 Results from the low-fidelity optimization compared to high-fidelity optimization for 𝑊𝑀 = 𝑊Π = 0.5.

𝑀𝑡ℎ𝑟𝑜𝑎𝑡 Π𝑡ℎ𝑟𝑜𝑎𝑡 Total turning (°)
Low-fidelity optimum 3.090 0.9111 32.69
High-fidelity optimum 3.788 ± 0.0106 0.9501 ± 0.0012 21.69 ± 0.2098
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coefficient sweep is to understand the design tradeoffs that can be made as either mean performance or variance of
performance is prioritized more. Once the robust weighting coefficient sweep is complete, a single set of coefficients is
selected for more detailed comparison to low-fidelity deterministic optimization. The purpose of this comparison is to
more thoroughly demonstrate the design changes incurred by robust design. Finally, the results of multifidelity robust
optimization are presented for the same weighting coefficients as used in the previous comparison. The purpose of this
comparison is to demonstrate the effects of viscous boundary layers on robust optimization.

Results from the sweep through robust weighting coefficients are shown in Figure 10. The optimal design variables
returned from EGO are shown in Figure 10a and the total turning and net turning are shown in Figure 10b. As seen
previously in Section IV.A, the raw design variables have significant noise, but the integrated quantity of total turning is
smooth. The total turning is observed to be roughly flat at intermediate and large values of 𝑊`, but starts to substantially
increase as 𝑊` decreases. This indicates that more total turning is associated with decreased variance in performance.
Figures 10c and 10d show the mean performance of the objectives, `𝑀 and `Π , respectively. As 𝑊` becomes small,
and therefore as 𝑊𝜎 becomes large, the mean performance of both objectives falls precipitously. Figures 10e and 10f
show the standard deviation of the two objectives, 𝜎𝑀 and 𝜎Π . As the optimizer increases 𝑊𝜎 , the standard deviation
of 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 is seen to drop to roughly 60% of its value when 𝑊` is near 1. However, the standard deviation of Π𝑡ℎ𝑟𝑜𝑎𝑡

more than doubles from its value when 𝑊` is near 1. The increase in 𝜎Π , opposite the desired trend, is caused by
the differing magnitudes of 𝜎𝑀 and 𝜎Π . While 𝜎Π is increasing as 𝑊𝜎 increases, the simultaneous larger decrease
in 𝜎𝑀 more than makes up for it. These results indicate that there are opposing trends in the inlet design qualities
that minimize 𝜎𝑀 and 𝜎Π . Note that due to the form of the robust objective function in Eq. (28a), the deterministic
weighting coefficients still influence which throat objective is prioritized more in robust optimization. Thus, adjusting
the deterministic weighting coefficients gives the design engineer the ability to alter the behavior of the robust objective
function to minimize 𝜎Π rather than 𝜎𝑀 .

Figure 11 shows four different Pareto frontiers that can be formulated from the robust objective function of Eq. (28a).
Figure 11a shows the Pareto frontier between both ` values. The ` frontier indicates that there is not a noteworthy
tradeoff between `𝑀 and `Π , as the design qualities that improve one also improve the other. Figure 11b shows
the Pareto frontier between both 𝜎 values. The 𝜎 frontier indicates that, unlike `, a design tradeoff must be made
between 𝜎𝑀 and 𝜎Π because they are inversely related to one another. Figure 11c shows the Pareto frontier for 𝑀𝑡ℎ𝑟𝑜𝑎𝑡

performance, which indicates that a tradeoff must be made between `𝑀 and 𝜎𝑀 . Finally, Figure 11d shows the Pareto
frontier for Π𝑡ℎ𝑟𝑜𝑎𝑡 performance. The Π𝑡ℎ𝑟𝑜𝑎𝑡 frontier indicates that there is no tradeoff to be made between `Π and
𝜎Π because the design qualities that improve one quantity also improve the other.

Synthesizing observations from the plots of total turning, objectives, and Pareto frontiers, conclusions are drawn
regarding the design trends incurred by robust optimization. The Pareto frontiers show that improvements in three of the
four robust objectives, `𝑀 , `Π , and 𝜎Π , are related to one another. The final robust objective, 𝜎𝑀 , is inversely related
to the other three. Due to differing magnitudes of 𝜎𝑀 and 𝜎Π , the set of deterministic weighting coefficients chosen for
this study results in robust optimization favoring improvements in 𝜎𝑀 over improvements in 𝜎Π . Improvements in 𝜎𝑀

are caused by increasing the total turning beyond the amount returned by deterministic optimization with 𝑊𝑀 = 1.0.
Thus, the variance in 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 is minimized by over-compressing the flow to beyond the throat target value 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 ,
driving `𝑀 further from its target. The excessive compression caused by the increase in total turning requires stronger
shocks, leading to greater losses, therefore decreasing `Π . The above discussion gives insight into how the four robust
objectives are linked to one another and how robust optimization is affecting the mean values. However, it does not
reveal why the total turning is linked to changes in the variance of throat objectives. This topic is investigated in more
detail in Section IV.E.

The next component of the robust optimization study is a comparison with low-fidelity deterministic results from
SQP, shown in Figure 12. The total turning for low-fidelity robust optimization compared to low-fidelity deterministic
optimization is shown in Figure 12a. The deterministic total turning is plotted against 𝑊𝑀 , while the robust total turning
is plotted against 𝑊`. All of the robust optimization results have 𝑊𝑀 = 𝑊Π = 0.5. This plot shows that, as discussed
previously, decreasing 𝑊` and increasing 𝑊𝜎 causes the total turning to roughly double its value compared to when
𝑊` is near 1.0. Figure 12b shows the same quantities as Figure 12a but zoomed in on the 0.5 ≤ 𝑊` ≤ 1.0 region.
Figure 12b illustrates that as the robust weighting coefficient 𝑊` approaches 1.0, the value of the total turning returned
by robust optimization should approach the value returned by deterministic optimization with the same deterministic
weighting coefficients.

Figures 12c and 12d show the probability density functions (PDFs) of the throat objectives for the deterministic
optimum compared to the robust optimum with 𝑊` = 0.1 and 𝑊𝜎 = 0.9. Robust optimization for high 𝑊𝜎 values is
overly compressing the flow, reducing the throat Mach number beyond its target value. Excess compression results
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(e) Standard deviation of throat Mach number.
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Fig. 10 Optimization results from the low-fidelity robust study with 𝑊𝑀 = 𝑊Π = 0.5 and 𝑊` +𝑊𝜎 = 1.0.
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in stronger shocks, which tends to decrease `Π . The standard deviation 𝜎𝑀 decreases by roughly 15% from robust
optimization, while 𝜎Π increases by roughly 26%. A comparison of the objective statistics from these two optimizations
is presented in Table 7 below.

Table 7 Comparison of results for low-fidelity deterministic to robust.

`𝑀 𝜎𝑀 `Π 𝜎Π

Low-fidelity Deterministic 3.089 0.03860 0.9109 0.003622
Low-fidelity Robust 2.726 0.03294 0.8677 0.004555

Figure 12e displays the design variables from robust optimization compared to deterministic optimization. While
the angles are generally larger across the inlet for robust optimization, in accordance with the observed increase in total
turning, there appear to be no departures from the Oswatitsch trend that can not be explained by epistemic uncertainty.

The final component of the robust optimization study is a multifidelity robust optimization. Similar to the high-fidelity
deterministic optimization of Section IV.B, running more than one multifidelity robust optimization is infeasible due to
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(c) Mean and standard deviation of 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 .
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Fig. 11 Pareto frontiers from the low-fidelity robust study with 𝑊𝑀 = 𝑊Π = 0.5 and 𝑊` +𝑊𝜎 = 1.0.
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(b) Total turning zoomed in on the 𝑊𝑀 = 𝑊Π = 0.5.
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Fig. 12 Low-fidelity robust compared to low-fidelity deterministic results.
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Fig. 13 Multifidelity robust compared to low-fidelity robust results.

computational expense. As a result there are no obtained Pareto frontiers to give insight on the tradeoffs available. The
optimization is run with 𝑊𝑀 = 𝑊Π = 0.5, 𝑊` = 0.1, and 𝑊𝜎 = 0.9. The PDFs of the throat objectives are shown in
Figures 13a and 13b. The objective distributions indicate that compared to low-fidelity robust optimization, multifidelity
robust optimization is predicting roughly 60% more uncertainty in 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 and roughly 12% less uncertainty in Π𝑡ℎ𝑟𝑜𝑎𝑡 .
The design variables are shown in Figure 13c. As with the high-fidelity deterministic optimization of Section IV.B, there
is once again a departure from the Oswatitsch trend in the final design variable that is larger than the estimated numerical
uncertainty from EGO early exit. There appears to be a departure from the Oswatitsch trend in design variables two
and three as well, but this is within epistemic uncertainty bounds so no strong conclusions can be drawn about this
observation. As with the results of high-fidelity optimization, this departure from the Oswatitsch trend when viscous
effects are considered is a topic for future research.

E. Physical Cause of Robustness
The goal of high quality optimization work should not be to simply run a computer program and accept the results,

but to use an optimizer as a tool to aid in understanding physical trends. In this vein, the final study of the present work
is an investigation into the underlying physical cause that leads to some inlet configurations being robust, while others
are sensitive.
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The \-𝛽-𝑀 function of Eq. (1), or equivalently the 𝛽-\-𝑀 function of Eqs. (2) through (4), provides the oblique
shock wave angle 𝛽 for a known pre-shock Mach number 𝑀1 and deflection angle \. The values of 𝑀1, \, and 𝛽 specify
the post-shock total pressure recovery Π and Mach number 𝑀2, shown in Figures 14a and 14b for several sample Mach
numbers across a range of deflection angles. These curves all have varying slope and curvature across their length.
Understanding these variations leads to an explanation of why some designs are robust and others are sensitive. The
sensitivity of the output quantity, the y-axis value, on these plots is related to the derivative with respect to the x-axis
value. As an example, consider the Mach 10 curve on the Π plot of Figure 14a. If there is a deflection angle with some
small uncertainty in the precise value, \ ± 𝛿, centered about \ = 10°, then there will be substantial uncertainty in the
response quantity Π due to how steep the Mach 10 curve is at \ = 10°. Therefore, this configuration is sensitive in Π. In
contrast, if the uncertain deflection angle \ ± 𝛿 is centered about \ = 1° with the same amount of uncertainty, then
there is very little uncertainty in the output Π due to how flat the slope is at \ = 1°. Therefore, this configuration is
robust in Π. Both of these examples use the same value of uncertainty in the input condition, 𝛿, but the sensitivity of the
system changes based on the derivative at the current conditions. Examining the rest of the Mach curves on Figure 14a
reveals that they all tend to have small slopes as the deflection angle approaches 0, and steeper slopes in roughly the
10° ≤ \ ≤ 30° region. Particularly large Mach numbers, such as Mach 10, have an additional low-slope robust region
around roughly \ ≥ 30°, but the low total pressure recovery obtained from such a configuration renders this irrelevant
for airbreathing propulsion purposes. Note that the observation that decreasing deflection, ideally as close as possible to
0, increases robustness in Π matches the result obtained in Section IV.D for total turning, shown in Figures 10b and 10f.

When the above analysis is repeated for the post-shock Mach number 𝑀2, the results are not as immediately clear.
The curves for large Mach numbers, such as Mach 10, in Figure 14b are steeper at low deflection angles and flatter at
intermediate deflection angles, but it is more difficult to interpret the slope for lower Mach number curves. To assist
with this analysis, finite differences are used to calculate the derivatives of the post-shock quantities. The derivative
of Π with respect to \ is shown in Figure 14c, and the derivative of 𝑀2 is shown in Figure 14d, for deflection angles
relevant to the bounds of the optimization problems in this work. On the derivative plots, robustness is indicated by
derivative values close to zero. For Π, the trends visible are that deflection angles close to zero are more robust than
higher deflections, and lower Mach numbers are more robust than higher Mach numbers. For 𝑀2, lower Mach numbers
are once again seen to be more robust than higher Mach numbers. The trend for deflection angle is less clear on Figure
14d, so a change of variables is performed. Solutions are found for several sample deflection angles across a range of
pre-shock Mach numbers, plotted in Figure 14e. The derivatives of these solutions are shown in Figure 14f. Here, the
derivative plot shows that above some crossover Mach number around roughly 1.8, higher \ values decrease the absolute
value of the derivative for 𝑀2. Therefore, to decrease sensitivity in 𝑀 , the amount of deflection should increase. These
results match the numerical trends observed in Section IV.D, where it was found that increases in total turning increased
the robustness of 𝑀𝑡ℎ𝑟𝑜𝑎𝑡 by minimizing 𝜎𝑀 .

V. Conclusions
Scramjet inlet design studies have been done many times, typically either using inviscid analytical techniques, or

deterministic methods. In this work, a scramjet inlet design optimization problem was formulated both deterministically
and stochastically for both low and high-fidelity analyses. High-fidelity analysis consists of fully viscous CFD with
grid-generation within the optimization loop. Robust optimization was performed using a global derivative-free
optimization algorithm. A method of quantifying numerical uncertainty from the optimization algorithm was developed.
The scramjet design under uncertainty problem was solved and trends in the design space were explored. Findings
include that viscous effects may result in departure from the Oswatitsch trend, multifidelity uncertainty quantification
nearly perfectly replicates the results of purely high-fidelity uncertainty quantification for the inlet design problem, and
design trends that increase inlet robustness were identified. Finally, the cause of robustness in scramjet inlet designs was
linked back to fundamental physical principles through the \-𝛽-𝑀 function. Thorough analysis of the \-𝛽-𝑀 function
and oblique shock relations was demonstrated to enable accurate predictions of which design trends will increase or
decrease system sensitivity.

Future work on this topic will extend the current techniques to the problem of multipoint optimization under
uncertainty for variable geometry inlets operating across a range of Mach numbers. Additional areas of investigation
include using reliability-based design optimization to minimize the probability of failure events such as engine unstart,
and optimizing combustor and nozzle designs under uncertainty. The long-term goal is to perform design under
uncertainty at the overall system level for an airbreathing hypersonic vehicle.
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(b) Post-shock 𝑀 .
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Fig. 14 Manipulations of the \ − 𝛽 − 𝑀 function weak shock solutions.
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