

Efficient Variable-Pitch Propeller Aerodynamic Model Development for Vectored-Thrust eVTOL Aircraft

Benjamin M. Simmons

Flight Dynamics Branch
NASA Langley Research Center

AIAA AVIATION Forum, 27 June-1 July 2022

Contents

- Motivation
- Background
- Testing approach
- Sample results
- Concluding remarks

Software:

- Design-Expert®
- SIDPAC

Variable-pitch, 19.5-inch diameter propeller mounted in the NASA Langley 12-Foot Low Speed Tunnel.

Motivation/Background

- Objective: develop a propeller aerodynamic model for a future eVTOL research aircraft for use in flight dynamics simulations
- eVTOL aircraft propellers experience a wide range of operating conditions
- Limited data or mathematical models exist for propellers at incidence
- Builds on previous work for fixed-pitch, eVTOL aircraft propellers^{1,2,3}
- Variable-pitch control is important for certain eVTOL aircraft configurations

- 1. Simmons, B. M., "System Identification for Propellers at High Incidence Angles," *Journal of Aircraft*, Vol. 58, No. 6, 2021, pp. 1336–1350.
- 2. Simmons, B. M., and Hatke, D. B., "Investigation of High Incidence Angle Propeller Aerodynamics for Subscale eVTOL Aircraft," NASA TM-20210014010, May 2021.
- 3. Stratton, M., and Landman, D., "Wind Tunnel Test and Empirical Modeling of Tilt-Rotor Performance for eVTOL Applications," *AIAA SciTech 2021 Forum*, AIAA Paper 2021-0834, Jan. 2021.

Propeller Aerodynamics

Axial Propeller Aerodynamics

- Produces a thrust force T_x and aerodynamic torque Q_x
- Strong dependence on:
 - Advance ratio J = V/nD
 - Collective pitch angle δ_c
 - Propeller geometry
- May also be a function of:
 - Propeller blade Reynolds number Re
 - Tip Mach number M_{tip}
- Thrust and torque coefficients are defined as: $C_{T_x} = T_x/\rho n^2 D^4$ and $C_{Q_x} = Q_x/\rho n^2 D^5$

Propeller Aerodynamics at Incidence

- Produces forces and moments in all axes
- Additional strong dependence on incidence angle i_p
- Important for modeling eVTOL vehicles

Axial propeller forces and moments.

Propeller forces and moments at incidence.

Propeller Wind Tunnel Test Overview

- NASA Langley 12-Foot Low-Speed Tunnel
- Test regions (informed by previous work^{1,2})
 - Hover
 - Low Incidence (high-speed transition)
 - High Incidence (low-speed transition)
 - Descent
- Commanded test factors
 - Freestream velocity, V (HTC)
 - Incidence angle, i_p (ETC)
 - Motor PWM command, η_m (ETC)
 - Collective pitch PWM command, η_c (ETC)

ETC = easy-to-change factor HTC = hard-to-change factor

Propeller test regions.

Wind tunnel run (x150 speed).

^{1.} Simmons, B. M., "System Identification for Propellers at High Incidence Angles," *Journal of Aircraft*, Vol. 58, No. 6, 2021.

^{2.} Simmons, B. M., and Hatke, D. B., "Investigation of High Incidence Angle Propeller Aerodynamics for Subscale eVTOL Aircraft," NASA TM-20210014010, May 2021.

Experimental Design Overview

- Design of experiments/response surface methodology (DOE/RSM)¹
 - Hover Region: 2-factor completely randomized design
 - Low/High Incidence Region: 4-factor split-plot design
 - Descent Region: 3-factor split-plot design
- Different complexity I-optimal designs were compared
- Fraction of design space (FDS) plots^{2,3} see paper

Split-plot designs enable conducting efficient experiments with HTC factors.

UPV – unscaled prediction variance SPV – scaled prediction variance δ – confidence interval half-width σ – response standard deviation

Low and High Incidence Region FDS plots for a cubic evaluation model.

- Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed., John Wiley & Sons, 2016. Zahran, A., Anderson-Cook, C. M., and Myers, R. H., "Fraction of Design Space to Assess Prediction Capability of Response Surface Designs," Journal of Quality Technology, Vol. 35, No. 4, 2003.
- Liang, L., Anderson-Cook, C. M., and Robinson, T. J., "Fraction of Design Space Plots for Split-plot Designs," Quality and Reliability Engineering International, Vol. 22, No. 3, 2006.

Simmons, NASA Langley AIAA AVIATION 2022 Forum

Low Incidence Region Test Matrix (1/2)

Freestream velocity against test point number.

Incidence angle against freestream velocity.

Low Incidence Region Test Matrix (2/2)

Motor command against collective command.

Observed rotational speed against collective pitch angle.

Test Overview for Multiple Regions (1/2)

Observed propeller test variable values for multiple test regions.

Test Overview for Multiple Regions (2/2)

* Hover Data

O Low i_p Modeling \triangle Low i_p Validation

High i_p Modeling \diamondsuit High i_p Validation

+ Descent Modeling

× Descent Validation

$$J_x = \frac{V \cos i_p}{n D}$$
$$J_z = \frac{V \sin i_p}{n D}$$

Observed advance ratio components in each experimental region.

Final Experimental Design Properties

Final experimental design properties for each test region.

			Cubic Model	Quartic Model
Design Order	Points	Groups	FDS with $\delta/\sigma \leq 2$	FDS with $\delta/\sigma \leq 2$
Hover Region	36	N/A	1.000	0.999
Low/High Incidence Region	162	11	0.993	0.864
Descent Region	122	12	0.997	0.963

Data collection completed in less than 3.5 hours

Final design FDS plots for a cubic evaluation model in each test region.

Propeller Aerodynamic Modeling Approach

- Nonlinear polynomial models with up to cubic regressors
- Models identified using multivariate orthogonal function modeling^{1,2}
- Response variables:
 - Propeller force coefficients: $C_{T_x} = \frac{T_x}{\rho n^2 D^4}$, $C_{T_y} = \frac{T_y}{\rho n^2 D^4}$, $C_{T_z} = \frac{T_z}{\rho n^2 D^4}$
 - Propeller moment coefficients: $C_{Q_x} = \frac{Q_x}{\rho n^2 D^5}$, $C_{Q_y} = \frac{Q_y}{\rho n^2 D^5}$, $C_{Q_z} = \frac{Q_z}{\rho n^2 D^5}$
- Final explanatory variables (others compared in the paper):
 - Normal advance ratio: $J_x = \frac{V \cos i_p}{n D}$
 - Edgewise advance ratio: $J_z = \frac{V \sin i_p}{n D}$
 - Collective pitch angle: δ_c
 - Rotational speed: n describes both Re and M_{tip} effects
- Example model equation (thrust coefficient in the Low Incidence Region):

$$C_{T_x} = C_{T_{x_0}} + C_{T_{x_{J_x}}} J_x + C_{T_{x_{\delta_c}}} \delta_c + C_{T_{x_{J_x}}} J_x^2 + C_{T_{x_{J_z}}} J_z + C_{T_{x_{J_x}\delta_c}} J_x \delta_c$$

- 1. Morelli, E. A., and Klein, V., Aircraft System Identification: Theory and Practice, 2nd ed., Sunflyte Enterprises, Williamsburg, VA, 2016.
- 2. Morelli, E. A., "Global Nonlinear Aerodynamic Modeling Using Multivariate Orthogonal Functions," Journal of Aircraft, Vol. 32, No. 2, 1995, pp. 270–277.

Modeling Results

- The models have good predictive capability
- The final models are tabulated in the paper

Hover Region Low and High Incidence Region Descent Region Thrust coefficient (C_{T_x}) response surface models compared to measured data.

Concluding Remarks

- The variable-pitch propeller testing/modeling strategy was successful and is recommended for future testing
- Accurate characterization of propeller aerodynamics is essential for modeling eVTOL aircraft
- DOE/RSM test techniques improve efficiency and data quality
- Propeller aerodynamics in transition are complex
- Split-plot designs accommodate practical testing considerations
- The identified models can be used for future eVTOL aircraft studies

Acknowledgments

- Funding: NASA Aeronautics Research Mission Directorate (ARMD), Transformational Tools and Technologies (TTT) Project
- Variable-pitch mechanism development: Gregory Howland
- Test execution: Ronald Busan, Gregory Howland, Wes O'Neal
- Wind tunnel capability enhancement: Wes O'Neal and David Hatke
- Photography support: Lee Pollard
- Additional team support:

George Altamirano	Rose Weinstein	Clinton Duncan
Earl Harris	Stephen Riddick	Sue Grafton
David North	Brian Duvall	Matthew Gray
Steven Geuther	Jacob Cook	Jason Welstead
Siena Whiteside		

Questions – Thank you for your attention.

Related work presented at the AIAA AVIATION 2022 Forum

 Simmons, B. M., Morelli, E. A., Busan, R. C., Hatke, D. B., and O'Neal, A. W., "Aero-Propulsive Modeling for eVTOL Aircraft Using Wind Tunnel Testing with Multisine Inputs," AIAA AVIATION 2022 Forum, Jun. 2022.

Related propeller testing and modeling research

- Simmons, B. M., "System Identification for Propellers at High Incidence Angles," *Journal of Aircraft*, Vol. 58, No. 6, 2021, pp. 1336–1350.
- Simmons, B. M., and Hatke, D. B., "Investigation of High Incidence Angle Propeller Aerodynamics for Subscale eVTOL Aircraft," NASA TM-20210014010, May 2021.
- Stratton, M., and Landman, D., "Wind Tunnel Test and Empirical Modeling of Tilt-Rotor Performance for eVTOL Applications," AIAA SciTech 2021 Forum, AIAA Paper 2021-0834, Jan. 2021.