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Abstract– This paper presents a general purpose, plug-and-play simulation platform for 

the use of future aviation stakeholders, such as urban airspace planners, air vehicle operators, 

ground operation managers, air traffic controllers and aviation researchers. The presented 

simulator platform is envisioned to serve as a toolkit to visualize, evaluate, and configure 

future advanced air mobility (AAM) operations. Highlighting features of this toolkit include 

a modular architecture that allows multiple smart unmanned aerial systems (UASs) to 

remotely connect to the simulation server and participate in decentralized decision-making 

scenario simulations. As an example of the decentralized decision-making scenario, an inter-

agent negotiation-based conflict resolution use case is considered in this paper, where the 

UASs leverage the on-board/on-the-edge artificial intelligence (AI) capability to continually 

build situational awareness, and use this information to predict future conflicts and resolve 

them through machine-to-machine negotiation. As such operations are non-existent at scale 

currently, the presented simulation platform offers a viable and cost-effective alternative for 

assessing the efficacy of AAM research outcomes and challenges in future shared airspace 

usage. The simulation platform allows plug-n-play connectivity with AI and non-AI compute 

modules representing individual UAS’s flight control. Each module can interact with the 

simulation platform independently to communicate current and desired future states, 

situational awareness, and conflict resolution utilization costs for inter-agent negotiation. The 

simulation environment orchestrates realistic operational scenarios with spatiotemporal 

details, dynamic events, tactical conflict-resolution methods, interfaces for customizing air 

traffic control parameters, and information exchange uncertainties. In the future, this can 

serve as a community focused cloud simulation platform, incorporating multi -stakeholder 

airspace constraints from regulatory, government, city, and local agencies.  

I. Introduction 

Urban Air Mobility (UAM) and its more general form, Advanced Air Mobility (AAM), have gained significant 

popularity in recent times with the advent of aerodynamically stable small-scale aircraft, robust flight control systems, 

powerful edge, fog, and cloud compute platforms, and above all the demand for fast short -haul transit and package 

delivery in urban areas struggling with ever-increasing ground traffic congestion. Numerous research and development 

activities can be found in industry and academia alike to innovate the next generation unmanned aerial systems 

(UASs), low-altitude flight dynamics models and corresponding control systems, air vehicle tracking systems, shared 

airspace traffic management protocols, ubiquitous connectivity leveraging upcoming communication capabilities, and 

many more. When it comes to testing and validating these innovations, reliance is often put on simulation as real-

world experimentation is either cost-prohibitive or logistically challenging, at least during the early stages of research. 

Consequently, several simulation tools, utilizing a wide variety of functionalization approaches, visualization 

techniques, and human machine interfaces are available in contemporary commercial [1] [2] and research [3] [4] [5] 

space. Specifica lly in the area of machine-to-human or machine-to-machine negotiation, several studies have been 

reported in recent time that aim to enable this feature utilizing AI prediction approaches [6] [7]. A key technological 

differentiation that the presented simulation platform brings in, is the utilization of collective machine intelligence and 

the behavior thereof, to address the shared airspace usage. This unique approach is based on the foundational idea that 

future aviation stakeholders, including smart autonomous vehicles, actively contribute to the global situational 

awareness building, and take part in the decision making. 
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Historically, air traffic control has not witnessed a great deal of active involvement from vehicle operators and the 

vehicles themselves. Rather, the traffic controllers at different control points, such as air traffic control (ATC) towers, 

Terminal Radar Approach Control Facilities (TRACON), and Air Route Traffic Control Centers (ARTCC), oversee 

and manage the airspace traffic. However, with highly diverse air vehicle types, AAM business models, and large 

number of AAM agents sharing the airspace with conventional air traffic, the present -day human-centric air traffic 

control framework is vulnerable to inefficiencies under massively increased demand in the future . Therefore, it is 

envisioned that decision making in the future airspace usage will be shared by AAM agents, primarily those carrying 

residual artificial intelligence that can be leveraged to support distributed decision making.  

In our past work [8] [9], we investigated the feasibility of utilizing deep learning [10] methods to build low latency 

situational awareness from synthesized community data as shared by individual AAM agents, and utilizing this 

situational awareness to predict future conflicts. We then used these predictions of future conflict to trigger a decision 

engine on each AAM agent that recursively updated the utilization cost. Based on the utilization cost, which 

encompasses the agents’ business preferences, the resolution strategy is picked from the list of approved strategies. 

The presented 3D simulation platform is envisioned to visualize and characterize the efficacy of such negotiation -

based conflict resolution approach. Furthermore, this platform can also offer rapid verification capability to a wide 

range of technological innovations in the aviation research. In essence, the presented simulation platform offers two 

key benefits to the scientific community. First, in addition to offering an immersive 3D visualization of the airspace 

operations, it also helps alleviating inexplicability with modern-age artificia l intelligence (AI) and machine learning 

(ML) techniques through demonstration of causal effects. Second, the presented tool serves as a transition platform to 

seamlessly pass-on the control from humans to smart machines while maintaining the human oversight and insight in 

an effective manner. 

The rest of the paper is organized as follows: Section II describes the targeted problem statement, and provides a 

brief reference to our past work in the distributed decision-making area. Section III presents the simulation platform 

and discusses about its functional modules. In Section IV, we discuss the utilization of the simulation platform in two 

different use case scenarios – one in urban settings and one in non-urban settings. Section V summarizes the research 

and development effort. Finally, Section VI provides a discussion on the future directions. 

II. Targeted Technology Space and Background Work 

Anticipated rapid scaling of smart UASs, especially operating in low altitude and over short ranges, poses a 

significant challenge to the present-day ATC-centric decision-making framework that functions without explicit  

consideration of user priorities. The future aviation market is poised to witness a wide range of business demands, and 

catering to the multifarious operator preferences will require a much larger conventional air operation and traffic 

management infrastructure, if all strategic decisions are to be assessed and taken in this centralized model. A more 

efficient way, however, is to consider a decentralized model where smart UASs can take preferential and locally -

critical decisions on their own and accept responsibility to resolve any potentially resulting conflicts through inter-

UAS information sharing and collaborative 

negotiation. 

In recent times, a  neural network-based 

machine learning approach has emerged as a 

popular method in many business domains, such 

as financial, legal, healthcare, agriculture, and 

transportation, for rapid assessment of the 

situation and future state prediction – 

information that drives actionable decisions. In 

most of the cases, however, the machine 

learning module performs as a “black box,” 

where it is not possible to explain why the AI 

arrived at a  specific decision, nor 

deterministically predict its future behavior. Due 

to this reason, the aviation industry has remained 

cautiously slow in adopting AI and machine 

learning in mainstream air operations, where 

risks are much larger than other industries. A 

chronological and holistic visualization 

capability, such as for trends, patterns, and 
Fig. 1: Technology placement in present day air traffic 

management framework 



3 

 

agent-specific interactions, can not only offset some of the adoption risks, such as customer trust, data analysis cost, 

talent gap etc., for AI and machine learning in aviation operations, but also  can boost the efficiency of airspace 

utilization planning and resource allocation efforts from AAM stakeholders. It is the goal of the presented 3D 

simulation platform to offer such a capability. The prototype utilization of this platform is set up to provide a 

comprehensive and realistic visualization of the AI-based situational awareness development and collaborative 

negotiation-based deconfliction in AAM operations conducted by smart UASs. A brief summary of this past research 

is given below. 

In the current aviation operation framework, pre-flight planning takes into account the strategic deconfliction of 

flights. Additionally, tactical deconfliction measures (collision avoidance) are used to resolve last-minute conflicts 

between approaching vehicles. Typically, there is at least one level of deconfliction between pre-flight planning and 

last-moment collision avoidance. This is mainly done through separation assurance managed  by human air-traffic 

controllers, and thus can be a bottleneck under high demand. Our research looks to utilize the time in between the 

strategic and tactical measures (tactical collision avoidance in conventional air traffic management (ATM)) as shown 

in Fig. 1 to offer a decentralized and automated measure for collaborative resolution of conflicts.  In doing so, this 

research envisions to: (a) reduce human-centric management of AAM and UAM operations, (b) take into consideration 

the diverse business productivity metrics used by the different operators through decentralized decision making and, 

(c) optimize utilization of a  decision window via artificial intelligence. In this approach, the presented 3D simulation 

platform plays two key roles. First, the positional data from each AAM agent is aggregated in the simulation 

environment that then serves as a snapshot of the global situational awareness. A 2D time-series of such snapshots is 

used as the synthetic data to compute or predict future conflicts using conventional mathematical models or deep 

neural net-based AI models, respectively. Second, the simulation engine also serves as a global information exchange 

portal that allows the AAM agents to share situational data, operational preferences, and negotiation offe rs. 

A recursive and distributed computation framework, as shown in Fig. 2, is implemented at the backend of the 

decision simulation engine. A conflict detection module onboard each AAM agent identifies future potential conflicts 

and iteratively updates its corresponding cell in the issue table with anticipated time to conflict. One such method that 

uses predictive modeling to detect future conflict has been discussed in our past work [8]. 

 

 

Fig. 2: Implementation plan for iterative negotiation for decentralized conflict resolution, ref. [9] 
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In Fig. 2 the parameters in the utilization cost rUk determination are as follows: 

U1 to l: Strategy utilization cost for conflict avoidance 

P1 to m: Accessible parameters that are related to the execution of the strategies 

Q1 to n: Private parameters that are related to the execution of the strategies 

Wij: Business preference to alter the parameter Pi for strategy Sj  

r: Smart agent id (1 to N) 

Δ: Uncertainty in estimating other nodes’ business weight preference 

φ: Uncertainty in estimating other nodes’ private parameters used in utilization cost  

𝜇: Conflict status 
gUk: Global reward 
tUk: Time penalty 

Non-zero values across the diagonal in the issue table trigger the respective AAM agents to negotiate. Each agent 

then updates its corresponding column in the strategy table with strategy utilization cost values as computed using the 

computation model discussed in our previous work [9] that takes into account the agents’ current state, business 

preferences, and any other non-public parameters they include in their decision making. The decision engine analyzes 

pre-defined strategy pairs for deconfliction and, based on the values updated by the agents, determines if convergence 

is reached or not. The resolution plan is then picked by the respective agents, and they update their flight parameters 

accordingly.  

III. Simulation Platform 

The frontend 3D simulation platform is built using Unity software [11], which is a cross-platform game engine 

developed by Unity Technologies. Individual flight controllers of the AAM agents and the decision engine porta l are 

built using Python programming language [12]. Web deployment of the visualization is enabled through WebGL [13]. 

 

 

Fig. 3: Functional block diagram of the simulation engine 

Fig. 3 shows the functional block diagram of the simulation engine. Each AAM agent node is controlled 

independently, and each agent on its own takes the conflict resolution decisions. The simulation engine builds the real-

time visualization based on status updates from individual agents. The simulation engine utilizes a set of databases to 

lookup different vehicle forms, operator categories, payload types, approved stra tegies, etc. Additionally, the 

simulation platform maintains a portal of current issues, negotiation offers, and resolutions. The agents can access the 
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information on this portal to coordinate the conflict resolution among themselves in a distributed manne r. In the future 

UTM architecture [14], such a portal can be envisioned as a (UAS Service Supplier) USS or a Flight Information 

Management System (FIMS) [15] [16]. 

 The simulation platform runs on a cloud server along with the supporting communication module. Each UAS agent 

joins the simulation by providing a configuration dataset that contains the agent ’s operator identification (ID), vehicle 

type, flight plan, and a set of public and private parameters. Using this information, the simulation engine seeds a 

vehicle model in the main simulation environment. After seeding the agent in the main 3D simulation environment, 

control is handed back to the agent’s local compute module. A node manager module controls the information 

accessibility for the agents. Each agent, while able to view its own operator’s public and private parameters in real 

time, can only view the public parameters of  other operators’ vehicles. This essentially creates an “information fog” 

similar to the real world where operators/smart agents do not share all of their operational and preferential information 

in public to maintain competitive advantage. The agents utilize their autonomous control to fly through waypoints, 

assess future conflicts based on the shared information, initiate agent-to-agent negotiation to resolve these conflicts, 

and carry out the negotiated resolutions. To facilitate such inter-agent negotia tion, an information sharing portal is 

made available in the simulation platform that communicates the issues, negotiation offers, and agreed -upon 

resolutions – all in a dashboard on the impacted agents’ simulation view. 

 

 

Fig. 4: 3D simulation platform screenshots showing different features 

(a) Scene selection window 

(b) Node view with access to the agent parameters (public and private) 
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A diverse set of compute capabilities, such as cloud instances, edge compute nodes, or other on -premises hardware 

can be utilized by the smart agents to communicate with the simulation platform. The simulation platform uses 

WebSocket as the communication protocol that provides a full-duplex communication channel over a single TCP 

connection. The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011  [17], and the WebSocket 

API in Web IDL is being standardized by the W3C [18]. 

 Fig. 4(a) shows the modular implementation framework that allows different concepts of operations (CONOPS) 

to be used in the simulation. Each simulation environment can be built and integrated as a tile in the “select scenario” 

window. Fig. 4(b) shows a node view in the simulation as it is seeded, based on the configuration parameters provided 

at the start of the simulation. In the node view mode, a pull-up window shows the node’s identification and positional 

information along with its public and private parameters.  

 

 

Fig. 5: Additional features of the simulation platform 

(a) Negotiation portal for decentralized deconfliction by smart agent 

(b) Node view with access to the agent parameters (public and private) 
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Fig. 5(a) shows a screenshot of the negotiation/inter-agent communication portal where the agents update their 

assessment of impending conflicts with other agents and their utilization costs for adopting particular resolution 

strategies from an approved list. The utilization cost is calculated by each agent independently at its respective 

compute module, using the computation model as shown in Fig. 2. In addition to simulating the collective behavior 

of the smart agents, the simulation platform also enables other impacting events, such as airspace restrictions, single-

access corridors, and ground access constraints, through programmable modules in the control panel (see Fig. 5(b)). 

This is a subset of what could potentially be incorporated from the Federal Aviation Agency (FAA)’s Aeronautical 

Information Management Modernization (AIMM) initiatives [19].  

IV. Example Use Cases of the Simulation Platform 

 Two different use cases, one in an urban setting and the other in a non-urban setting, are discussed here to provide 

a general overview of the presented 3D simulation platform utilization. 

A. Conflict resolution negotiation in shared urban airspace 

Future urban airspace will be a challenging environment for smart UAS operations due to dense UAM traffic, 

sharing of airspace with conventional aircrafts, and flight restrictions over numerous designated areas. Furthermore, 

unscheduled short-haul transit, typical in taxi and package delivery operat ions, will make a pre-planned traffic 

management structure unrealistic. In such cases, the air vehicles will often run into conflicts over access to passage. 

A decentralized resolution approach through inter-agent negotiation can be an effective tool in such scenarios. Fig. 6 

shows a graphical representation of this approach in the presented simulation platform. 

 

 

Fig. 6: Example negotiation-based conflict resolution strategy implementation in simulation 

While the UASs follow their planned trajectory, they also periodically update their assessment of future conflicts 

based on the information collected through the simulation platform. To this effect, the simulation platform acts as a 

contiguous information fabric, provisioning real-time situational awareness and airspace constraints data to each 

agent. In the event that a particular negotiation fails to converge to agreement, the simulation engine activates tactical 

measures similar to ACAS Xu (Airborne Collision Avoidance System for unmanned aircraft) [20]. In such cases, the 

separation assurance is enforced by restricting entry to an occupied voxel or a cube-shaped volume in the airspace 

around the AAM agent. The resulting action often involves one or more agents rerouting from their original trajectory 

to avoid conflict with other agents, as shown in Fig. 7. 

T1: Node 1 following its original trajectory 
T2: Node 1 detects conf lict with node 2 

T3: Node 2 detects conf lict with node 1 
T3 + tc: Set as conf lict time 
T3 + ta: Set as negotiation cutof f time 

T3 + tr: Resolution reached 
T4: Node 1 reroutes as per the agreement 
T5: Node 1 rejoins the planned route 



8 

 

 

Fig. 7: Built-in tactical measure in airspace navigation 

In the future, when air-traffic control can be safely handed off to smart machines, under human oversight, real-

world deconfliction measures, such as separation assurance instructions would be communicated from machines to 

machines. This functionality could be simulated in the presented simulation platform  in the form of a high-priority 

message, instructing a conflicting agent to override its current trajectory with the specified resolution trajectory. It is 

envisioned that, in real-world operations, such an override could be implemented automatically by an on-board 

emergency management module that would be connected to the vehicle’s flight controller and deliver the tactical 

deconfliction solutions directly to the flight controller for quick implementation. 

Multiple agent-to-agent engagement scenarios have been simulated in the presented simulation platform. These 

include: (a) deciding which agent will pass through an intersection point first based on the  mission priority or 

willingness to compensate the yielding agent with credit, (b) accessing a single-pad vertiport for take-off or landing, 

(c) giving way to a public safety or emergency agent. Fig. 8 shows screenshots of such scenarios. 

 

 
(a) Trajectory intersection handling scenario 

Vehicle negotiated for straight passage in 

return of a credit to the yielding vehicle 

Vehicle agreed to reroute around the 

intersection point, thus giving passage to 

the negotiating vehicle 
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Fig. 8: Simulation of typical urban air mobility scenarios and visualization of event handling  

B.  Emergency response scenario in non-urban airspace 

In this example, a  forest fire scenario is considered that involves multiple emergency response actions, including 

evacuating people from the affected area, bringing in essential supplies to fire fighters on the ground, and aerial drop 

of fire suppressants. To facilitate a streamlined operation and avoid any air traffic congestion, it has been decided by 

the authorities that only one vehicle can enter the designated airspace. Fig. 9 shows these simulation screenshots. 

 

(b) Single-pad vertiport access scenario 

Single-pad vertiport access turning orange 

indicating that it is being used by a vehicle 

currently and no other vehicle can enter 

Vehicle taking-off 

Vehicle holding position 

Evacuation/Supply delivery vehicle 

in the designated area  

Fire suppressant air drop vehicle in a 

wait loop outside the designated area  

Designated area for single 

air vehicle access 

(a) Vehicle in wait loop after being notified of the presence of another vehicle in the designated area 
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Fig. 9: Wildfire response air-support simulation scenario implementation 

V. Summary of Work 

In this paper we presented a general utility 3D simulation platform that can be used to effectively evaluate 

decentralized decision making in future advanced air mobility scenarios. The simulation platform is envisioned to 

provide a holistic visual interpretation of AI-driven actions that is not easy or possible to explain through mathematical 

models. Furthermore, the distributed computation framework, where each participating agent essentially handles all 

the assessment, decision-making, and task execution, makes the simulation platform computationally lightweight, 

thereby deployable through web applications with real-time performance. In addition to the photo-realistic 

visualization of agents and the environment, a  simulation support module, running alongside the simulation engine, 

handles global situational awareness development, agent-to-agent communication via the conflict and negotiation 

portal, and the information fog that precludes an agent from accessing private parameters of other agents. In summary, 

the simulation closely represents real-world AAM operations. Thus, the tool can be used for planning urban airspace 

allocations, assessing traffic flow in general and special operating circumstances, and collecting test results in support 

of the feasibility and efficacy of decentralized decision making, which is yet to gain acceptance in the aviation sector. 

VI. Future Directions 

In the future, we intend to connect the simulation platform with physical UASs and enable the decentralized 

decision-making capability through the information exchange portal available in the simulation platform. In such 

cases, two or more smart UASs will connect to the simulation platform and share their publicly releasable flight 

information, conflict assessment, and utilization costs for specific resolution st rategies. By utilizing this shared 

information from the simulation platform, the smart UASs will iteratively update their state and intent, thereby 

resolving potential conflicts. To participate in the simulation platform, the smart UASs can leverage their residual 

compute capability onboard, or use a separate portable compute module. Single board processor modules with a 

graphics processing unit (GPU), enabling parallel computing, are suitable for this purpose. A first -person flight feature 

is incorporated in the simulation platform, where the individual vehicle operators can view the simulation from a 

perspective by getting into the pilot’s seat of a chosen smart, unmanned vehicle and manually control that vehicle 

around the simulated scene, interacting with other UASs and dynamic assets on the ground or in the air (see Fig. 10). 

Appropriate vehicle dynamics and environmental conditions will be added to the simulation p latform to deliver such 

realistic user experience. 

Air drop vehicle in action after the 

evacuation/supplies delivery vehicle 

has left the designated area  
Evacuation/Supply 

delivery vehicle outside 

the designated area  

(b) Simulated coordinated response to multiple actions in emergency scenario  



11 

 

 

Fig. 10: Manual flight feature in the simulation platform 

Additional feature development efforts will include: an in-simulation scenario editing module allowing users to 

customize the layout, integration with dynamic ground operations, and incorporation of more sophisticated models 

for vehicle and environmental dynamics and trajectory generation. The overall goal is to offer a sandbox-like toolkit 

for numerous research and development efforts targeting future AAM operations, where researchers can create or 

select a specific environment and the types of UASs and ground assets, and conduct their specific research.  
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