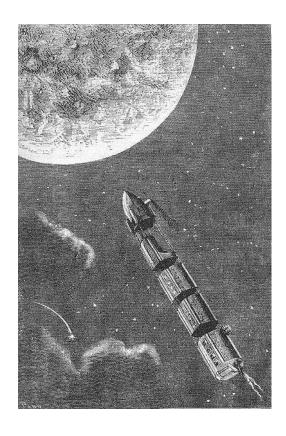


Lunar Base Construction Planning

Robert P. Mueller Senior Technologist,

Swamp Works,

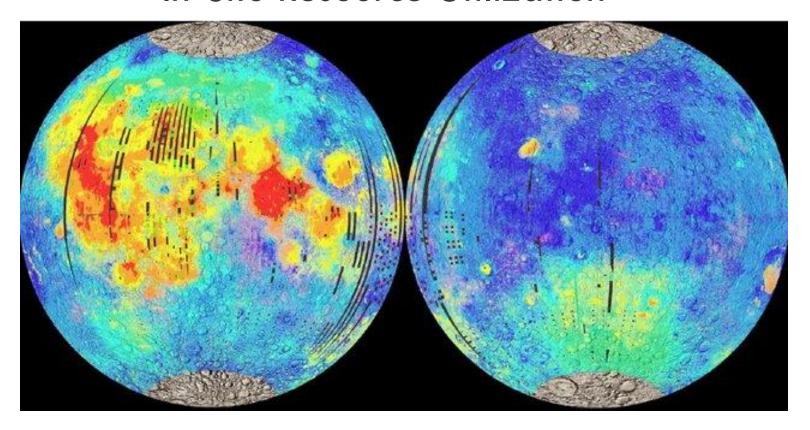
Kennedy Space Center,


National Aeronautics & Research Administration (NASA), Florida, USA

Introduction

LUNAR BASE: from Jules Verne to NASA Artemis

1865: An illustration from Jules Verne's novel 'From the Earth to the Moon,' drawn by Henri de Montaut. Credit: Wikimedia Commons [Public Domain]


2022: NASA Artemis Program (NASA, ICON, SEArch+, BIG)

Resources

In-Situ Resource Utilization

Distribution of regolith compositions on the lunar nearside (left) and the farside (right) based on Clementine multi-spectral imaging data. Blue: anorthositic highlands; yellow: low-Ti basalts; red: high-Ti basalts. The large yellow/greenish area in the southern hemisphere of the farside is the South Pole-Aitken Basin, where the colours mostly reflect the more Fe-rich nature of the lower crust exposed by the basin rather than basaltic material (Spudis et al., 2002; courtesy Dr Paul Spudis/LPI).

Mission Architecture

Table 1.NASA Lunar and Mars Space Mission Architecture Studies (Drake, 2005)

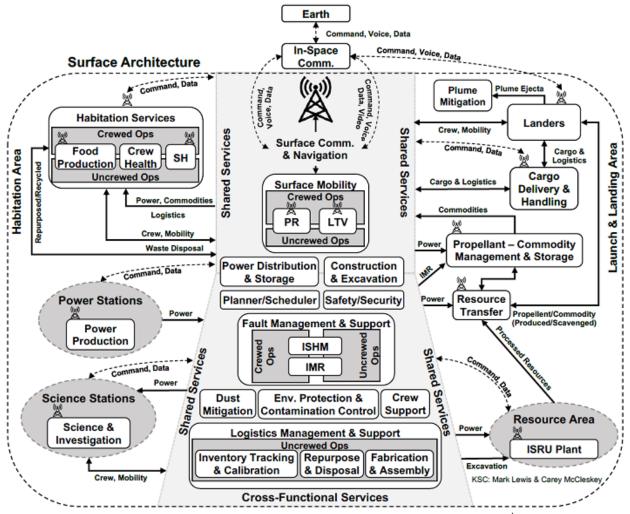
Office of Exploration (OExP) - 1988 Case Studies Human Expedition to Phobos Human Expedition to Mars Lunar Observatory Lunar Outpost to Early Mars Evolution Office of Exploration (OExP) - 1989 Case Studies	First Lunar Outpost - 1993
	Early Lunar Resource Utilization - 1993
	Human Lunar Return - 1996
	Mars Exploration Missions Design Reference Mission Version 1.0 - 1994 Design Reference Mission Version 3.0 - 1997
NASA 90-Day Study - 1989 Approach A - Moon as testbed for Mars missions Approach B - Moon as testbed for early Mars missions Approach C - Moon as testbed for Mars Outposts Approach D - Relaxed mission dates Approach E - Lunar outpost followed by Mars missions	Decadal Planning Team (DPT)/NASA Exploration Team (NExT Earth's Neighborhood Architecture Asteroid Missions Mars Short and Long Stay
	Exploration Blueprint - 2002
	Space Architect - 2003
America at the Threshold - "The Synthesis Group" - 1991 Mars Exploration Science Emphasis for the Moon and Mars The Moon to Stay and Mars Exploration Space Resource Utilization	Exploration Systems Mission Directorate (ESMD) 2004–2005

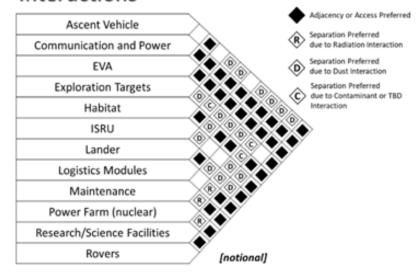
Infrastructure Functions

Table 2. Lunar Base Surface Infrastructure Functions

Landing / Launch	Radiation Protection
Lander servicing	Meteorite Shielding
Propellants management	Moonquake mitigation
Power	Science activity stations
Communication	Resource mining / utilization
Habitation	Regolith operations / hauling
Life Support & Consumables	Logistics management
Transportation	Excavation & Construction Services
Extreme Access	Dust management
Thermal management	Maintenance / Repair / De-commission
Extra-Vehicular Activity (EVA)	Waste management
Food Production	Crew Health

Functional Needs




Figure 1. Schematic of Lunar Base Functional Needs (NASA Kennedy Space Center (KSC), Lewis, M.E. & McCleskey, C.M., 2022)

Site Planning

Site and Operational Factors

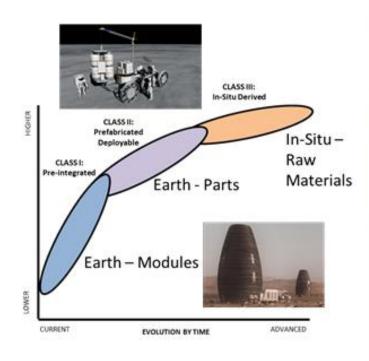

- Site location
- Terrain and Geomorphology: soil composition (surface and below), bearing capacity, rocks/boulders, holes/ditches, mounds, dust, etc.
- Topography and Contours, Altitude, Elevation: high points, low points, ridges, valleys, slopes, flats; natural barriers
- Dimensions and Area: boundaries, thresholds
- Climate: space weather, sun angles and path, temperature cycles, wind [Mars], humidity [Mars], dust storms [Mars]
- ·Light/Dark (sun/shade) seasonal patterns
- Albedo
- ·Radiation: natural, induced
- ·Wind flow [Mars]: particle movement, cooling
- Glare and Reflection
- Spacecraft Induced Ejecta

Figure 2. Lunar Base Site Planning Considerations (Lewis, R. et al, 2019)

Classification

Infrastructure Classification	Key Characteristics
CLASS I Pre-integrated	Earth Manufactured Pre-integrated & Tested prior to Launch Space Delivered with Immediate Habitation Capability Launch Shroud Constrained Limited to Launch Vehicle Payload Size & Mass Capability
CLASS II Prefabricated, Surface Deployed & Assembled	Earth Manufactured Requires surface Deployment, Assembly & Outfitting Partial Integration of Subsystems Critical Subsystems are Earth Based and Tested prior to Launch Requires Assembly & Checkout prior to Human Occupancy Larger Volumes Capable Not Restricted to Launch Vehicle Shroud Size Restricted to Launch Mass. Deliver on multiple vehicles Can include ISRU-derived parts
CLASS III In-Situ Derived and Constructed	Manufactured in-Situ, Derived from local Resources (Lunar or Mars) In-Space Constructed Requires Robotic Manufacturing Capability & Infrastructure Requires Robotic and Human Labor During Construction Requires Integration of Subsystems Critical Subsystems are Earth Based and Tested prior to Launch Larger Volumes Capable Not Restricted to Launch Vehicle Size Not Restricted to Launch Mass

Figure 3. Infrastructure Construction Classification (Kennedy, 2002)

Master Planning

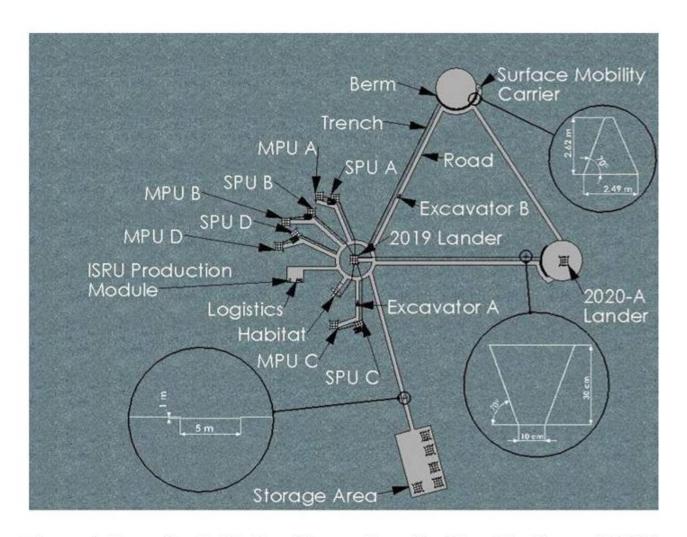


Figure 4. Example of a Notional Lunar Base Site Plan (Mueller et al, 2008)

In-Situ Construction

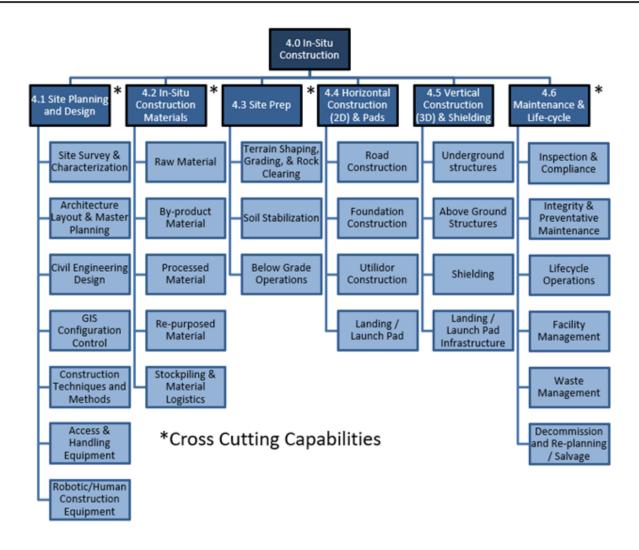


Figure 6. Work Breakdown Structure for Infrastructure Construction Activities

Lunar Construction Equipment

Table 3. Infrastructure and Associated Construction Equipment

Notional Infrastructure	Robotic Construction Equipment
Landing / Launch Pads	Cut / Fill Excavator, Bulldozer, Regolith
	Transporter (truck), Grader, Compactor, Paver
Blast Shields / Berms	Robotic Assemblers, Bulldozers, Loaders,
	Compactor, Regolith Transporter
Propellant Farms	Crane, Robotic assemblers, Grader, Flat Bed
	and Regolith Transporter, Excavator
Roads / Pathways	Cut/Fill Excavator, Grader, Compactor, Paver
Dust Free Zones	Cut/Fill Excavator, Grader, Compactor, Paver
Utility Trenches	Cut/Fill Excavator, Compactor
Utilities (cables, pipes, fiber optic, etc.)	Crane, Robotic Assembler, Reel Deployer
Nuclear Power Plant Shielding	Cut/Fill Excavator, Loader, Compactor, Grader,
	Regolith transporter
Space Radiation Shielding	Cut/Fill Excavator, Loader, Compactor, Grader,
	Regolith Transporter
Meteorite Shielding	Cut/Fill Excavator, Loader, Compactor, Grader,
	Regolith Transporter
Foundations / Seismic Mitigation	Cut/Fill Excavator, Grader, Compactor, Paver,
	Flat Bed and Regolith Transporter, Crane,
	Robotic Assembler
Dust Free Zones / Plazas / Storage Areas	Cut/Fill Excavator, Grader, Compactor, Paver
Communication / Power Towers	Grader, Compactor, Vertical Constructor
Un-Pressurized Hangars	Grader, Compactor, Vertical Constructor
Pressurized Habitats	Grader, Compactor, Vertical Constructor
Consumables Logistics Tanks	Crane, Robotic assemblers, Compactor, Grader
Resource Mines / ISRU Zone	Cut/Fill Excavator, Hauler
Thermal Wadis	Cut/Fill Excavator, Grader, Compactor, Paver
Waste Disposal / Recycling Facility	Cut/Fill Excavator, Loader, Compactor

Summary

- NASA Space Mission Architecture Studies
- Functional Analysis of a Lunar Base
- Infrastructure Classification
- Master planning & Site layout
- Program Management (Space compared to Construction industry)
- Artemis Phase 1& Phase 2
- In-Situ Construction WBS
- Construction Equipment Needed
- It is hoped that technology development and lunar base construction implementation can be pursued within a common framework by international teams and consortia