

A 3D Simulation Platform for Decentralized Decision-Making in Advanced Air Mobility

Aditya Das and Stanley Dillon Hicks Aviation Systems Division, NASA Ames Research Center

2022 AIAA Aviation Forum Session: ATS-14, Special Session: Autonomous Cargo Operations I June 29, 2022

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Motivation

Key characteristic of future urban air mobility (UAM) management:

- High demand for decision
- Commercial interest consideration
- Sharing of airspace for different UAM tasks
- Increased use of artificial intelligence (AI)

Human oversight on machines

2

Research Goal

To offer a simulation platform to the UAM stakeholders, aiding:

- Assessment of future aviation technologies and resources
- Immersive visualization of shared airspace operations and interpretation of AI actions driven by complex models
- Establishment of machine-centric UAM traffic management with human oversight and insight

Value Adds

Researchers

For bringing new technology to field quickly

UAS Operators

- ➢ For optimizing business operation
- City Authorities
 - For planning air ways and schedules

Traffic Managers

For assessing demand criticality and shared decision making in airspace operations

Software Architecture

Simulation Environment

Scene Selection Page

Urban Mobility Scenario

Wildfire Scenario

Platform Features

Dynamic Restrictions

Tactical Deconfliction

Single-pad Vertiport Access

First-person Perspective Views and Flight Control

Distributed Decision Making Example

Issue table:

	Node 1	Node 2			Node N	
Node 1		80	0	0	0	
Node 2	78		0	0	0	
	0	0		^{C×} t _{ij}	0	$^{r}U_{k}$
	0	0	$^{C\times}t_{ji}$		0	
Node N	0	0	0	0		$= \begin{bmatrix} \mathbf{Z} \\ i \end{bmatrix}$

 $^{Cx}t_{ij}$: Time to conflict 'x' between node i and node j as determined by node i.

Strategy table:

Strategy	Node 1	Node 2		Node N
S ₁	¹ U ₁	² U ₁		NU1
S ₂	$^{1}U_{2}$	² U ₂		$^{N}U_{2}$
			۲U _k	
SL	$^{1}U_{L}$	$^{2}U_{L}$		NUL

Mobility," in AIAA SciTech. 2021.

 $U_{1\,to\,l}\!\!:$ Strategy utilization cost for conflict avoidance

 $P_{1 \text{ to } m}$: Accessible parameters that are related to the execution of the strategies

- $Q_{1\,to\,n}$: Private parameters that are related to the execution of the strategies
- $W_{ij}\!\!:$ Business preference to alter the parameter P_i for strategy S_j
- r: Smart agent id (1 to N)

 $\begin{array}{l} \Delta: \mbox{ Uncertainty in estimating other nodes' business weight preference} \\ \phi: \mbox{ Uncertainty in estimating other nodes' private parameters used in utilization cost} \\ \mu: \mbox{ Conflict status, } {}^{g} U_k: \mbox{ Global reward, } {}^{t} U_k: \mbox{ Time penalty} \end{array}$

$$= \left[\sum_{i=1}^{m} ({}^{r}P_{i} \cdot {}^{r}W_{ki})_{norm} + \sum_{j=1}^{n} ({}^{r}Q_{j} \cdot {}^{r}W_{kj})_{norm}\right]$$
$$- \left[\sum_{s=1}^{N} \mu_{rs} \cdot \left(\sum_{i=1}^{m} {}^{s}P_{i} \cdot ({}^{s}W_{ki} + \Delta {}^{s}W_{ki}) + {}^{s}\varphi_{kj}\right)\right]$$
$$- {}^{g}U_{k} + {}^{t}U_{k}$$

lssue	Time	Action	Outcome
^{C×} t _{ji}	20210608- 115528	ⁱ S ₁ ^j S ₀	Pass
cytji	20210608- 082015	-	Fail

A. Das, K. Marotta and H. Idris, "AEGIS: Autonomous Entity Global Intelligence System for Urban Air Mobility," in AIAA Aviation, 2020.
A. Das, K. Marotta and H. Idris, "Deep Learning-based Negotiation Strategy Selection for Cooperative Conflict Resolution in Urban Air

Strategic Deconfliction through Negotiation

T₁: Nodes following planned trajectories T₂: Node 1 detects conflict with node 2 T₃: Node 2 detects conflict with node 1 T₃ + T_c: Est. time at which conflict occurs T₃ + T_a: Time set as cutoff for negotiation T₃ + T_r: Time at which resolution found T₄: Node 1 reroutes as per the agreement T₅: Node 1 rejoins the planned route

Strategic Deconfliction via Negotiation

000

Key Takeaways

- A general-purpose, modular, 3D simulation platform for AAM
- Holistic visual interpretation of Al-driven interactions
- Decentralized decision making
- Human-centric to machine-centric airspace management
- Hub for Community data

