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Motivation

LLRV to LLTV . .
ApO I I 0 \ eVTOL Production Aircraft

[1]: https://evtol.com/news/joby-

aviation-reveals-s4-toyota-

investment/

Crew must have a thorough
understanding of control response,
control power, and the unique physics

of flight in the lunar environment of \
vacuum and 1/6 gravity, primarily the

Tilt-rotor configurations allows
decoupling between vehicle flight path

_ am relationship between flight deck angle Joby Image credit: [1] and attitude. Able to replicate the
\ o M in (thrust Vector) and linear acceleration. \ ) ratio of tilt angle to linear acceleration
Positive Training as what a vehicle would experience on
\ the lunar surface
\ Artemis

Neil Armstrong: “I felt very \
comfortable - | felt at home. \

I felt like I was flying

something | was used to and \

it was doing the things that it \
ought to be doing...”

Donald "Deke" Slayton, then NASA's astronaut chief, \
“said there was no other way to simulate a moon \
landing except by flying the LLTV".
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Motivation

 Vertical Take-off and Landing (VTOL) Vehicles draw upon
advantages from fix-wing and rotorcraft
— Longer endurance, better efficiency, operations at higher speeds

— Ability to take off and land vertically, hover, and maneuver in
confined spaces
— Two configurations: Tilt-rotor vs. Tilt-wing

« Often flight dynamics simulations treat the vehicle as
a single rigid body
— Rotors are treated as thrust application points

V-22 Image credit: [2]

— Provide reasonably accurate results if the mass of the r—Ty
appendages (rotors, nacelles, wing sections) and their 150 — - T —— Aot 11 Mana || —°—
motion/displacement relative to the main body are small E ool _ ) L=

« Lunar landing trajectories stress the operation 2 e
boundaries of these aircrafts ] ' 7 |

— Coupling of multi-body dynamics with complex effects ol == m Y
such as vortex ring state, aero-propulsive interactions, ' ' Downrange.m ' h
flutter, etc. is not well understood Apollo 11 and LLRV touchdown trajectories

[2]: https://en.wikipedia.org/wiki/Bell_Boeing V-22_Osprey



Background: Dynamics Modeling

» 1) Analytical single rigid body approach
— Treat the vehicle as a single rigid body

— Effects like rotor aerodynamics and blade flapping
can be incorporated with various levels of fidelity

— Worked well for the XV-15 aircraft

« 2) Multibody approach via commercial software
— Detail models of the wing, rotors, nacelle, etc. (as many
as 800 states)
— Difficult to gain insight into the underlying vehicle
dynamics

« 3) Analytical multibody approach
— Where this paper resides
— Previous literature in this category leaves out portions of the final set of equations

— Su 2019 provides a complete derivation and equations for a two-rotor configuration, but the two
nacelles were assumed to tilt synchronously and the rotor spin DoF is ignored

XV-15 Image credit: [3]

[3]: NASA monograph “The History of the XV-15 Tilt Rotor Research Aircraft From Concept to Flight”.



Advantages of Kane’s Method*

- Kane’s method permits the nonlinear equations of motion to be formulated with
minimum labor in a systematic fashion and involves only the velocities and
angular velocities, and their time derivatives

— Procedure can be automated via MATLAB’s symbolic toolbox® while retaining insight into the
various components

» Constraint forces do not appear in Kane’s equations of motion

— These forces appear when using Newton-Euler method and D’Alembert’s Principle
— Extra work is required to eliminate these constraint forces
— Location where to form the angular momentum vector matters

- Lagrange’s method requires formulation of the system’s kinetic energy and
potential energy, partial derivatives w.r.t generalized coordinates and their time
derivatives, etc.

— Results in unnecessarily lengthy equations

[4]: Kane, T., and Levinson, D., “Formulation of Equations of Motion for Complex Spacecraft.” Journal of Guidance and Control.
Vol. 3, March-April 1980
[5]: https://lwww.mathworks.com/products/symbolic.html 5



Procedure

1) Form expressions for velocities of mass centers
and angular velocities of rigid bodies

2) Obtain partial velocities and angular velocities
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3a) Form accelerations of mass centers, angular momenta of rigid bodies
(NHE/B* and NHP/P*), and their time derivatives in N

3b) Obtain generadlized active forces (thrust, motor torque, aero, gravity, etc.)
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4) Apply Kane’'s method
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Final EOM: [M]u = F

Generalized mass matrix Generalized F matrix (simplifies to Euler’s Eq. when rotor
mass and inertia go to zero)
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Journal of Spacecraft 1967. i=1 ,



Simulation Results

» Case 1: Response to initial conditions (no
gravity, aero, motor torque, thrust)
» Case 2: Response to open loop gimbal
commands
— Vehicle starts in hover

— T=5sec, OL gimbal rate cmd of -2.86 deg/s for all
rotors

— T=10sec, OL gimbal rate cmd of +2.86 deg/s for
all rotors

— T=15sec, cmd to trimmed level flight with
constant forward velocity

Mass/Inertia ( 74110 0 0
- Ip = 0 6780 0 | ke-m?
Parameter Value { 0 0 74529 J
mpg 2176 kg
mp 118 kg " 137
! 1 m Ip 0 O kg-m*
{ 0 O 69 J

[7]: https://rotorcraft.arc.nasa.gov/Research/Programs/LCTR.html
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Case 1. Response to Initial Conditions
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Case 2. Open Loop Gimbal Commands
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Discussion

« Kane’s method is used to derive analytical multibody dynamical equations of motion for a
generic tilt-rotor aircraft
— Final EOM is in a matrix format that can be readily implemented
* Multibody approach recommended as the mass and motion of the rotors relative to the main
body are significant
* Methodology can be readily extended to rotors with dual-gimbal capability or tilt-wing
configurations
— Procedure can be automated via MATLAB’s symbolic toolbox while retaining insight into the various components
» Possible Future work:
— Linear analysis to yield further insight into the dynamic coupling
— Controller performance with single-rigid body model vs. multibody model
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