

Equations of Motion for a Generic Multibody Tilt-rotor Aircraft

2022 AIAA Aviation Forum VSTOL-02/TF-05, V/STOL Flight Dynamics and Control II June 27, 2022

Jing Pei, Atmospheric Flight Entry Systems Branch Dr. Carlos Roithmayr, Vehicle Analysis Branch NASA Langley Research Center

Motivation

LLRV to LLTV

Positive Training

Contrary, and Uoly

Apollo

Crew must have a thorough understanding of control response, control power, and the unique physics of flight in the lunar environment of vacuum and 1/6 gravity, primarily the relationship between flight deck angle (thrust vector) and linear acceleration.

Joby Image credit: [1]

Neil Armstrong: "I felt very comfortable – I felt at home. I felt like I was flying something I was used to and it was doing the things that it ought to be doing..."

Donald "Deke" Slayton, then NASA's astronaut chief, "said there was no other way to simulate a moon landing except by flying the LLTV". [1]: <u>https://evtol.com/news/joby-aviation-reveals-s4-toyota-</u> investment/

Tilt-rotor configurations allows decoupling between vehicle flight path and attitude. Able to replicate the ratio of tilt angle to linear acceleration as what a vehicle would experience on the lunar surface

Artemis

Motivation

- Vertical Take-off and Landing (VTOL) Vehicles draw upon advantages from fix-wing and rotorcraft
 - Longer endurance, better efficiency, operations at higher speeds
 - Ability to take off and land vertically, hover, and maneuver in confined spaces
 - Two configurations: Tilt-rotor vs. Tilt-wing
- Often flight dynamics simulations treat the vehicle as a single rigid body
 - Rotors are treated as thrust application points
 - Provide reasonably accurate results if the mass of the appendages (rotors, nacelles, wing sections) and their motion/displacement relative to the main body are small
- Lunar landing trajectories stress the operation boundaries of these aircrafts
 - Coupling of multi-body dynamics with complex effects such as vortex ring state, aero-propulsive interactions, flutter, etc. is not well understood

Apollo 11 and LLRV touchdown trajectories

Background: Dynamics Modeling

• 1) Analytical single rigid body approach

- Treat the vehicle as a single rigid body
- Effects like rotor aerodynamics and blade flapping can be incorporated with various levels of fidelity
- Worked well for the XV-15 aircraft

• 2) Multibody approach via commercial software

- Detail models of the wing, rotors, nacelle, etc. (as many as 800 states)
- Difficult to gain insight into the underlying vehicle dynamics

3) Analytical multibody approach

- Where this paper resides
- Previous literature in this category leaves out portions of the final set of equations
- Su 2019 provides a complete derivation and equations for a two-rotor configuration, but the two
 nacelles were assumed to tilt synchronously and the rotor spin DoF is ignored

XV-15 Image credit: [3]

- Kane's method permits the nonlinear equations of motion to be formulated with minimum labor in a systematic fashion and involves only the velocities and angular velocities, and their time derivatives
 - Procedure can be automated via MATLAB's symbolic toolbox⁵ while retaining insight into the various components
- Constraint forces do not appear in Kane's equations of motion
 - These forces appear when using Newton-Euler method and D'Alembert's Principle
 - Extra work is required to eliminate these constraint forces
 - Location where to form the angular momentum vector matters
- Lagrange's method requires formulation of the system's kinetic energy and potential energy, partial derivatives w.r.t generalized coordinates and their time derivatives, etc.
 - Results in unnecessarily lengthy equations

[4]: Kane, T., and Levinson, D., "Formulation of Equations of Motion for Complex Spacecraft." Journal of Guidance and Control.
 Vol. 3, March-April 1980
 [5]: https://www.mathworks.com/products/symbolic.html

Procedure

Final EOM: [M]u = F

Generalized mass matrix

Generalized F matrix (simplifies to Euler's Eq. when rotor mass and inertia go to zero)

$$^{N}\mathbf{H}^{S/S^{*}} = \underline{\mathbf{I}}^{B/B^{*}} \cdot ^{N}\omega^{B} + m_{B}\mathbf{r}^{S^{*}B^{*}} \times ^{N}\mathbf{v}^{B^{*}} + \sum_{i=1}^{n} \left(\underline{\mathbf{I}}^{D_{i}/D_{i}^{*}} \cdot ^{N}\omega^{D_{i}} + m_{D}\mathbf{r}^{S^{*}D_{i}^{*}} \times ^{N}\mathbf{v}^{D_{i}^{*}} \right)$$
$$K = \frac{1}{2} \left[m_{B}^{N}\mathbf{v}^{B^{*}} \cdot ^{N}\mathbf{v}^{B^{*}} + ^{N}\omega^{B} \cdot \underline{\mathbf{I}}^{B/B^{*}} \cdot ^{N}\omega^{B} + \sum_{i=1}^{n} \left(m_{D}^{N}\mathbf{v}^{D_{i}^{*}} \cdot ^{N}\mathbf{v}^{D_{i}^{*}} + ^{N}\omega^{D_{i}} \cdot \underline{\mathbf{I}}^{D_{i}/D_{i}^{*}} \cdot ^{N}\omega^{D_{i}} \right) \right]$$

Terms in red: diagonal components Terms in blue: off-diagonal components (inertial coupling effects such as "dog-wags-tail", "tail-wagsdog")

Image credit: [6]

Inertial reaction loads produced by Angular and linear momentum of the nozzle as it rotates about the gimbal

 $M = M_{\delta/R}$

[6]: Frosh, J. Vallely, D., Saturn AS-501/S-IC Flight Control System. AIAA Journal of Spacecraft 1967.

Simulation Results

- Case 1: Response to initial conditions (no gravity, aero, motor torque, thrust)
- Case 2: Response to open loop gimbal commands
 - Vehicle starts in hover
 - T = 5 sec, OL gimbal rate cmd of -2.86 deg/s for all rotors
 - T = 10 sec, OL gimbal rate cmd of +2.86 deg/s for all rotors
 - T = 15 sec, cmd to trimmed level flight with constant forward velocity

[7]: https://rotorcraft.arc.nasa.gov/Research/Programs/LCTR.html

Rotor Lo	ocations
----------	----------

i	$L_{1,i}$	$L_{2,i}$	$L_{3,i}$
	(m)	(m)	(m)
1	0.5	-5.5	-0.25
2	0.5	5.5	-0.25
3	-2.5	-2.5	-0.5
4	-2.5	2.5	-0.5

Case 1: Response to Initial Conditions

time, s

Case 2. Open Loop Gimbal Commands

Law of action and reaction. Fuselage nose pitches up and down as the nacelles pitch in the opposite direction

time, s

20

20

Discussion

- Kane's method is used to derive analytical multibody dynamical equations of motion for a generic tilt-rotor aircraft
 - Final EOM is in a matrix format that can be readily implemented
- Multibody approach recommended as the mass and motion of the rotors relative to the main body are significant
- Methodology can be readily extended to rotors with dual-gimbal capability or tilt-wing configurations
 - Procedure can be automated via MATLAB's symbolic toolbox while retaining insight into the various components

Possible Future work:

- Linear analysis to yield further insight into the dynamic coupling
- Controller performance with single-rigid body model vs. multibody model