Mass Modeling of NEP Power Conversion Concepts for Human Mars Exploration

William Machemer (Analytical Mechanics Associates, Inc.)

Matthew Duchek, Christopher Harnack, Emanuel Grella, Dennis Nikitaev, and Corey Smith (Analytical Mechanics Associates, Inc.)
Acknowledgements

This work was supported by NASA’s Space Technology Mission Directorate (STMD) through the Space Nuclear Propulsion (SNP) Project

Contract No. 80LARC17C0003
Task No. 10.020.000
Agenda

• Introduction

• Performance Model

• Mass Model Formulation
 - Reactor
 - Turboalternator
 - Heat Rejection
 - Ducting
 - PMAD

• Results
 - Areal Density
 - Optimization
 - Radiator Pressure Drop
 - Compressor Inlet Temperature
 - General Trends
 - Conclusions
NEP is under consideration by NASA as propulsion for a crewed Mars mission

- A MW-class (2-4 MW\textsubscript{e}) NEP system is needed
- 5 critical technology elements (CTEs)
 - Reactor system (RXS)
 - Power conversion system (PCS)
 - Power management and distribution (PMAD)
 - Electric propulsion system (EPS)
 - Primary heat rejection system (PHRS)
- The goal of this work is to inform NEP technology development and down selection
 - Illustrate the impact of technology performance on system level KPP
 - Number and type of working fluids
 - Optimize design variables
- One of the most important variables is the power system specific mass, α_{ps}
 - Defined as the mass of RXS, PCS, PMAD and PHRS, in kg, per kilowatt of electrical power output to EPS
The mass model works in conjunction with the performance model

- Performance model solves thermodynamics
 - Chris Harnack will present *Brayton Cycle Power Conversion Model for MW-Class Nuclear Electric Propulsion Mars Missions* in the NEP II session on Thursday
 - Cycle efficiency
 - Mass flow rate
 - Radiator area
 - Temperature and pressure state points

- Output values used to estimate the mass for the NEP system components

- Uncertainty in performance model assumptions
 - Low TRL of the components
 - Leads to uncertainty in system mass estimates
 - Current and Future Work is to increase fidelity of mass and performance models

<table>
<thead>
<tr>
<th>Performance Model Parameter</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power level</td>
<td>2 MWₑ, 4 MWₑ</td>
</tr>
<tr>
<td>Turbine inlet temperature</td>
<td>1200 K, 1400 K</td>
</tr>
<tr>
<td>He-Xe ratio</td>
<td>72 wt% He</td>
</tr>
<tr>
<td>Turbine inlet pressure</td>
<td>2 MPa</td>
</tr>
<tr>
<td>Turbine efficiency</td>
<td>0.89</td>
</tr>
<tr>
<td>Compressor efficiency</td>
<td>0.85</td>
</tr>
<tr>
<td>Radiator emissivity</td>
<td>0.9</td>
</tr>
<tr>
<td>Radiator view factor</td>
<td>0.85</td>
</tr>
<tr>
<td>Radiator sink temperature</td>
<td>4 K</td>
</tr>
<tr>
<td>Recuperator effectiveness</td>
<td>0.9</td>
</tr>
<tr>
<td>Reactor HX effectiveness</td>
<td>0.9</td>
</tr>
<tr>
<td>Radiator HX effectiveness</td>
<td>0.9</td>
</tr>
<tr>
<td>Compressor inlet temperature</td>
<td>Optimized</td>
</tr>
<tr>
<td>Radiator pressure drop</td>
<td>Optimized</td>
</tr>
</tbody>
</table>

Mass Modeling of NEP Power Conversion Concepts for Human Mars Exploration

Nuclear and Emerging Technologies for Space (NETS) Conference 2022
Mass Model Formulations

Reactor and Shield

• Coupled thermal hydraulic and neutronic models used to converge on reactor outlet temperature
• Unit cells are added until reactor power level is reached
 • Mass of each unit cell is precalculated
• Constant thickness radial and axial reflector
• Pressure vessel sized using hoop stress
• Additional subcomponents modeled using RSMASS-D correlations
 • SP-100 project reactor concepts
• Tungsten used for the gamma shield and lithium hydride for the neutron shield
Mass Model Formulations

Turboalternator

- Anchored by the turboalternator used in the Brayton Rotating Unit
- Turbomachine diameter calculated using a higher fidelity version of the performance model
- *Nuclear Electric Propulsion Modular Power Conversion Model* to be presented by Dennis Nikitaev in the NEP II session on Thursday
- The BRU geometry is scaled linearly up with the diameter
- Process was completed for a variety of operating conditions
- Correlation was developed to calculate turboalternator α as a function of electric power output

$$\alpha_{Turbo,He-Xe} = 1.37Power^{-0.2196}$$
Mass Model Formulations

Heat Exchangers

- Scaled from JIMO (Ref. 11) and SDB SSF (Ref. 12)
 - Operating conditions and volume/mass are known
 - Linear scaling between these two data points
 - Assume density of heat exchanger is proportional to pressure
 - Represents the thickness of the tubes needed
 - Assume the volume of the heat exchanger is proportional to the mass flow rate
 - Represents the number of tubes needed to accommodate the flow
- Sunden\(^3\) used to scale heat exchanger mass based on effectiveness
 \[SV = 8.1E - 5 \times \exp(15.8 \times \epsilon) \]
 - SV is the specific volume (cm\(^3\)/kg/s) and is scaled by

<table>
<thead>
<tr>
<th></th>
<th>JIMO</th>
<th>SDB SSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>m(_\text{dot}) Brayton</td>
<td>3.73 kg/s</td>
<td>1.15 kg/s</td>
</tr>
<tr>
<td>Volume Recuperator</td>
<td>0.7 m(^3)</td>
<td>0.3 m(^3)</td>
</tr>
<tr>
<td>High pressure into</td>
<td>1.38 MPa</td>
<td>0.543 MPa</td>
</tr>
<tr>
<td>Recuperator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of the Recuperator</td>
<td>486 kg</td>
<td>162 kg</td>
</tr>
<tr>
<td>Volume Radiator HX</td>
<td>0.2 m(^3)</td>
<td>0.08 m(^3)</td>
</tr>
<tr>
<td>High pressure into</td>
<td>0.7 MPa</td>
<td>2.96 MPa</td>
</tr>
<tr>
<td>Radiator HX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of the Radiator HX</td>
<td>355 kg</td>
<td>85 kg</td>
</tr>
</tbody>
</table>
Mass Model Formulations

Heat Rejection

- Work done by Siamidis14 provided a starting point
 - Needed to be made parametric
- The diameter of the ducting is sized to satisfy a radiator pressure drop requirement
 - Ducting mass is inversely proportional to pressure drop
- Carbon fiber panel thickness calculated using fin efficiency equations
- The support structure is scaled from FEA work done on the central truss by the NASA Advanced Concepts Office (ACO) and Aerojet16
Mass Model Formulations

Ducting, Pump and Accumulator

- The ducting diameter is sized to accommodate the mass flow with a 1% pressure drop between the RXS and PCS and a 2% drop within the PCS.
- Length of ducting estimated using conceptual layout of the NEP system.
- A specific mass of 250 kg per kW of required pump power is used.
 - Very conservative estimate of the pump mass – significant decreases can be expected with future technology development.
- Accumulator mass scaled using the volume differential in the fluid at launch and operational temperature.
 - Accumulator designs from Tournier and El-Genk used as a basis.

[Diagram of NEP system components: Reactor HX, Radiator HX, Recuperators, Turbomachines, Shield, Reactor]
The mass of the PMAD electronics is calculated using the α vs power relationship shown in Frisbee17

$$\alpha_{PMAD} = 128.63 \times \text{Power}^{-0.502}$$

Two additional components are also accounted for in the PMAD mass
- PMAD radiator – rejects waste heat generated by PMAD electronics (96% efficiency)
 - 7 kg/m2, 400 K
- Parasitic load radiator – dissipates electric power not being used by EPS
 - 10 kg/m2, 850 K
Increasing mass flow rate leads to increased radiator areal density

- Ducting diameter need to increase to accommodate higher flow rates
 - Becomes unreasonably large
 - Duct size limited after 30 kg/s (assuming parallel loops)
- Triple loop configuration has a much lower mass flow rate
 - Higher specific heat of NaK compared to He-Xe
 - Allows for lower areal density in triple loop case despite very conservative pump mass
There is an optimum radiator pressure loss for each NEP power system configuration

- Radiator pressure drop is the most important variable to determine radiator areal mass

- Higher pressure loss leads to
 - Smaller ducting and lower radiator areal mass
 - Lower cycle efficiency

- Decrease in efficiency is much larger in the single loop configuration
 - Compressor must account for the pressure loss
 - For the triple loop configuration, the pump can make up this pressure loss much more efficiently
 - Higher optimum pressure drop for triple loop configuration
The optimal compressor inlet temperature is lower if \(\alpha \) is optimized than if radiator area is optimized

- Higher compressor outlet temperature leads to
 - Higher radiative power per area
 - But a less efficient cycle
- The radiative power is proportional to \(T^4 \)
 - Drives the radiator area trend when just the cycle thermodynamics are considered
 - The effect of the less efficient cycle becomes more important when mass is considered
- Less efficient cycles will require more mass flow rate
 - Leads to increased mass of all the components
 - In particular, the radiator will become significantly heavier due to larger ducting requirements
General Trends

- α_{ps} decreases at higher power levels
 - Most components are more mass efficient at higher power
 - Diminishing returns

- Much lower α_{ps} obtained by increasing the turbine inlet temperature
 - Allows for both a higher efficiency and higher effective radiating temperature
 - Thermal limits of material are the limiting factor

- Single loop configuration may have lower α_{ps} despite lighter radiators in triple loop
 - Lower efficiency
 - Temperature losses across heat exchangers
 - Additional equipment in triple loop
 - Heat exchangers, pumps, and accumulators
 - This gap is relatively small and may close as the models are improved
Conclusions

• Model predicts mass based on system performance parameters
• Increasing the turbine inlet temperature has a large positive impact on α_{ps}
• Optimizing for radiator area is not the same as optimizing for mass
 - NEP system should be designed within these bounds (compressor inlet temperature between minimum radiator area and minimum α_{ps})
• Increasing power level will reduce α_{ps}
 - High power may not be beneficial due to diminishing returns and a higher Earth departure mass
• The single loop configuration may have lower mass than the triple loop
 - The triple loop configuration has other advantages
• This mass model is intended to demonstrate trends within the design space, not prescribe a particular design choice
 - Exact numbers and their relative magnitudes are expected to change as the technology maturation effort continues, hardware is developed, and better validation and assumptions become available
References

