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Numerical computations are performed to investigate the potential for transition control in
an axisymmetric boundary layer via fully realizable, streamwise stationary streaks induced by
an azimuthally periodic array of surface mounted vortex generators (VGs). Previous work has
shown that suitable streaks of this type can significantly reduce the growth of Mack’s second
mode instabilities, but large streak amplitudes can make the flow susceptible to previously
absent streak instabilities that can become the leading cause of transition. Here, we use the
adjoint capabilities of the SU2 flow solver to optimize the VG shape to maximize the reduction
in the growth of second-mode disturbances while also preventing the streak amplitudes from
reaching large enough values to precipitate an earlier onset of transition via streak instabilities.
The geometry and the freestream flow conditions are selected to match a relevant trajectory lo-
cation from the HIFiRE-1 flight experiment. Results show that the optimized VGs can increase
the mean streak amplitude by 117% with respect to a manually developed baseline design.
The stability of this optimized basic state is analyzed via the plane-marching parabolized sta-
bility equations, predicting a fully laminar flow over the entire cone, or equivalently, yielding
transition delay of 130% versus the 17% for the baseline VGs.

Nomenclature

� = streak amplitude [m]
ℎb = streamwise metric factor
ℎZ = azimuthal metric factor [m]
� = objective function
: = roughness height [m]
! = reference length [m]
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" = Mach number
# = logarithmic amplification factor
q̄ = vector of base flow variables
q̃ = vector of perturbation variables
q̂ = vector of amplitude variables
A1 = local radius of axisymmetric body at the axial station of interest [m]
C = time [s]
(D, E, F) = streamwise, wall-normal, and spanwise velocity components [m s−1]
(G, H, I) = Cartesian coordinates [m]
U = streamwise wavenumber [m−1]
Xℎ = boundary layer thickness [m]
_ = azimuthal wavelength [rad]
l = disturbance angular frequency [rad s−1]
d = density [kg m−3]
(b, [, Z) = streamwise, wall-normal, and azimuthal coordinates [m, m, -]
Superscripts
∗ = dimensional value
Subscript
∞ = freestream value
ST = streak
CA = transition location

I. Introduction
Laminar-turbulent boundary layer transition plays a significant role in the performance of hypersonic vehicles,

causing significant increases in both skin friction and post-transition wall heating. The transition mechanisms must be
studied and understood with the potential goal of improving vehicle performance by delaying boundary layer transition.

Under low levels of background disturbances, transition is initiated by an exponential amplification of linearly
unstable eigenmodes, i.e., modal instabilities of the laminar boundary layer. In two-dimensional boundary layers over
sufficiently smooth aerodynamic surfaces, different mechanisms dominate the exponential growth phase depending on the
flight speed. In the incompressible regime, the most amplified disturbances correspond to planar, i.e., two-dimensional,
Tollmien-Schlichting (TS) waves, whereas oblique first-mode instabilities are dominant in supersonic boundary layers.
Transition in the hypersonic regime is dominated by planar waves of the second mode, i.e., Mack-mode (MM) type [1].

In the presence of sufficiently strong external disturbances in the form of either freestream turbulence (FST) or
three-dimensional wall roughness, streamwise streaks involving alternation between low and high regions of streamwise
velocity have been observed in incompressible boundary layers [2, 3]. Further research in incompressible flows has
shown that streaks with sufficiently high amplitudes can become unstable and initiate shear-layer instabilities that lead
to a form of “bypass transition” [4]. When the streak amplitudes are low enough to avoid transition due to streak
instabilities (SI), i.e., when the background disturbance level is relatively moderate, the streaks can actually reduce the
growth of TS waves in incompressible flows as documented in both theoretical and experimental studies [5–7]. The
stabilizing effect of stationary streaks in low-speed boundary layers has been used in passive flow control strategies to
demonstrate transition delay via micro vortex generators (VGs) along the body surface [8, 9].

Numerous research efforts have focused on the tripping of hypersonic boundary-layer flows through roughness
elements. However, a few experimental and numerical studies have also reported a roughness-related delay in transition
under specific circumstances. The latter studies have primarily focused on two-dimensional roughness elements. James
[10] considered fin-stabilized hollow tube models in free flight with a screw-thread type of distributed two-dimensional
roughness and found that for a given freestreamMach number in the range of 2.8 to 7, there exists an optimum roughness
height that yields the largest delay in transition. Fujii [11] studied the effects of two-dimensional roughness by using a
5◦ half-angle sharp cone at a freestream Mach number of 7.1 and also reported transition delay under certain conditions
when the wavelength of the wavy wall roughness was comparable to that of the MM instabilities. More recently,
Fong et al. [12, 13] performed numerical and experimental studies, respectively, that were focused on the effect of
two-dimensional surface roughness on the stability of a hypersonic boundary layer at a freestream Mach number of
6. The experiments [13], carried out in the Boeing/AFOSR Mach 6 Quiet Tunnel at Purdue University, used a flared
cone model with 2D roughness strips and supported the numerical predictions indicating a stabilizing influence of
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roughness on the amplification of MM disturbances [12]. In particular, these studies showed that the most dominant
MM instability could be suppressed through a judicious placement of the roughness elements on the cone surface.

Additionally, there is limited experimental evidence concerning delayed transition in a hypersonic boundary layer
due to three-dimensional roughness elements. Experiments by Holloway and Sterrett [14] in the NASA Langley
20-inch Mach 6 tunnel used a single row of spherical roughness elements that were partially recessed within a flat-plate
model. Data for multiple values of the boundary-layer-edge Mach number were obtained by varying the plate mounting
angle. These investigators found that, for cases with the smallest roughness diameters, transition was delayed for edge
Mach numbers larger than 3.7, which approximately corresponds to the lower bound for second-mode dominance
over first-mode instabilities in a flat-plate boundary layer at typical wind tunnel conditions. Therefore, the results are
suggestive of a stabilizing influence of roughness-induced streaks on MM waves. Consistent with additional findings by
Holloway and Sterrett [14], recent research [15, 16] also established that the same streaks can develop high-frequency
instabilities when the roughness height becomes sufficiently large, resulting in an earlier transition relative to that over a
smooth surface.

Theoretical studies of the interaction between stationary disturbances and MM instabilities in hypersonic boundary
layers were first initiated during the last decade. Li et al. [17] studied the interaction of Görtler vortices with MM
instabilities on a flared cone, demonstrating a possible route to transition via this interaction. Li et al. [18] studied the
secondary instability of crossflow vortices in the hypersonic boundary layer over a yawed cone and found that nonlinearly
saturated crossflow vortices destabilize the Mack modes, which dominate the onset of transition in comparison with the
intrinsic secondary instabilities of crossflow vortices, i.e., instability modes that do not originate from the second-mode
instability [19, 20]. Ren et al. [21] studied the stabilizing effect of weakly nonlinear suboptimal streaks and Görtler
vortices on the planar first-mode and MM instabilities. They documented a slight reduction in the logarithmic
amplification #-factor of approximately Δ# = 0.2 relative to the baseline, zero-streaks flat-plate boundary layer.
Additional investigations [22–24] related to axisymmetric, hypersonic boundary layers over circular cones in ground test
facilities as well as under flow conditions representative of high altitude flight have shown that finite-amplitude optimal
growth streaks can substantially reduce the amplification of planar MM instabilities, but also that oblique first-mode
waves can be destabilized by morphing into SI instabilities.

In continuing the study of the effects of streamwise streaks on boundary layer, it is important to make note of the
difference between optimal streaks and realizable streaks. Optimal streaks are theoretical streaks produced by vortices
well above the wall. While these streaks are useful in examining the mechanisms behind boundary layer transition,
they are not likely to be found in nature. Because of this, it is important to examine realizable streaks, which are
suboptimal streaks that can feasibly be produced by conventional actuation methods such as roughness elements on the
wall [25–27]. If the attenuation of modal instabilities in boundary layers is to be achieved, one potential route is through
the implementation of these realizable streaks.

We examine the effects of the wake of a periodic array of wall-mounted VGs on the dominant instability waves
in axisymmetric or two-dimensional boundary layers at hypersonic Mach numbers. The selected geometry is a 7◦
half-angle circular cone with A∗= = 2.5 mm nose radius and !∗2 = 2.0 m length. The freestream parameters ("∞ = 5.3,
'4∞ = 13.42 × 106 m−1, )∗∞ = 201.4 K) are selected to match flow conditions of the HIFiRE-1 flight experiment during
the ascent phase at time equal to 21.5 s [28]. The compressible laminar boundary-layer flow is simulated by solving the
Navier-Stokes equations. A good correlation between experimental measurements and theoretical predictions based on
the parabolized stability equations (PSE) has confirmed that laminar-turbulent transition in this flow is driven by the
modal growth of planar MM instabilities [29]. The perturbed three-dimensional boundary layer is used as a basic state
for the subsequent modal instability analysis by means of the plane-marching PSE.

This study uses adjoint-based sensitivity analysis to optimize the VG shapes subject to suitable constraints and
evaluates the performance improvement resulting from the optimization in the form of delayed boundary layer transition
delay at flight conditions. The adjoint capability of Stanford University’s open-source CFD solver SU2 was used to
design a vortex generator and induce an optimized realizable streak downstream. In that regard, the present work
represents a follow-on to the previous study by Pederson et al. [30], who incorporated the necessary capabilities to
perform VG optimization into the SU2 flow solver. Preliminary results reported in that paper had shown a moderate
improvement in the objective function, equivalent to approximately 20.3% of the baseline value. In this paper, a finer
mesh is used for the VG optimization, as a grid sensitivity study showed appreciable differences in the wake between the
two meshes. Additionaly, several parameters are varied, including the maximum allowable streak amplitude and the
maximum allowable height of the VG deformation. Finally, the changes in disturbance amplification characteristics as
a result of the VG optimization are assessed by computing the evolution of the relevant instabilities behind the VGs
and comparing them with the #-factor value expected to correlate with the onset of transition. Section II of this paper
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provides a brief background on the theory behind the shape optimization and the plane-marching PSE. Subsequently in
Section III, we discuss the VG shape and the stability of the corresponding wake. Finally, a summary of the work is
presented and conclusions are stated in Section IV.

II. Theory
Here, we discuss the shape optimization and instability analysis used in this study. In what follows, the Cartesian

coordinates are represented by (G, H, I). The computational coordinates are defined as an orthogonal body-fitted
coordinate system in the cone region, with (b, [, Z) denoting the streamwise, wall-normal, and azimuthal coordinates,
respectively, and (D, E, F) representing the corresponding velocity components. The density and temperature are
denoted by d and ) , respectively.

A. Shape Optimization
We begin with a brief overview of the optimization framework developed by Pederson et al. [30]. The shape of

the VG is parameterized by a vector of design variables*, with the objective to minimize a defined scalar function �.
The solver begins with a baseline geometry and mesh from which the flowfield is computed. The discrete flowfield
* computed by the CFD solver is solved on a grid, denoted - , and is dependent on the VG shape U. The objective
function � is evaluated for convergence. If the objective function has converged, the optimization cycle is stopped.
IF the objective function has not converged, the adjoint-based sensitivities of the objective function to the VG shape
parameters are calculated. The VG shape is updated using the computed sensitivities. From there, the forward solve
begins and the optimization cycle repeats.

Formally, the CFD grid is a function of the VG shape parameters, the CFD solution is a function of the CFD grid,
and the objective function is a function of the CFD solution. These dependencies can be represented as � = � (*, - (U)).

The VG shape optimization problem is subject to three constraints. The first constraint is that the CFD solution must
satisfy the compressible Navier-Stokes equations, i.e., '(*, -) = 0, where ' is the vector of CFD residuals. The second
of constraint is that the mesh must accomodate the updated VG shape. This constraint is imposed by defining a mapping
of the design varibles to the mesh, represented asM : U→ - . Collectively, the residual and mapping constraints can
be represented as:

'(*, -) = 0, (1)
M(U) = -, (2)

The third and final constraint is imposed to ensure that bypass transition does not occur. The following constraint
can be writtin as:

� (*) ≥ 0. (3)

In summary, this optimization problem can be defined as:

minU � (*), (4)
subject to '(*, -) = 0, (5)

M(U) = -, (6)
� (*) ≥ 0. (7)

(8)

Further details on the optimization process developed preiously for this study can be found in Pederson et al. [30].
The shape modification is made possible through the use of a free-form deformation (FFD) box, where fourth-order

B-splines are used to build the new VG shape informed by the adjoint solution. The optimization problem is computed
for as many VG design iterations as are necessary for the objective function to be considered converged, namely, when
the solver is incapable of increasing the objective function further through additional iterations. This optimization
process is driven by the Sequential Least SQuares Programming (SLSQP), which is a local optimization algorithm
implemented in SU2. More details on SU2’s capabilities can be found in Palacios et al. [31, 32].
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For this study, the objective function to be minimized is defined as the integral of the streak amplitude induced by
the VGs:

� = −
∫ b2

b1

�(b)3b, (9)

where b1 and b2 correspond to a location just downstream of the VGs and a location far downstream from the VGs,
respectively. The optimization algorithm seeks to find a local minima of the objective function instead of a local
maxima, hence the negative sign in front of the integral. The definition of the objective function in Eq. (9) is informed
by previous work establishing a positive relationship between a strong downstream streak amplitude and the damping of
second-mode instabilities. This sign convention is used in the previous study by Pederson et al. [30]. The streamwise
streak amplitude � is calculated as:

�(b) = 1
2D∞

max
[
(max
Z
(D) −min

Z
(D)). (10)

An upper limit is imposed on the streak amplitude as an additional constraint in the optimization process. A VG
design which results in a streak amplitude greater than the imposed limit causes a penalty to the objective function and
informs the next design iteration. This is done to prevent untethered growth of the streak amplitude, which could lead to
premature growth of SI instabilities growing beyond the critical #-factor required for transition and accelerating the
onset of transition.

B. Plane-Marching PSE
The linear, plane-marching PSE are used to predict the linear amplification characteristics of both modulated MM

waves and the streak instability waves sustained by finite-amplitude streaks induced by the VGs.
The vector of basic-state variables corresponds to q̄(b, [, Z) = ( d̄, D̄, Ē, F̄, )̄)) and the vector of perturbation

variables is denoted by q̃(b, [, Z , C) = ( d̃, D̃, Ẽ, F̃, ) ?)) . The curvature metric factors associated with the streamwise
and azimuthal curvature, respectively, are defined as

ℎb = 1 + ^[, (11)
ℎZ = A1 + [ cos(\), (12)

where ^ denotes the streamwise curvature, A1 is the local radius, and \ is the local half angle along the axisymmetric
surface, i.e., sin(\) = 3A1/3b.

In the plane-marching PSE context, the perturbations to the streak have the form

q̃(b, [, Z , C) = q̂(b, [, Z) exp
[
i
(∫ b

b0

U(b ′) db ′ − lC
)]
. (13)

Substituting Eq. (13) into the linearized Navier-Stokes equations and invoking scale separation between the streamwise
coordinate and the other two directions to neglect the viscous terms with streamwise derivatives, the PSE are obtained
in the form (

L%(� +M%(�

1
ℎb

m

mb

)
q̂(b, Z) = 0. (14)

The initial disturbance profiles for the plane-marching PSE are obtained using a partial-differential-equation (PDE)
based two-dimensional eigenvalue problem (EVP).

The onset of laminar-turbulent transition is estimated using the logarithmic amplification ratio, the so-called #-factor,
relative to the neutral location b� where the disturbance first becomes unstable,

# = −
∫ b

b�

U8 (b ′) db ′ + 1/2 ln
[
�̂ (b)/�̂ (b� )

]
. (15)

The energy norm of q̃ was derived by Chu [33], and used by Mack [34] for linear stability theory, and is defined as

� (b) = 1
!Z

∫
Z

∫
[

q̃(b, [, Z)�Mq̃(b, [, Z) ℎb ℎZ d[ dZ, (16)
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where the superscript � denotes conjugate transpose, and M is the energy weight matrix equal to

M = diag
[

)̄

Wd̄"2 , d̄, d̄, d̄,
d̄

W(W − 1))̄"2

]
. (17)

A more detailed description of the PDE-based two-dimensional EVP and plane-marching PSE methodologies are given
by Paredes [35], Paredes et al. [36, 37].

III. Results
In this section, we discuss the unperturbed base state solution, as well as the details of the perturbed flow computed

with a high-order DNS solver. Subsequently, we discuss the grid refinement study performed in which solutions
computed with SU2 are compared to the high-order DNS solution. Finally, the results of the shape optimization and
resulting streak amplitudes are compared to the baseline results, and the stability analysis of the wake of the optimized
VG is discussed.

A. Unperturbed Boundary-Layer Flow
The basic state, laminar boundary-layer flow over the cone surface is computed by using a second-order accurate

algorithm as implemented in the finite-volume cell-centered compressible Navier-Stokes flow solver VULCAN-CFD∗

[38]. The VULCAN-CFD solution is based on the full Navier-Stokes equations and uses the solver’s built-in capability
to iteratively adapt the computational grid to the shock. The basic state solution with no VGs present is computed by
using the steady-state module of the solver. The geometry is a 7 degree half-angle circular cone with nose radius 2.5 mm
and length of 2.0 m. Sutherland’s law is assumed for the viscosity, with the Sutherland’s constant set equal to 110.4 K.
The Prandtl number is 0.72 for air, and the ratio of specific heats W is equal to 1.4, as the perfect gas model is considered.
The freestream conditions are selected to replicate those of the HIFiRE-1 flight experiment at time equal to 21.5 s during
the ascent phase [28], i.e., Mach 5.30 flow with a unit Reynolds number of 13.42 × 106 m−1, freestream temperature of
)∗∞ = 201.4 K, and a prescribed surface temperature distribution that corresponds to a wall-to-adiabatic temperature
ratio of approximately 0.35 over most of the vehicle [29]. Further details of the unperturbed solution are given by
Paredes et al. [24]. In what follows, freestream values are used as the reference values for nondimensionalization. The
reference length scale is defined as X =

√
!a/D∞, where !∗ = 1.0 m.

Experimental measurements and theoretical predictions based on PSE have confirmed that laminar-turbulent
transition in this flow is driven by the modal growth of planar MM instabilities [29]. To establish the transition behavior
in the absence of stationary streak perturbations, the instability of the unperturbed flow was examined by using PSE by
Li et al. [29] and Paredes et al. [24]. The onset of laminar-turbulent transition in the unperturbed boundary-layer flow
was estimated on the basis of #-factor evolution corresponding to the planar Mack modes computed with the PSE.
For the conditions of the experiment [28], transition onset in the unperturbed cone boundary layer was measured to
occur near bCA/! = 0.85. The PSE results of Paredes et al. [24] show that the peak #-factor at the measured transition
location corresponds to #CA = 14.7, which is first reached by a planar MM disturbance with a frequency of l = 0.603.
Neither planar nor oblique first-mode instabilities were found to be unstable in the present boundary-layer flow because
of the low surface temperature relative to the adiabatic temperature.

B. Baseline Design of Vortex Generators
The axisymmetric boundary-layer flow described in subsection III.A is perturbed via an array of roughness elements

centered at a selected axial station. The three-dimensional, azimuthally-periodic, laminar boundary-layer flow over the
cone surface with arrays of wall-mounted VGs was computed by using a high-order DNS solver. A detailed description
of the governing equations and their numerical solution is given by Wu and Martin [39]. The converged inlet solution of
the basic-state flow was interpolated to the DNS mesh as a starting point to avoid resolving the leading-edge of the
cone. The inviscid fluxes from the governing equations were computed using a seventh-order weighted essentially
non-oscillatory finite-difference WENO scheme introduced by Jiang and Shu [40]. The viscous fluxes were discretized
using a fourth-order central difference scheme and time integration was performed using a third-order low-storage
Runge-Kutta scheme [41].

The baseline design of the roughness array corresponds to azimuthally equispaced pairs of smooth-shaped VGs with
elliptical platforms as described by Paredes et al. [42]. The VGs are designed on the basis of the earlier analysis by

∗visit http://vulcan-cfd.larc.nasa.gov for further information about the VULCAN-CFD solver
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Fig. 1 Evolution of streak amplitudes corresponding to the 245× 49× 64 and 491× 97× 128 grid solutions with
SU2 compared with the 983 × 192 × 257 grid solution from the high-order DNS.

Paredes et al. [24], wherein the interaction between stationary streaks undergoing optimal, nonmodal growth and the
MMwaves in the present hypersonic boundary-layer flow was analyzed. The VGs are located at b+�/! = 0.6059, where
the #-factor value corresponding to the envelope of MM waves in the unperturbed boundary layer is approximately 2/3
times the #-factor value correlating with the onset of transition, i.e., # = 2/3#CA . The azimuthal wavenumber of the
VGs is set to 320. The choice of azimuthal wavenumber is consistent with the observation by Paredes et al. [24] that a
ratio of wavelength to boundary-layer thickness of 1.4 ≤ _() A1/Xℎ ≤ 2.2 is highly effective in stabilizing the MM
instabilities. For this baseline design of the VGs, Paredes et al. [42] performed the stability analysis of the perturbed
flow solution based on the plane-marching PSE and predicted the transition onset to shift downstream from a location of
b/! = 0.85 to b/! = 1, corresponding to a 17% delay in transition.

The family of computational grids used in the current study are based on the the grid used by Paredes et al. [42]. A
grid refinement study is performed in order to determine what level of resolution was required to successfully resolve the
streaks. The two meshes are coarsened versions of the DNS mesh used in the study by Paredes et al. [42] with resolutions
of 491 × 97 × 128 nodes and 245 × 49 × 64 nodes respectively. As seen in Fig. 1, the 491 × 97 × 128 grid shows good
alignment with the high-order DNS solution and follows the general shape of the DNS streak downstream of the VGs.
The 245 × 49 × 64 grid solution displays a sharp over approximation of the DNS streak immediately downstream of the
VGs, but required nearly an order of magnitude less computational time to converge than the 491 × 97 × 128 mesh.
Despite the increased computational time, this study shows that a mesh of resolution 491 × 97 × 128 is refined enough
to accurately capture the characteristics of the DNS streak and is used moving forward.

C. Design Optimization of Vortex Generators
SU2’s adjoint-based optimization tool is used to determine the optimal VG shape. A variety of cases were run in

order to effectively tune the solver, ensure convergence of adjoint solutions, and improve the behavior of the induced
streaks. To limit the maximum VG height with respect to the local thickness of the unperturbed boundary layer, an
upper limit of 0.4354 mm is imposed on the wall deformation. This limiting value corresponds to a relative VG height
of :/Xℎ = 0.5, where Xℎ refers to the boundary layer height as measured at the VGs location. The boundary layer
height was calculated based on a total enthalpy ratio of ℎC/ℎC ,∞ = 0.995, where the subscript C indicates total enthalpy.
Wall deformation is limited to the wall-normal direction for the process of tuning the solver. The objective function is
evaluated for each design iteration. The flow and adjoint solutions are considered converged when the residual of the
corresponding continuity equations reach values below 10−13 and 10−8, respectively. A further reduction of the residual
thresholds had no effect on the results. For the adjoint solver, the residual of the continuity equation was last of the five
(continuity, momentum, and energy) residuals to reach its convergence value. Thus, by setting the convergence criteria
to 10−8 it ensured that the other four residuals would be at least an order of magnitude lower and the solution could be
considered converged. For the flow solver the opposite was true: the residual of the continuity equation was the first of
the five to converge. By requiring the residual to converge to 10−13, it ensured that the other four residuals would reduce
to at most 10−7.
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Fig. 2 Objective function and streak amplitude across the design history.

Paredes et al. [24] found that optimal growth streaks become unstable for a maximum streak amplitude greater than
� = 0.2. The streaks studied in this work however are roughness-induced streaks and, as reported by Denissen and
White [43], can become unstable at lower amplitudes than their optimal counterparts. For this reason, an upper limit
of � = 0.18 was imposed on the VG optimization to ensure that the streaks would not grow to strongly support the
amplification of SI instabilities.

Figure 2 displays the objective function and maximum streak amplitude values across the design history. A total of
67 optimization iterations were computed before the optimization process was considered converged. As expected,
the maximum streak amplitude from one design iteration to the next oscillates around the imposed value of 0.18. The
objective function normalized with the value corresponding to the initial design is increased by over 158% compared to
the initial design, and increased by over 100% when compared to the baseline design.

The streamwise evolution of the streak amplitude for the initial and final design iterations are shown in Fig. 3(b)
alongside the final VG shape in Fig. 3(a). The optimized streak amplitude evolution begins with a value of approximately
12% immediately behind the VG array and rises rapidly to a maximum of nearly 18% and then remains constant
throughout the downstream region. The peak amplitude in this case is somewhat smaller than the relatively sharp peak
of approximately 21% in the baseline case, which should reduce the potential for SI instabilities. However, it is the
sustenance of the streak amplitude at or just below the imposed upper limit of 18% that should provide a continued
reduction in the growth of Mack’s second-mode instabilities.

The optimized streak amplitude can be seen with two extrema, the local minimum is attained directly after the
VG location and the global maximum is attained further downstream around b/!=0.8. Additionally, the downstream
amplitude of the streak is much greater and does not decay compared to that of the baseline configuration. Both of these
attributes are favorable for mitigating the second-mode instabilities. To better visualize the shape of the VGs in 3D, two
renderings of the initial VG shape and the optimized VG shape are shown in Figs. 4(a) and 4(b), respectively.

The instability characteristics of the perturbed, streaky boundary-layer flow are examined next. The plane-marching
PSE are used to monitor the evolution of the MM waves, which are modulated by the presence of the azimuthally
periodic streaks, and the SI instabilities that can become unstable due to the presence of the streaks and can dominate
the process of laminar-turbulent transition. The effect of instability wave scattering by the VGs is not accounted for in
the present work. Paredes et al. [24] studied the interaction of oblique and planar MM waves with finite-amplitude
optimal streaks and concluded that the planar MM dominates the instability characteristics of both the unperturbed and
the perturbed boundary-layer flows, as long as the streak amplitudes are not large enough for the SI sustained by those
streaks to cause transition onset. Paredes et al. [24] have also observed that the subharmonic, sinuous mode SI is the
most unstable mode for moderate streak amplitudes and, therefore, has the potential to play an important role during the
transition process. Based on those findings, the growth of nominally planar MM waves and subharmonic, sinuous SI
modes are analyzed next.

Figure 5(a) shows the Mach contours at selected stations within the wake, indicating approximately sinusoidal
streaks throughout the length of the computational domain. Figure 5(b) displays the MM and SI growth characteristics
of the wake of the optimized VGs with max(�) < 0.18. It can be seen that initially unstable second-mode instabilities
decrease rapidly once they encounter the VGs. Furthermore, neither the second-mode instabilities or SI instabilities
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Fig. 3 (a) Top-down view of the optimizedVGdesign for an imposed upper limit of 0.18 on the streak amplitude,
colored by normalized distance above the wall. (b) Streak amplitude of the initial shape (black) and optimized
(red) vortex generators.

(a) (b)

Fig. 4 Zoomed perspective images of the initial VGs (a) and the optimized VGs with an upper limit of 0.18
imposed on streak amplitude (b). Note that the axes ratios have been changed to give a better view of the VG
shape.
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Fig. 5 (a) Mach contours of the wake produced by an optimized VG with an imposed upper limit of 0.18 on
the streak amplitude. (b) #-factor curves for planar MM disturbances (MM) and sinuous, subharmonic streak
instability modes (SI) for case I with one array of VGs at b+�/! = 0.6059. The relevant frequency ranges are
selected for each disturbance. The dark-red horizontal line denotes the transition #-factor.

reach the critical #-factor of 14.7, which correlated with transition onset due to second mode growth during the
HIFiRE-1 flight experiment. The MM instabilities attain a maximum #-factor of nearly 12 in the case of the optimized
VGs; therefore, even if transition onset in the presence of streaks were to occur at a reduced critical #-factor of 12 (as
against 14.7 in the absence of any streaks) because of a potentially adverse impact of the streaks on the receptivity and
the nonlinear breakdown stages, one would still expect the boundary layer to remain laminar throughout the length
of the computational domain of up to G = 2.0 m. The maximum #-factor attained by the SI modes of instability is
approximately 8.

We next demonstrate that the optimal VG configuration from Fig. 4(b) also provides a useful starting point for
further design modifications. For example, the onset of transition due to SI instabilities cannot be predicted with a great
degree of confidence at present. Choudhari et al. [44] had analyzed the growth of SI instabilities near the centerline of
the HIFiRE-5 elliptic cone model and found an #-factor of approximately 15 at the transition location inferred from the
flight data. However, because that analysis was limited to a single point along the trajectory, the uncertainty in the
resulting correlation is rather high. As a conservative measure to guard against potential transition due to SI instabilities,
one could reduce the upper limit imposed on the maximum streak amplitude from 0.18 to 0.16. The results of this case
are seen in Fig. 5. The final design of the 0.18 case was used as an initial shape for the optimization, instead of the
baseline geometry seen in Fig. 4. The solver took 13 design iterations to decrease the maximum streak amplitude to
0.16, a sharp decrease from the 67 iterations required to get from the baseline design to the desired streak amplitude
of 0.18. The new shape of the VGs (Fig. 6(a)) is very similar to that in Fig. 3(a) with the higher limit on the streak
amplitude. Furthermore, the resulting evolution of the streak amplitude (Fig. 6(b)) is also very similar to that with
<0G(�) = 0.18. The Mach number contours in the wake and the #-factor curves for the MM and SI instability modes
are shown in Figs. 7(a) and 7(b), respectively. Whereas the peak #-factor and the corresponding streamwise station
for the MM mode amplification is nearly unchanged, the peak #-factor for the SI modes is reduced from 8 to below
5. Again, the flow is predicted to remain laminar throughout the length of the computational domain. This exercise
highlights the utility of the design optimization process for developing not only an optimal VG shape for assumed
#-factor correlations, but also to define multiple candidate geometries that could be tested in a validation experiment.

IV. Summary and Concluding Remarks
It is known from previous work that suitably tailored, stationary longitudinal streaks excited via surface mounted

vortex generators (VGs) can mitigate the growth of Mack’s second-mode instabilities in a hypersonic boundary layer
without allowing the extraneous SI instabilities to take over as the dominant cause for transition. The efficacy with
which realizable streaks in hypersonic boundary layer flow can suppress second-mode instabilities was investigated in
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Fig. 6 (a) Zoomed perspective of the optimizedVGswith an upper limit of 0.16 imposed on the streak amplitude.
Note the axes ratios have been changed to give a better view of the VG shape. (b) Streak amplitude of the initial
shape (black) and optimized (red) vortex generators.
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Fig. 7 (a) Mach contours of the wake produced by an optimized VG with an imposed upper limit of 0.16 on the
streak amplitude. (b) #-factor curves for planar MM disturbances and sinuous, subharmonic streak instability
modes (SI) for case I with one array of VGs at b+�/! = 0.6059. The relevant frequency ranges are selected for
each disturbance. The dark-red horizontal line denotes the transition #-factor.
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this paper using adjoint-based optimization of the VG pattern in an axisymmetric, hypersonic boundary layer at cold
wall conditions that are representative of high-altitude flight. Previous work had demonstrated that a nonoptimized
baseline design consisting of an azimuthal spacing derived from the optimal-transient-growth theory and a manually
crafted VG shape could delay the onset of boundary layer transition by approximately 17% for a selected trajectory
point from the HIFiRE-1 flight experiment. Preliminary optimization work by Pederson et al. [30] saw a 20.3% increase
in the mean streak amplitude from the first to final design. The follow-on work described in the present study reports an
increase in the mean streak amplitude by over 158% in the course of the design history when comparing the first and
final designs, and an increase in over 100% when comparing the final design to the baseline design. According to the
research described in this study, optimized VGs could potentially delay the onset of transition via realizable streaks by
up to 130%, making the boundary layer flow over the whole payload surface (up to an extended length of 2 meters)
entirely laminar. The peak amplitude was limited to a predetermined value based on previous experience to prevent SI
instabilities. The numerical studies reported here, on the other hand, suggests that significant transition delay may be
achievable for a range of maximum streak amplitude values. The initial VG design restricted the surface deformation
associated with the VGs to positive values, i.e., to a protuberance-only shape that can be achieved without removing
any material from the baseline geometry. Future studies should seek to examine the impact on transition delay of VGs
allowing for both positive and negative surface deformations, as well as the physical mechanisms behind the interactions
of the streaks and the second-mode instabilities.
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