The PACE-MAPP algorithm

Simultaneous aerosol and ocean polarimeter products using coupled atmosphere-ocean vector radiative transfer and neural networks

August 10, 2022

PACE-MAPP team

□ <u>PI</u>

□ Co-Investigators

> Snorre Stamnes

> Sharon Burton

> Bastiaan van Diedenhoven

> James Allen

> Adam Bell

Michael Jones

Collaborators

> Chris Hostetler

> Yongxiang Hu

PACE-MAPP collaborative algorithm project

NASA

Aerosol VIS-NIR-SWIR properties: fine

mode (absorbing), sea salt, and dust

> Produce accurate aerosol optical and microphysical properties and ocean properties

0.4

Retrieved

0.2

0.6

- > Use a coupled atmosphere-ocean vector radiative transfer (VRT) model
- Use accurate but fast Mie/SS/T-matrix LUTs
- ➤ Use scientific machine learning to speed-up retrievals by 1000x (PACE-MAPP Neural Network)

Thin cirrus correction

0.4

0.6

Retrieved

0.8

PACE-MAPP aerosol/thin cloud products

■ Aerosol optical and microphysical properties

- Fine mode AOD (aerosol optical depth), SSA (single-scattering albedo, quantifies absorption), real refractive index, effective radius (size), and effective variance (size distribution width)
- Seasalt AOD, effective radius and effective variance (CRI assumed)
- Dust AOD, effective radius and effective variance (CRI modeled according to Hasekamp/SRON model, with updates from Chowdhary, Schuster and Moosmüller)

☐ Thin cirrus optical and microphysical properties

- > Thin cirrus optical depth (< 1.0) and effective radius
- Sensitivity to shape and height will be assessed

Parameter Values

All values randomly selected from a uniform distribution. For VZA 160 angles are generated between 65° and -65° for every observation. Altitude is fixed at top of atmosphere (TOA).

Parameter [Units]	Min	Max
SZA [degrees]	0	60
RAA [degrees]	0	180
n_{rf}	1.39	1.65
n_{if}	1e-5	0.045
r_{nf}	0.075	0.22
r_{nc}	0.5	1.5
$ au_{556f}$	1e-5	0.7
$ au_{556c}$	1e-5	0.3
σ_{gf}	log(1.4)	log(2.01)
σ_{gc}	log(1.35)	log(2.01)
FTL Base Height [km]	1.01	7.0
v [m/s]	0.5	10
Chla [mg/m ³]	0.01	9.9

PACE-MAPP Neural Network

1000x faster than online VRT

11 channels simulating SPEXone and HARP2 from UV-VIS-NIR (556, 385, 396, 413, 441, 470, 533, 549, 669, 759, and 873 nm)

All viewing angles

Performance goal for retrievals:

1 second per L1C pixel

PACE-MAPP simulated retrieval performance

Coated hydrosol LUT scale invariance rule

Size parameter
$$x = 2\pi \frac{1.4}{2.264} = 2\pi \frac{r}{\lambda} = 2\pi \frac{\frac{0.355}{2.264} \cdot 1.4}{0.355}$$

Efficiencies
$$Q_p(.,r,\lambda) = Q_p\left(.,\frac{\lambda_r}{\lambda}r,\lambda_r\right)$$

Normalized absorption efficiencies at wavelengths 0.355 and 2.264 μ m are related by a uniform scaling transformation which is a type of Euclidean affinity transformation.

In terms of integrals
$$\int_{r_{\min}}^{r_{\max}} Q_p(.,r,\lambda) \mathrm{d} \ln r = \int_{\frac{\lambda_r}{\lambda} r_{\min}}^{\frac{\lambda_r}{\lambda} r_{\min}} Q_p(.,r,\lambda_r) \, \mathrm{d} \ln r.$$

Coated hydrosol LUT

- We have created a coated hydrosol LUT for PACE
- □ Coated particles can realistically simulate bbp without resorting to tiny sizes as required by solid spheres
- □ LUT structure based on Chemyakin et al., 2021

Core-to-shell ratio: 0.85

Shell real refractive index Shell imag. refractive index

Size distribution: Effective radius

Effective variance

Core real refractive index

Core imag. refractive index

PACE-MAPP has 2 Bio-Optical Models

600

600

600

650

650

650

700

700

550

550

Wavelength, nm

- For simple waters that can be parameterized by chlorophyll-a concentration
 - Bio-optical model from Chowdhary et al., 2006, 2012
- For complex waters found in coastal zones or very clear waters
 - We are developing a new bio-optical model with phytoplankton (coated spheres) and non-algal particles (solid spheres)
 - Coated spheres can produce realistic spectral variations in bbp without resorting to empirical formulas

Model Inputs			
Chlorophyll	0.01-50mg m ³		
Chl Density	1-10kg m ³		
Phyto Shell n	1.05-1.2		
NAP n	1.02-1.2		
NAP n' slope	0.007186		
NAP n' intercept	0.010658		
Junge PSD	2.5-6		
% Phyto Volume	0.05-0.95		

Bulk Particle Optics Model Outputs c(y), m-1 PSD, # m⁻³ m⁻¹ 10₁₀ 10²⁰ 400 450 500 0.02 a(\(\chi\), m⁻¹ 10⁻² 10⁰ 10² Radius, um 0.04 400 500 CRI Imaginary $\times 10^{-3}$ $\times 10^{-4}$ (₹) q 0.5 400 450 500 400 450 500 550 600 650 700 Wavelength, nm

BOM Test Inversion

Retrievals show realistic results from satellite remote sensing reflectance

Scattering processes switch between phytoplankton and non-algal particles

Future work will improve the Imaginary Refractive Index (IRI) for the phytoplankton shell

Vector Radiative Transfer Code (VRT) Updates in PACE-MAPP

Integrate Atmosphere-Ocean System model: *eGAP* (*Chowdhary et al.,* 2020)

- eGAP is one of a small number of coupled atmosphere-ocean VRT models
- □ Calculates total and polarized (*I*, *Q*, and *U*) reflectance of radiation emerging from top of an atmosphere-ocean system
- Extended to include underwater light computations of:
 - \triangleright Upwelling radiance (L_{u}) at four user-specified ocean depths
 - \triangleright Upwelling irradiance (E_d) at four user-specified ocean depths
 - \triangleright Diffuse irradiance attenuation coefficient (K_d) at three user-specified ocean depths
 - \triangleright Remote sensing reflectance values just above the ocean surface (R_{rs})
- ☐ Incorporate new coated hydrosol LUT bio-optical model
 - Compute water leaving contributions to total and polarized reflectance measurements
- □ Modeling of optically thin cirrus cloud properties (alone or coincident with aerosols) to aid in:
 - Cirrus cloud detection
 - Quantify bias in retrieved aerosol properties due to thin cirrus

■ The ubiquity of high-level clouds

- CAMP2Ex NASA field campaign conducted near the Philippines
- For all CAMP2Ex flights, 53% of flights had above-aircraft cloud fraction above 50% (clouds above ~7 km)
- For ACTIVATE in the North Atlantic off the coast of Virginia: 52% in 2020 and 54% in 2021

Impacts on aerosol radiative forcing

- Thorsen et al. (2020) demonstrate sensitivity of shortwave aerosol direct radiative effect (DRE) to thin cirrus clouds
- Aerosols below thin clouds occur with greater frequency and are more impactful on overall aerosol DRE than aerosols above clouds

Thin cirrus aliasing of aerosol property retrievals

- Impact retrievals of aerosol optical depth (AOD) and aerosol physical properties like shape, size, and single-scattering albedo (SSA)
- ➤ How does the presence of thin high-level cloud/cirrus impact our goal to retrieve AOD and SSA to ~0.02?

Why worry about highlevel clouds/cirrus?

1.0

Flight-averaged Cloud Fraction

CAMP2Ex aboveaircraft cloud fraction

an crant cloud if action				
Flight	Cirrus	No cirrus	Incloud	
	P3	P3	P3	
20190824	0.75	0	0.25	
20190827	0.61	0.24	0.15	
20190829	0.64	0.07	0.29	
20190830	0.71	0.18	0.11	
20190904	0.87	0.03	0.10	
20190906	0.83	0.03	0.14	
20190908	0.56	0.22	0.22	
20190913	0.81	0.13	0.05	
20190915	0.77	0.10	0.13	
20190916	0.59	0.24	0.17	
20190919	0.79	0.12	0.09	
20190921	0.70	0.26	0.04	
20190923	0.34	0.61	0.05	
20190925	0.24	0.74	0.02	
20190927	0.32	0.66	0.01	
20190929	0.92	0.04	0.05	
20191001	0.57	0.35	0.08	
20191003	0.42	0.57	0.01	
20191005	0.23	0.87	0.05	
All Flights	0.61	0.28	0.11	

Conclusion

NASA

- PACE-MAPP-related papers/presentations:
 - PACE-MAPP paper: submitted to Frontiers in Remote Sensing
 - MAPP paper: https://doi.org/10.1364/AO.57.002394
 - VDISORT paper: https://doi.org/10.3389/frsen.2022.880768
 - Aerosol LUT paper: https://doi.org/10.3389/frsen.2021.711106
 - Cloud LUT: See Ed Chemyakin's APOLO poster
 - Bio-optical model: James Allen's APOLO poster
 - Hydrosol LUT: https://science.larc.nasa.gov/polarimetry
 - Thin cirrus: https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/928558
 - o Polarimeter + lidar-derived Na paper: https://doi.org/10.3389/frsen.2022.885332
- Welcome to all questions, suggestions, collaborators!

Polarimeter Aerosol, Hydrosol, Cloud, Coated Hydrosol LUTs are available to the research community:

https://science.larc.nasa.gov/ polarimetry

PolCube CubeSat polarimeter:

https://doi.org/10.3389/frsen.2021.709040

Polarimeter engineer opportunity

snorre.a.stamnes@nasa.gov