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The existing measurements of laminar-to-turbulent transition over circular cones in conven-
tional (i.e., “noisy”) hypersonic wind tunnels have established that the transition location moves
downstream when the nose radius is increased from zero. However, this initially downstream
movement slows down and ultimately reverses beyond a critical value of the nose radius, and
may be related to external forcing in the form of freestream disturbances and/or surface
roughness. To understand the effects of freestream acoustic disturbances on transition reversal
over a blunt body, hypersonic boundary-layer receptivity to broadband freestream acoustic
disturbances from the nozzle wall of a digital conventional wind tunnel is investigated by both
direct numerical simulations (DNS) and modal and nonmodal stability analysis. A Mach 8
flow over a 7 deg half-angle cone with a nose radius of 𝑅𝑛 = 5.2 mm and freestream unit
Reynolds number of 12.2 × 106 m-1 is considered. The results show that the broadband tunnel
noise in the free stream of a convectional hypersonic wind tunnel (i.e., outside the nozzle-wall
turbulent boundary layer) can be well represented by an acoustic model with an ansatz of slow
acoustic waves. With successful calibration of the model parameters against the precursor
tunnel DNS, such an acoustic ansatz can successfully reproduce both the frequency-wavenumber
spectra and the temporal evolution of the broadband tunnel noise radiated from the nozzle
wall. Additionally, the DNS of the Mach 8 blunt cone with tunnel-like acoustic input above the
bow shock showed that the spectra of wall-pressure and heat-transfer fluctuations recover the
signature of the axisymmetric waves predicted by the nonmodal analysis. Furthermore, the
azimuthal wavenumber and frequency spectrum of the temperature fluctuations as a function
of the wall-normal distance show higher amplitudes for three-dimensional waves above the
boundary-layer edge. The numerical schlieren contours show the inclined structures commonly
observed in blunt cone experiments, demonstrating that they correspond to three-dimensional
structures due to freestream disturbances in the presence of an entropy layer.

Nomenclature

𝐶 𝑓 = Skin friction coefficient, 𝐶 𝑓 = 𝜏𝑤/(0.5𝜌∞𝑈2
∞), dimensionless

𝐶𝑝 = heat capacity at constant pressure, J/(K·kg)
𝐶𝑣 = heat capacity at constant volume, J/(K·kg)
𝐸 = total energy norm, J
𝑓 = frequency, Hz
𝐻 = shape factor, 𝐻 = 𝛿∗/𝜃, dimensionless
ℎ𝜉 = streamwise metric factor
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ℎ𝜁 = spanwise metric factor, m
𝐽 = objective function
𝑀 = Mach number, dimensionless
𝑚 = azimuthal wavenumber, rad−1

𝑁 = Logarithmic amplification factor
q̂ = vector of amplitude variables
q̆ = vector of disturbance function variables
q̄ = vector of base flow variables
q̃ = vector of perturbation variables
𝑃𝑟 = Prandtl number, 𝑃𝑟 = 0.71, dimensionless
𝑅 = ideal gas constant, J/(K·kg)
𝑅𝑒∞ = freestream unit Reynolds number, 𝑅𝑒𝑢 = 𝜌1,∞𝑈1,∞/𝜇1,∞, m−1

𝑅𝑒𝜃 = Reynolds number based on momentum thickness and freestream viscosity, 𝑅𝑒𝜃 = 𝜌2,∞𝑈2,∞𝜃/𝜇2,∞, dimensionless
𝑅𝑒𝛿2 = Reynolds number based on momentum thickness and wall viscosity, 𝑅𝑒𝛿2 = 𝜌2,∞𝑈2,∞𝜃/𝜇𝑤 , dimensionless
𝑅𝑒𝜏 = Reynolds number based on friction velocity and wall viscosity, 𝑅𝑒𝜏 = 𝜌𝑤𝑢𝜏𝛿/𝜇𝑤 , dimensionless
𝑅𝑛 = cone nose radius, mm
𝑆 = entropy, 𝑆 =

𝛾

𝛾−1 ln 𝑇
𝑇1,∞

− ln 𝑝

𝑝1,∞
, dimensionless

𝑇 = temperature, K
𝑇𝑟 = recovery temperature, 𝑇𝑟 = 𝑇1,∞ [1 + 0.89 ∗ (𝛾 − 1)𝑀2

1,∞/2], K
𝑈 = mean streamwise velocity in the local body intrinsic coordinate system, m/s
𝑐 = speed of sound, m/s
𝑝 = pressure, Pa
𝑞 = dynamic pressure, Pa
𝑟 = radial coordinate
𝑢 = streamwise velocity in the right hand Cartesian coordinate, m/s
𝑢𝜏 = friction velocity, 𝑢𝜏 ≡ 𝜏𝑤/𝜌𝑤 , m/s
𝑣 = spanwise velocity in the right hand Cartesian coordinate, m/s
𝑤 = vertical velocity in the right hand Cartesian coordinate, m/s
𝑥 = streamwise direction of the right hand Cartesian coordinate, m
𝑦 = spanwise direction of the right hand Cartesian coordinate, m
𝑧 = vertical coordinate that is perpendicular to the plane determined by the 𝑥- and 𝑦-coordinates, m
𝑧𝑛 = wall-normal direction of the local body intrinsic coordinate system, m
𝑧𝜏 = viscous length, 𝑧𝜏 = 𝜈𝑤/𝑢𝜏 , m
𝛾 = specific heat ratio, 𝛾 = 𝐶𝑝/𝐶𝑣 , dimensionless
𝛿 = boundary layer thickness (based on 99.5% of the total enthalpy), m
𝛿∗ = displacement thickness, m
𝜅 = thermal conductivity, 𝜅 = 𝜇𝐶𝑝/𝑃𝑟, W/(m·K)
𝜃 = momentum thickness, m
𝜇 = dynamic viscosity, kg/(m·s)
𝜈 = kinematic viscosity, 𝜈 = 𝜇/𝜌, m2·s
𝜌 = density, kg/m3

𝜏𝑤 = wall shear stress, Pa
Subscripts
𝑒 = boundary-layer edge variables
𝑖 = inflow station for the domain of direct numerical simulations
𝑜 = stagnation quantities
𝑟𝑚𝑠 = root mean square
w = wall quantities
1,∞ = freestream quantities before the shock of the cone
2,∞ = freestream quantities behind the shock but outside of the boundary layer of the cone
Superscripts
+ = inner wall units
(·) = statistically averaged variables
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(·) ′ = perturbation from averaged variable

I. Introduction
Boundary-layer transition (BLT) accounts for a major source of uncertainty in the heating loads on high-speed

vehicles. Therefore, the prediction and control of transition onset and the associated variation in aerothermodynamic
parameters in high-speed flows are critical factors in the design of next-generation aerospace vehicles. Although many
practical high-speed vehicles are blunt, the mechanisms that lead to boundary layer instability and transition on blunt
bodies are much less thoroughly understood at present compared to those on sharp bodies. Both experimental and
numerical studies have established that laminar–turbulent transition in axisymmetric boundary layers over sharp cones
at zero degrees angle of attack can be attributed to the modal growth of Mack’s second mode instabilities [1]. For small
values of nosetip bluntness, studies indicate that the transition location moves downstream with increasing nose radius,
due to the formation of an entropy layer that stabilizes the amplification of Mack’s second mode instabilities [2]. Thus,
the observed delay in transition onset at small bluntness is consistent with the predictions of the linear, modal instability
analysis. However, although such modal instability analysis predicts a continued delay in boundary-layer transition even
at relatively large values of nose bluntness, experiments indicate that the downstream movement in transition actually
slows down and eventually reverses when the nose bluntness exceeds a certain critical range of values [2–6].

Alternative theoretical paradigms based on nonmodal disturbance amplification have been proposed to explain the
phenomenon of transition reversal. For instance, computations have identified planar [7–9] and oblique [8, 9] traveling
disturbances that peak within the entropy layer of a blunt cone at zero degrees angle of attack, and furthermore, can
sustain significant amounts of nonmodal amplification. Furthermore, Paredes et al. [10] demonstrated that, even though
the linear nonmodal disturbances are primarily concentrated outside the boundary layer, their nonlinear interaction
can generate stationary streaks that penetrate and amplify within the boundary layer, eventually inducing the onset
of transition via the breakdown of these streaks. Therefore, their results suggest that the nonmodal amplification of
nonstationary disturbances could play a role in the measured frustum transition for moderately blunt cones if they can
be excited under a natural disturbance environment. However, the scope of these previous studies did not extend to
addressing the origin of these nonmodal traveling disturbances that peak within the entropy layer. A follow-on study is
therefore necessary to provide further information regarding the role of the freestream disturbances and the nonmodal
growth of traveling disturbances within the entropy layer during the transition process. It is particularly important to
establish a link between the measured transition in the absence of modal disturbance amplification and the freestream
acoustic disturbances in a noisy wind-tunnel environment, given that almost all available experimental observations of
the blunt cone transition phenomenon have been made in conventional (i.e., “noisy”) hypersonic wind tunnels.

To date, most studies of boundary-layer receptivity in the hypersonic regime have been carried out using either a
random inflow forcing across a broad range of frequencies and wavenumbers [11–13], or assumed incoming freestream
disturbance fields with plane acoustic waves [14, 15]. For instance, Balakumar and Chou [15] studied simulations
of hypersonic boundary-layer flows over a 7◦ half-angle straight cone with varying bluntness at a freestream Mach
number of 10. In their study, an attempt was made to predict transition onset for flow over cones by using the measured
freestream spectrum and two-dimensional numerical simulations. Only plane two-dimensional acoustic waves were
imposed in the simulations, unlike the 3D noise field radiated from the nozzle walls that impinges on a test article at
oblique angles. Although this approach provided encouraging results for a sharp cone under different flow conditions,
the predictions for the flow over a medium blunt cone were not very satisfactory. Balakumar et al. [16] further examined
the response of a Mach 3.5 flow over a sharp, 7◦ half-angle cone to oblique acoustic waves described by ad hoc analytical
expressions. However, because the process of nonmodal amplification is intrinsically due to the interference of multiple
eigenmodes of the underlying flow, it is unclear how well the simple form of freestream disturbances employed in that
study would perform in predicting BLT over a blunt body.

In an unheated hypersonic wind tunnel with adequate flow conditioning, the freestream disturbance environment is
dominated by acoustic radiation from tunnel-wall turbulent boundary layers (TBLs) (Figure 1) [17–22]. The effect of
tunnel noise on BLT in conventional hypersonic wind tunnels has not been well characterized, largely due to the lack of
an adequate knowledge base concerning the stochastic disturbance field associated with acoustic radiation from the
turbulent boundary layers along the tunnel walls, making it difficult to relate the computational results to experimentally
observed phenomena such as transition reversal over blunt cones from conventional hypersonic wind tunnels. Significant
recent progress has been made in characterizing the acoustic disturbance field in hypersonic ground facilities via
coordinated computations and experiments by the specialists group AVT-240 of NATO STO [23]. Specifically, the
current authors conducted direct numerical simulations (DNS) of the stochastic noise radiation within hypersonic
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Table 1 Preshock freestream conditions and wall temperature for DNS of a Mach 8 cone.

𝑀1,∞ 𝑈1,∞(m/s) 𝜌1,∞ (kg/m3) 𝑇1,∞ (K) 𝑇𝑤 (K) 𝑇𝑤/𝑇𝑟 𝑅𝑒𝑢 × 106 (1/m)
8.085 1091.9 0.0345 43.95 298 0.537 12.2

wind-tunnel facilities, elucidating the physics of noise generation inside the turbulent nozzle wall boundary layer and
providing multipoint statistics to characterize the spatiotemporal structure of the freestream noise. The DNS-predicted
noise spectra achieved encouraging agreement with those measured in experiments. These simulations have established
the foundation for a “virtual” testing of the hypersonic BLT in a digital wind tunnel, and also provided the basis for the
current work.

The objective of this paper is to numerically characterize the boundary-layer receptivity process of a Mach 8
blunt circular cone model to broadband freestream acoustic disturbances typical of a conventional hypersonic wind
tunnel. The goal is to elucidate tunnel-noise effects within the transition reversal regime. To generate the “tunnel-like”
freestream acoustic disturbances, a precursor DNS of acoustic radiation from turbulent nozzle-wall boundary layers
has been conducted at the experimental conditions of the Sandia Mach 8 Hypersonic Wind Tunnel HWT-8 [24]. The
broadband freestream disturbances radiated from the nozzle wall are then extracted and imposed at the outer boundary
of the cone DNS. The induced instabilities over the cone model within the DNS are compared with the nonmodal
analysis to provide further information regarding the role of the freestream disturbances, and the nonmodal growth of
traveling disturbances within the entropy layer.

The paper is structured as follows. The flow conditions, numerical methods, and the methods for generating
broadband “tunnel-like” acoustic disturbances are outlined in Section II. Section III presents DNS results of boundary-
layer receptivity over a 7◦ half-angle blunt cone in comparison with stability analysis, including both two-dimensional
axisymmetric DNS with linear planar acoustic waves and full-fledged three-dimensional DNS subject to broadband
“tunnel-like” disturbances. A summary of the work is given in Section IV.

II. Flow Conditions and DNS Methodology
DNS of boundary-layer instability and transition are conducted over a 0.517-m-long, 7◦ half-angle cone with a

blunt nose radius of 5.2 mm. To simulate BLT over the cone model within a digital wind tunnel, a precursor DNS
of the full-scale axisymmetric nozzle of the Sandia HWT-8 was first conducted at a nominal operational condition of
total pressure of 𝑃0 = 4692 kPa and total temperature of 𝑇0 = 617 K, and the flow conditions (including the unsteady
acoustic disturbances) at the center of the nozzle near the nozzle exit were extracted and used for the primary cone
simulation. More details of the precursor DNS of the digital wind tunnel along with the methodology for extracting
freestream acoustic disturbances will be introduced in Section II.C. Table 1 summarizes the extracted mean freestream
conditions used for the current cone DNS. The wall temperature of the cone is 298 K, corresponding to a wall-to-recovery
temperature ratio of 𝑇𝑤/𝑇𝑟 ≈ 0.537.

A. Governing Equations and Numerical Methods
To simulate boundary-layer instability and transition on a circular cone, the full three-dimensional compressible

Navier-Stokes equations in conservation form were solved numerically in cylindrical coordinates. The working fluid was
nitrogen (with an ideal gas constant of 𝑅 = 296.7 J/(K·kg)) and fell within the perfect gas regime. The usual constitutive
relations for a Newtonian fluid were used: the viscous stress tensor was linearly related to the rate-of-strain tensor, and
the heat flux vector was linearly related to the temperature gradient through Fourier’s law. The coefficient of viscosity 𝜇

was computed from Keyes law [25], and the coefficient of thermal conductivity 𝜅 was computed from 𝜅 = 𝜇𝐶𝑝/𝑃𝑟,
with the molecular Prandtl number 𝑃𝑟 = 0.71. The inviscid fluxes of the governing equations were computed using a
seventh-order weighted essentially nonoscillatory (WENO) scheme [26]. The viscous fluxes were discretized using a
fourth-order central difference scheme, and time integration was performed using a third-order low-storage Runge-Kutta
scheme [27].

The singularity at the polar axis, as manifested in the 1/𝑟 terms of the governing equations, is handled by shifting
the grid points in the radial direction by one half of the mesh spacing, following the approach proposed by Mohseni
and Colonius [28]. In their approach, the use of less accurate one-sided finite difference schemes for the purpose of
evaluating radial derivatives close to the pole (𝑟 = 0) is eliminated by mapping the flow domain from (0, 𝑅) × (0, 2𝜋)
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to (−𝑅, 𝑅) × (0, 𝜋), where 𝑅 is the radius of the computational domain. The time step limitation due to the decrease
in azimuthal spacing in the vicinity of the centerline (or pole) is addressed by dropping every few grid points (which
amounts to increasing the grid spacing) in the azimuthal direction as 𝑟 → 0 in the computation of the azimuthal
derivative [29].

The details of the DNS methodology have been documented in our previous simulations of acoustic radiation from
turbulent boundary layers [30–35].

B. Simulation Setup and Boundary Conditions
To numerically investigate the transitional and turbulent boundary layer over a circular cone that is subject to

“tunnel-like” freestream acoustic disturbances, the DNS is set up with the inflow boundary of the computational domain
lying outside the leading-edge shock of the cone. “Tunnel-like” freestream acoustic disturbances are then introduced by
prescribing flow variables at the inflow boundary based on the data saved from the precursor DNS of the disturbance
environment inside a digital wind tunnel that pertains to an empty wind-tunnel configuration (i.e., without the test article).
Fluctuation data within the freestream region of the precursor DNS is extracted and, after necessary reconstruction, fed
through the inlet and the outer boundary of the computational domain of the DNS involving the cone (See Section II.C
for details of the tunnel-noise extraction process). Given the time step limitation due to the requirement of a very
fine grid near the nose of the cone, the cone DNS have been conducted in multiple stages involving three overlapping
streamwise domains as schematically shown in Figure 1. The computation of Box 1 is done near the nose region, with a
very small time step (referred to as Box1 DNS). For Box 2 and Box 3 simulations, wherein larger time steps can be used
to evolve the boundary layer disturbances internalized within the upstream region, the inflow conditions are prescribed
using the data saved from the upstream DNS box. A multidomain simulation approach of this type was previously
applied to the DNS of BLT over a cone [36, 37]. On the wall, no-slip conditions are applied for the three velocity
components, and an isothermal condition is used for the temperature. At the outlet boundaries, unsteady nonreflecting
boundary conditions are imposed. Periodic boundary conditions are used in the azimuthal direction. The details of the
grid dimensions, domain size, and resolutions of the cone DNS are listed in Table 2. The selection of grid parameters
and other aspects of the numerical solution was based on extensive experience with a similar class of flows.

Fig. 1 Computational domain and simulation setup for DNS of Mach 8 flow over a blunt 7-deg half-angle
circular cone with a blunt nose radius of 𝑅𝑛 = 5.2 mm. The instantaneous flow is shown by the numerical
schlieren (gray-scale) and temperature fluctuations (colored).
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Table 2 Domain size and grid resolution for the cone DNS runs. xrange indicates the streamwise range of DNS
boxes. 𝑁𝑥 , 𝑁𝜃 and 𝑁𝑟 are the grid points in the streamwise, azimuthal, and radial directions, respectively. Δ𝑥 is
the streamwise wall-paralleled grid spacing, (𝑟Δ𝜃)+𝑤 is the azimuthal grid spacing at the wall, and Δ𝑧𝑛,𝑤 and
Δ𝑧𝑛,𝑒 are the wall-normal grid spacing at wall and boundary-layer edge, respectively. The leading edge of the
cone corresponds to 𝑥 = −5.2 mm, and the superscript “+” denotes normalization by the viscous length 𝑧𝜏 at
𝑥 = 0.3 m for all the boxes.

Case 𝑁𝑥 × 𝑁𝜃 × 𝑁𝑟 𝑥 (m) Δ𝑥+
𝑚𝑖𝑛

Δ𝑥+𝑚𝑎𝑥 (𝑟Δ𝜃)+𝑤 Δ𝑧+𝑛,𝑤 Δ𝑧+𝑛,𝑒
Box 1 2800 × 256 × 1440 -0.0061 - 0.02 0.23 0.23 3.82 0.11 0.16
Box 2 1050 × 1024 × 1440 0.01 - 0.14 0.23 4.72 3.13 0.26 0.39
Box 3 2100 × 1024 × 1440 0.13 - 0.51 4.72 4.72 6.22 0.37 0.55

C. "Tunnel-like" Acoustic Disturbance Generation and Extraction

1. DNS of Full-Scale Axisymmetric Nozzle of Sandia HWT-8
To generate the incident freestream acoustic disturbances for the targeted DNS of a cone, a precursor DNS of the

full-scale axisymmetric nozzle of the Sandia HWT-8 was conducted with an emphasis on characterizing the properties
of freestream acoustic disturbances in the test section of the tunnel. The simulated flow conditions fall within the range
of tunnel operating conditions, and correspond to a total pressure of 𝑃0 = 4692 kPa and a total temperature of 𝑇0 = 617
K. Figure 2 shows the computational setup of the precursor simulation of the Sandia HWT-8 for generating the incident
acoustic field. The tunnel configuration starts with the converging section upstream of the nozzle throat, which is located
at 𝑥 ≈ 0 m. Note that we have used a coordinate system with 𝑥 = 0 corresponding to the nozzle throat here, which is
different from that in the cone simulations reported in Section III, where 𝑥 = 0 corresponds approximately to the nose of
the cone. The diverging section spans from 𝑥 ≈ 0 m to 𝑥 ≈ 2.6 m, followed by the test section. The DNS domain starts
slightly downstream of the nozzle throat at 𝑥 = 0.07 m with a local freestream Mach number of 𝑀∞ = 2.7, and ends
at the nozzle exit at 𝑥 = 2.6 m with a freestream Mach number of 𝑀∞ ≈ 8.0. Additional details of the tunnel-noise
simulation can be found in Duan et al. [35].

Figure 3 shows an instantaneous visualization of the density gradient associated with the radiated acoustic field in
the Sandia HWT-8. The prominent structures associated with acoustic fluctuations within the freestream region exhibit
a preferred orientation of 𝜃 ≈ 20◦ with respect to the nozzle centerline within the streamwise-radial plane. The density
gradients at a given axial location of the nozzle reveal the omnidirectional origin of the acoustic field, which adds to the
stochastic nature of the wave front pattern. The spatiotemporal structures of these freestream acoustic fields is extracted
and subsequently used to define the inflow and outer boundary conditions for the cone DNS.

2. Extraction and Reconstruction of Freestream Acoustic Disturbances
To model the acoustic field radiated from the turbulent nozzle-wall boundary layer of a hypersonic wind tunnel, we

represent the acoustic perturbations in the free stream (i.e., outside of the turbulent boundary layer) as the superposition
of a large number of plane wave components:

𝑝′1,∞

𝜌′1,∞

𝑢′1,∞

𝑣′1,∞

𝑤′
1,∞

𝑇 ′
1,∞


=

𝑁∑︁
𝑗=1



1
1

𝑐2
1,∞

1
�̄�1,∞ �̄�1,∞

(
𝑘𝑥, 𝑗

∥k 𝑗 ∥

)
1

�̄�1,∞ �̄�1,∞

(
𝑘𝑦, 𝑗

∥k 𝑗 ∥

)
1

�̄�1,∞ �̄�1,∞

(
𝑘𝑧, 𝑗

∥k 𝑗 ∥

)
(𝛾−1)𝑇1,∞
𝛾𝑝1,∞


𝑝 𝑗 (k 𝑗 , 𝜔 𝑗 )𝑒𝑖(k 𝑗 ·x−𝜔 𝑗 𝑡+𝜙 𝑗) + 𝑐.𝑐. (1)

Here, x = (𝑥, 𝑦, 𝑧) denotes the vector of Cartesian spatial coordinates, (·) ′1,∞ denotes the perturbations with respect
to the mean freestream quantities, and “𝑐.𝑐.” stands for complex conjugate. The quantities k 𝑗 = (𝑘𝑥, 𝑗 , 𝑘𝑦, 𝑗 , 𝑘𝑧, 𝑗 ), 𝜔 𝑗 ,
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Fig. 2 Computational domain set up for the precursor DNS of the full-scale axisymmetric nozzle of Sandia
HWT-8 [35].

Fig. 3 Numerical schlieren images (i.e., density gradient contours) of radiated acoustic waves within the nozzle
of the Sandia HWT-8. The vertical dashed line indicates the axial location of the selected cross section visualized
in the right panel.

𝑝 𝑗 , and 𝜙 𝑗 represent the wavenumber vector, angular frequency, complex amplitude, and phase, respectively, of the
plane acoustic wave with index 𝑗 . The norm of the wavenumber vector is defined as ∥k 𝑗 ∥ ≡

√︃
𝑘2
𝑥, 𝑗

+ 𝑘2
𝑦, 𝑗

+ 𝑘2
𝑧, 𝑗

. The
angular frequency 𝜔 𝑗 of the 𝑗 th wave is related to its wavenumber k 𝑗 via the dispersion relation for acoustic waves [38]:

𝜔 𝑗 (k 𝑗 ) = u1,∞ · k 𝑗 ± 𝑐1,∞∥k 𝑗 .∥, (2)

The corresponding group velocity v 𝑗 of the acoustic waves can be written as:

v± , 𝑗 ≡
𝜕𝜔 𝑗

𝜕k 𝑗

= u1,∞ ± 𝑐1,∞

( k 𝑗

∥k 𝑗 ∥

)
. (3)

The plus-minus sign (±) in Eq. (3) indicates that the group velocity of the acoustic waves can be faster or slower
than the mean flow velocity, with the relative magnitude (with respect to the mean flow) equal to the speed of sound
𝑐1,∞ along the wave front orientation k 𝑗/∥k 𝑗 ∥. Here, we follow the definition of McKenzie and Westphal [38] by
referring to acoustic waves with v+, 𝑗 = u1,∞ + 𝑐1,∞

(
k 𝑗

∥k 𝑗 ∥

)
as the “fast” acoustic waves and those with a group speed of

v_, 𝑗 = u1,∞ − 𝑐1,∞
(

k 𝑗

∥k 𝑗 ∥

)
as “slow” acoustic waves.

7



Given a tunnel operating condition with known time-averaged freestream quantities, the information required
to complete the specification of the acoustic field according to the plane-wave model in Eq. (1) corresponds to the
parameters k 𝑗 , 𝑝 𝑗 , 𝜙 𝑗 and making a choice between fast and slow waves or a mixture thereof.

To determine the unknown parameters in Eq. 2 that are required to synthesize the broadband field of three-dimensional
acoustic disturbances in the free stream region from the tunnel DNS as visualized in Figure 3, we first extract the
instantaneous pressure field within a rectangular domain from the freestream region of of the precursor DNS. The
crossplane extent of this rectangular domain is chosen to be larger than the base radius of the cone model and the axial
extent of the domain corresponds to the region from 𝑥 = 1.82 m to 𝑥 = 2.23 m, which is immediately upstream of where
the cone is mounted within the tunnel. The size of the rectangular domain relative to the nozzle boundary layer thickness
is approximately (𝐿𝑥/𝛿𝑛𝑜𝑧𝑧𝑙𝑒, 𝐿𝑦/𝛿𝑛𝑜𝑧𝑧𝑙𝑒, 𝐿𝑧/𝛿𝑛𝑜𝑧𝑧𝑙𝑒) = (10.1, 4.6, 4.6) and includes a total of (1200, 400, 400) points
in the axial and the two transverse directions, respectively, from the precursor DNS (Figure 4). Here, 𝛿𝑛𝑜𝑧𝑧𝑙𝑒 = 38.5
mm represents the nozzle-wall boundary layer thickness at 𝑥 = 2.1 m, which denotes the axial midpoint of the acoustic
domain. The selected domain for acoustic wave extraction is large enough to accommodate the largest freestream
acoustic structures. After a detrending process to compute the acoustic pressure fluctuations 𝑝′1,∞ by subtracting the
mean pressure 𝑝1,∞, spatial fast Fourier transforms (FFT) are performed along each spatial direction of the rectangular
domain. This provides the specification of the modal content of the acoustic fluctuations, including the wavenumber
vector k 𝑗 = (𝑘𝑥, 𝑗 , 𝑘𝑦, 𝑗 , 𝑘𝑧, 𝑗 ), complex amplitude 𝑝 𝑗 , and the phase angle 𝜙 𝑗 for each individual mode 𝑗 . Given the
wavenumber vector k 𝑗 of each mode 𝑗 , its frequency can be computed by Eq. 2 with the assumption of a slow acoustic
wave. The dominance of slow acoustic waves (with a propagation speed slower than the sound speed) in the free stream
of conventional supersonic and hypersonic tunnels has been suggested in multiple previous studies [23, 30, 31, 39], and
will be further confirmed in Section II.C.3 for the current tunnel conditions. To guarantee that only statistically relevant
modes are kept in the synthesized acoustic field, the three-dimensional spatial fast Fourier transform (FFT) is repeated
within the same rectangular domain for a total of 𝑁 𝑓 = 70 snapshots of the instantaneous freestream acoustic fields, and
the modal amplitudes 𝑝 𝑗 in the acoustic model from Eq. 1 are computed by using an average of the power spectral
densities across the snapshots. However, to preserve the stochasticity of the reconstructed field, the phase angles (𝜙 𝑗 ) in
the acoustic model are derived from a single instantaneous snapshot of the extracted three-dimensional acoustic field.
Additionally, because the WENO scheme used for the tunnel DNS requires at least 8 points per wavelength to accurately
propagate a linear wave over multiple wavelengths, a low-pass wavenumber filter with spectral cut-off is applied to
remove the small-wavelength waves that cannot be accurately resolved by the precursor DNS. To be conservative, we
have also excluded any acoustic wave components that have frequencies higher than 1 MHz, which cannot be resolved
with the given mesh resolution of the precursor DNS. The total number of plane waves included in the acoustic-wave
ansats is 𝑁 ≈ 375000. Lastly, the acoustic disturbances generated according to the model in Eq. 1 are interpolated
from the Cartesian domain used for spatial FFTs into a cylindrical domain and imposed at the outer boundary of the
domain used for the three-dimensional DNS focused on the disturbance amplification and transition over a cone model
(Section III.C).

It may be noted that the extraction of the acoustic modes was performed in the Cartesian domain and the results were
interpolated into the cylindrical domain used for the DNS involving the cone. This allows us to use the computationally
efficient FFT libraries to speed up the mode extraction process rather than dealing with the more expensive Hankel
transformations required for the cylindrical coordinate system. It would also allow us to more easily extend the
tunnel-noise generation technique to hypersonic wind tunnels with a rectangular/square nozzle shape such as NASA’s
20 Inch Mach 6 Wind Tunnel [40].

3. Assessment of Acoustic Disturbance Model
Figure 5 shows the power spectral density (PSD) of freestream acoustic disturbances based on the acoustic model

from Eq. 1 after calibration against the data from the precursor DNS. Very good agreement is achieved between the
acoustic model with the slow-acoustic-wave assumption and the DNS data, reconfirming the dominance of slow acoustic
waves in the radiated noise from the nozzle-wall turbulent boundary layer.

Figure 6 shows both wavenumber spectra and frequency spectra of the freestream acoustic disturbances based on
the calibrated acoustic model from Eq. 1. The results plotted herein allow a comparison of the spectral estimates
based on acoustic extraction with multiple spatial domains with those obtained from the precursor DNS of an empty
tunnel. Here, the rectangular domain sizes as described in Section II.C.2 are measured in terms of the local nozzle
boundary-layer thickness 𝛿𝑛𝑜𝑧𝑧𝑙𝑒 at 𝑥 ≃ 2.1 m (i.e., 2.1 meters downstream of the nozzle throat), and the wavenumber
and frequency spectra of both pressure and streamwise velocity fluctuations are included to show the sensitivity of
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Fig. 4 Schematic of the rectangular domain for extracting freestream acoustic disturbances from the precursor
DNS of empty wind tunnel. The vertical dashed line indicates the streamwise location of the selected cross-plane
visualized on the top right.

different acoustic quantities to the model parameters. To extract the freestream acoustic waves, we use a domain size
of (𝐿𝑥/𝛿𝑛𝑜𝑧𝑧𝑙𝑒, 𝐿𝑦/𝛿𝑛𝑜𝑧𝑧𝑙𝑒, and 𝐿𝑧/𝛿𝑛𝑜𝑧𝑧𝑙𝑒) = (10.1, 4.6, 4.6), and that yielded excellent comparisons between the
model and the DNS spectra of both pressure and velocity fluctuations. The model-predicted frequency spectrum is
insensitive to the longitudinal and transverse extents of the domain, while a large enough domain size in the transverse
directions is indeed required for the model-predicted wavenumber spectra to match with the tunnel DNS.

Figure 7 depicts visualizations from the temporal evolution of freestream acoustic disturbances in a cross plane (i.e.,
y-z plane). Results are shown both for the acoustic field predicted by the model from Eq. 1 and its comparison with the
corresponding snapshots from the precursor tunnel DNS. Here, the freestream acoustic disturbances are visualized by
the numerical schlieren (i.e., density gradient contours). The visualization at 𝑡 = 0 corresponds to the snapshot from
which the modal phase 𝜙 𝑗 of all the plane waves in the ansats are derived, and the time delay is measured in terms of the
integral time scale Λ of the freestream pressure disturbances. The apparent similarity in the instantaneous acoustic
structures between the model and DNS confirms that the freestream acoustic disturbances generated from the acoustic
model closely mimic those of the DNS over time intervals of as large as 𝑡 = 9Λ, while preserving the stochastic nature
of the freestream acoustic field.

III. Results
In this section, results from the stability analysis and DNS for the boundary layer over a Mach 8 cone are reported.

First, the findings from both modal and nonmodal instability analyses at the selected Mach 8 conditions are presented
for sharp and blunt cones, respectively. Next, as a precursor validation of the DNS approach, DNS of axisymmetric
disturbances in the boundary layer flows over the sharp and blunt cones are conducted for planar freestream acoustic
disturbances, and the computed evolution of the instability waves excited by the freestream acoustic forcing are compared
with those from the stability analysis. Finally, the results of a full-fledged three-dimensional DNS are presented for a
blunt cone with tunnel acoustic disturbances.

A. Modal and Nonmodal instability analysis
In this section, we present the modal instability characteristics of the 7◦ half-angle cone at Mach 8 with nose radii

equal to 0.05 mm and 5.2 mm. The nonmodal analysis of the blunter cone is also documented. Following the work
of Refs. [8, 9], we use the harmonic linearized Navier Stokes equations (HLNSE), the reduced form of the HLNSE
(RHLNSE), and the linear parabolized stability equations (PSE) frameworks to investigate both modal and nonmodal
disturbances.
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Fig. 5 PSD of freestream acoustic disturbances computed based on the calibrated acoustic model of Eq. 1 with
fast (+) or slow (-) acoustic wave assumptions in comparison with that of the precursor tunnel DNS at 𝑥 ≈ 2.1 m).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Wavenumber spectra and frequency spectra of freestream acoustic disturbances computed based on the
calibrated acoustic model of Eq. 1 with different spatial domain sizes in comparison with those of the precursor
tunnel DNS. (a-d) pressure and (e-h) streamwise velocity. The domain size for extracting freestream acoustic is
normalized by local nozzle boundary-layer thickness of 𝛿 = 38.5 mm at 𝑥 ≈ 2.1 m).
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(a) DNS, 𝑡 = 0 (b) DNS, 𝑡 = 3Λ (c) DNS, 𝑡 = 6Λ (d) DNS, 𝑡 = 9Λ

(e) Model, 𝑡 = 0 (f) Model, 𝑡 = 3Λ (g) Model, 𝑡 = 6Λ (h) Model, 𝑡 = 9Λ

Fig. 7 Temporal evolution of freestream acoustic disturbances in a cross-plane (y-z plane) generated by the
calibrated acoustic model of Eq. 1 in comparison with those from the precursor tunnel DNS. Here, the freestream
acoustic disturbance field is visualized via numerical schlieren (i.e., density gradient contours) and the time delay
is measured in terms of the integral time scale Λ = 5.8𝜇s of the freestream acoustic disturbances.

For this problem, the computational coordinates are defined as an orthogonal, body-fitted coordinate system, with
(𝜉, 𝜂, 𝜁) denoting the streamwise, wall-normal, and azimuthal coordinates, respectively, and (𝑢, 𝑣, 𝑤) representing the
corresponding velocity components. Density and temperature are denoted by 𝜌 and 𝑇 , respectively. The metric factors
are defined as

ℎ𝜉 = 1 + 𝜅𝜂, (4)
ℎ𝜁 = 𝑟𝑏 + 𝜂 cos(𝜃), (5)

where ℎ𝜉 and ℎ𝜁 are associated with the streamwise and azimuthal curvature, respectively, 𝜅 denotes the streamwise
curvature, 𝑟𝑏 is the local radius, and 𝜃 is the local half-angle along the axisymmetric surface, i.e., sin(𝜃) = 𝑑𝑟𝑏/𝑑𝜉. The
Cartesian coordinates are represented by (𝑥, 𝑦, 𝑧). The vector of perturbation variables is denoted by q̃(𝜉, 𝜂, 𝜁 , 𝑡) =
( �̃�, �̃�, �̃�, �̃�, 𝑇)𝑇 , and the vector of disturbance functions is q̆(𝜉, 𝜂, 𝜁) = ( �̆�, �̆�, �̆�, �̆�, 𝑇)𝑇 . The vector of basic state
variables is q̄(𝜉, 𝜂, 𝜁) = ( �̄�, �̄�, �̄�, �̄�, 𝑇)𝑇 . For axisymmetric geometries at zero degrees angle of attack, the basic state
variables are independent of the azimuthal coordinate, and the linear perturbations can be assumed to be harmonic in
time and azimuthal direction, which lead to the following expression for the perturbations,

q̃(𝜉, 𝜂, 𝜁 , 𝑡) = q̆(𝜉, 𝜂) exp [i (𝑚𝜁 − 𝜔𝑡)] + c.c., (6)

where the 𝑚 is the azimuthal wavenumber and 𝜔 is the angular frequency.
The PSE are used to study the amplification of the boundary-layer instability waves. The PSE approximation to the

HLNSE is based on isolating the rapid phase variations in the streamwise direction via the disturbance ansatz

q̆(𝜉, 𝜂) = q̂(𝜉, 𝜂) exp
[
i
∫ 𝜉

𝜉0

𝛼(𝜉 ′) d𝜉 ′
]
, (7)

where the amplitude functions q̂(𝜉, 𝜂, 𝜁) = ( �̂�, �̂�, �̂�, �̂�, 𝑇)𝑇 vary slowly in the streamwise direction in comparison with
the phase term. The onset of laminar-turbulent transition is estimated using the logarithmic amplification ratio, the
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so-called 𝑁-factor, relative to the lower bound location 𝜉𝐼 where the disturbance first becomes unstable,

𝑁𝐸 = −
∫ 𝜉

𝜉𝐼

𝛼𝑖 (𝜉 ′) d𝜉 ′ + 1/2 ln
[
�̂� (𝜉)/�̂� (𝜉𝐼 )

]
, (8)

where �̂� denotes the energy norm of q̂ as defined by Chu [41].
Figures 8a and 8b show the N-factor of planar second Mack mode waves (𝑚 = 0) for the selected sharp (𝑅𝑛 = 0.05

mm) and blunt (𝑅𝑛 = 5.2 mm) 7◦ half-angle cones at the freestream conditions listed in Table 1. The experiments of
Casper et al. [42] with the sharp cone at the present conditions measured a transition location around 𝜉 = 0.25 m. The
corresponding 𝑁-factor at the transition location is 𝑁𝐸,𝑡𝑟 = 7.5. However, the amplification of Mack mode waves
is drastically reduced by the blunt nose tip. The first neutral location is delayed up to 𝜉 = 0.4 m and the 𝑁-factor
values along the cone length are below 𝑁𝐸 = 1.5, which is deemed too low to lead to transition onset via purely modal
amplification.
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Fig. 8 N-factor curves of planar disturbances over the (a) 𝑟𝑛 = 0.05 mm cone with frequency increments of 20
kHz and the (b) 𝑟𝑛 = 5.2 mm cone with frequency increments of 5 kHz.

The nonmodal instability analysis is conducted with the RHLNSE. The optimal initial disturbance, q̃0, is defined
as the initial (i.e., inflow) condition at 𝜉0 that maximizes the objective function, 𝐽, which is defined as a measure of
disturbance growth over a specified interval [𝜉0, 𝜉1]. The definition used in the present study corresponds to the mean
energy gain 𝐽 = 𝐺𝐸,𝑚𝑒𝑎𝑛, which is defined as

𝐺𝐸,𝑚𝑒𝑎𝑛 =
1

𝜉1 − 𝜉0

∫ 𝜉1
𝜉0

𝐸 (𝜉 ′) 𝑑𝜉 ′

𝐸 (𝜉0)
. (9)

The variational formulation of the problem to determine the maximum of the objective functional 𝐽 leads to an optimality
system [43], which is solved in an iterative manner, starting from a random solution at 𝜉0 that must satisfy the boundary
conditions.

Figure 9 shows the nonmodal amplification of stationary and traveling, planar and oblique disturbances for the blunt
cone with 𝑅𝑛 = 5.2 mm. The inflow and outflow optimization locations are selected at 𝜉0 = 0.064 m and 𝜉1 = 0.5
m, respectively. Similar to the findings of Paredes et al. [9] for blunt cones at Mach 6, the maximum energy gain is
achieved by a stationary ( 𝑓 = 0 kHz), three-dimensional perturbation. This stationary disturbance corresponds to the
three-dimensional streaks studied by Paredes et al. [8]. Additionally, there is a peak in the energy gain contours for
axisymmetric disturbances (𝑚 = 0), with an associated frequency of 𝑓 = 175 kHz. The energy amplification of traveling
oblique disturbances is comparable to the peak amplification of axisymmetric waves. As shown by Paredes et al. [9],
these axisymmetric and oblique traveling disturbances are initially tilted against the flow direction and increase in
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magnitude while rotating downstream. The energy amplification is mainly attributed to the temperature perturbation
within the entropy layer, where also exhibits a gradient in the mean flow temperature.

Fig. 9 Contors of 0.5 log(𝐺𝐸,𝑚𝑒𝑎𝑛) in the (𝑚, 𝑓 ) plane of laminar boundary-layer flow along the blunt cone with
𝑟𝑛 = 5.2 mm. The inflow and outflow optimization locations are selected at 𝜉0 = 0.064 m and 𝜉1 = 0.5 m.

B. Two-Dimensional Axisymmetric DNS
In this section, results of the DNS involving axisymmetric disturbances at selected frequencies are reported for both

sharp and blunt cones at Mach 8. In each DNS, planar and slow acoustic waves with an amplitude of 𝐴𝑝 = 3.2×10−4 𝑝1,∞
and frequencies ranging from 50 kHz to 500 kHz (with an increment of 50 kHz) are imposed at the outer boundary of
the DNS domain. The boundary layer instabilities excited by the freestream forcing are compared with those from the
stability analysis. A similar axisymmetric calculation was conducted by Balakumar et al. [16] for a straight cone with 7
deg half-angle and several values of the nose bluntness parameter for a freestream Mach number of 10.

Figure 10 shows the N factors based on wall-pressure fluctuations as computed via the DNS and the linear PSE,
respectively, for two small nose radii of 𝑅𝑛 = 0.05 mm and 𝑅𝑛 = 0.5 mm. Given that the instability over a sharp cone is
dominated by Mack’s second mode waves that are acoustic in nature, they can be well captured by the wall-pressure
signal. For both nose radii, the generation of the instability waves inside the boundary layer and their subsequent
exponential growth are captured within the DNS. The changes in the stability characteristics due to the variation of nose
radii from 𝑅𝑛 = 0.05 mm to 𝑅𝑛 = 0.5 mm are small as the disturbances over both cones indicate similar growth factors
relative to the leading edge region and reach similar N-factor values near the middle of the cone. For both cases, the N
factors based on the DNS are in excellent agreement with those predicted by the modal analysis based on PSE.

Comparisons between the laminar basic states computed by the WENO based DNS code and the second-order
finite-volume VULCAN flow solver by NASA [44] are presented in Figure 11 for the blunt cone with 𝑅𝑛 = 5.2 mm.
Results are presented for the density contours as well as boundary-layer profiles for selected flow variables. Similar to
the sharp cone results, an excellent agreement is obtained between the current DNS results and those from VULCAN.
With the base flow solutions cross validated, Figure 12 shows the instantaneous contours of temperature fluctuation due
to the freestream acoustic disturbance at 𝑓 = 150 kHz within the DNS, along with the results based on the nonmodal,
optimal growth analysis for the same frequency. The strong similarities in term of wall-normal location and streamwise
wavelength indicate that disturbances similar to those predicted by the optimal growth analysis may be excited by the
freestream acoustic wave.
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(a) 𝑅𝑛 = 0.05 mm (b) 𝑅𝑛 = 0.5 mm

Fig. 10 N-factor curves of the wall pressure predicted by two-dimensional axisymmetric DNS of Mach 8 cones
of 𝑅𝑛 = 0.05 mm and 0.5 mm in comparison with those from the modal PSE analysis. In the DNS, 10 slow planar
acoustic waves are imposed in the free stream with frequency increments of 50 kHz from 50 kHz to 500 kHz.
Solid lines; DNS; Dashed lines: PSE.

C. Three-Dimensional DNS of blunt cone with tunnel-like acoustic disturbances
The results of the three-dimensional DNS of a Mach 8 blunt cone with 𝑅𝑛 = 5.2 mm are presented next. Results are

limited to an axial region of up to 𝑥 ≃ 0.45 m because the duration of the simulation was insufficient to ensure statistical
convergence until the end of the cone. For reference, the leading edge of the cone corresponds to 𝑥 = −5.2 mm. As
explained in subsection II.B, the reconstructed, tunnel-like freestream acoustic disturbances described in subsection II.C
are used as the inflow forcing along the freestream boundary of the computational grid upstream of the bow shock. The
full azimuthal domain of 2𝜋 radians is included in the DNS. Table 3 lists the boundary layer properties at a reference
location of 𝑥 = 0.3 m over the frustum of the blunt cone.

The evolution of the mean skin-friction coefficient 𝐶 𝑓 = 𝜏𝑤/(0.5𝜌2,∞𝑈2
2,∞) and mean Stanton number 𝐶ℎ =

𝑞𝑤/(𝜌2,∞𝑈2,∞𝐶𝑝 (𝑇𝑟 −𝑇𝑤)) based on the time average of the unsteady solution over a time interval of 0.08 ms is shown
in Figure 13. The modeled freestream acoustic disturbances lead to Stanton number values that are approximately 10%
higher within the nosetip region. However, the Stanton numbers for the acoustic forcing case recover to the laminar
baseflow values for 𝑥 > 0.15 m. A significant increase in the Stanton number values adjacent to the stagnation point (in
comparison to the Stanton numbers for the laminar baseflow) has also been reported during wind tunnel tests in noisy
wind tunnels [45]. On the other hand, the skin-friction coefficient 𝐶 𝑓 remains nearly identical to the baseflow values
along the entire length of the cone, which indicates that the boundary layer remains laminar throughout the axial domain
shown in the figure. Although the boundary layer remains laminar, the fluctuating wall quantities over the cone surface
exhibit appreciable amplitudes relative to their mean value. For example, the fluctuations in surface pressure correspond
to approximately two percent of the local mean values, whereas even larger relative fluctuation levels are seen in the
surface shear stress and the heat flux.

Next, the spectral amplitude of the wall-pressure fluctuations are examined in the frequency and azimuthal
wavenumber plane in Figure 14. The computed data at selected axial stations are Fourier transformed in both time and
the azimuthal coordinate. The highest values of spectral density are generally confined to the low frequency range of up
to approximately 50 kHz that also account for a major fraction of the signal energy in the tunnel-like freestream acoustic
disturbances as shown in the premultiplied frequency spectra in Figure 5. However, in the aft part of the cone, one also
observes the emergence of a secondary peak at higher frequencies in the range of 150 kHz to 200 kHz and azimuthal
wavenumbers lower than approximately 20. Recall that the optimal growth analysis had also predicted a similar peak in
the amplification factors in the same range of frequencies and for small values of 𝑚. Furthermore, computations for a
Mach 6 blunt cone [9] had shown that only nonmodal disturbances with low azimuthal wavenumbers tend to penetrate
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(a)

(b) (c) (d)

Fig. 11 Laminar base flow solutions for the blunt Mach 8 cone with 𝑅𝑛 = 5.2 mm: comparison between the
solutions based on the DNS code and NASA’s VULCAN flow solver. In (b), (c), and (d), the wall-normal profiles
are taken at 𝑥 = 0.1, 0.2, 0.3, and 0.4 m, and the wall-normal distance 𝑧𝑛 is normalized by the Blasius length scale
is 𝛿𝐵𝐿 =

√︁
𝜈𝑤𝑥/𝑈2,∞. The density, velocity, and temperature profiles are offset by 0.00631 kg/m3, 107.4 m/s, and

24.564 K, respectively, from the last.

Table 3 Boundary layer properties at a reference location of 𝑥 = 0.3 m over the cone frustum predicted by
three-dimensional DNS with tunnel-like acoustic input. (·)2,∞ denotes quantities behind the shock but outside the
boundary layer (at 𝑧𝑛/𝛿 ≈ 4.75).

𝑥 𝑀2,∞ 𝑈2,∞ 𝜌2,∞ 𝑇2,∞ 𝑅𝑒𝜃 𝑅𝑒𝜏 𝑅𝑒𝛿2 𝜃 𝛿∗ 𝛿 𝑧𝜏 𝑢𝜏 𝜏𝑤

(m) (m/s) (kg/m3) (K) (mm) (mm) (mm) (𝜇m) (m/s) (Pa)
0.3 6.90 1077 0.0647 58.67 1157 40.3 327 0.103 2.17 1.67 41.5 32.9 14.1

𝑀𝑒 𝑈𝑒 𝜌𝑒 𝑇𝑒

(m/s) (kg/m3) (K)
3.73 967 0.0240 164.18

the boundary layer flow. Therefore, the wall-pressure signature would be more sensitive to the disturbances with longer
azimuthal wavelengths than to any highly oblique disturbances. The formation of the disturbance peak around 𝑓 ≈ 168
kHz as the axial location is increased can be seen in the power spectrum density of the wall pressure and heat-flux
fluctuations shown in Figure 15.

Next, we examine the spatial structure of the temperature fluctuations in the vicinity of 𝑓 = 167 kHz. To that end,
the temperature fluctuations are bandpass filtered to a single Fourier bin centered on the frequency of interest. The
contours of the resulting temperature fluctuations normalized by the mean wall temperature (i.e., 𝑇 ′/𝑇𝑤) are displayed
in Figure 16. The contours are plotted both in the 𝑥 − 𝑟 plane and for selected axial locations in the 𝑦 − 𝑧 plane. Neither
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(a) DNS

(b) Nonmodal Analysis

Fig. 12 Temperature fluctuations 𝑇 ′/𝑇𝑤 with 𝑓 = 150 kHz predicted by two-dimensional axisymmetric DNS of
the Mach 8 cone of 𝑅𝑛 = 5.2 mm in comparison with the optimal disturbances from the nonmodal analysis.

(a) (b)

Fig. 13 (a) Skin-friction coefficient and (b) Stanton number over the Mach 8 cone of 𝑅𝑛 = 5.2 mm predicted by
three-dimensional DNS with tunnel-like acoustic input in comparison with the baseflow.

of these solutions have been Fourier decomposed in the azimuthal direction. The disturbance shape shows strong
similarities with the 𝑓 = 150 kHz axisymmetric wave with predicted by the nonmodal analysis as well as with the forced
solution excited by planar acoustic waves in the axisymmetric DNS (Figure 12). As shown by the 𝑇 ′/𝑇𝑤 contours in the
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(a) 𝑥 = 0.15 m (b) 𝑥 = 0.20 m (c) 𝑥 = 0.25 m

(d) 𝑥 = 0.30 m (e) 𝑥 = 0.35 m (f) 𝑥 = 0.40 m

Fig. 14 Frequency/azimuthal-wavenumber ( 𝑓 − 𝑚) spectrum of the wall-pressure fluctuations over the Mach 8
cone of 𝑅𝑛 = 5.2 mm predicted by three-dimensional DNS with tunnel-like acoustic input.

𝑦 − 𝑧 planes of Figure 16b, the temperature fluctuations are located above the boundary layer edge and show strong
variations across the azimuthal direction in the region away from the wall.

The wall-normal variation in the disturbance spectral content is examined next. To that end, the azimuthal
wavenumber and frequency spectra of 𝑇 ′/𝑇𝑤 are shown in Figures 17a and 17b, respectively. It may be seen that, in
general, only the low azimuthal wavenumber waves penetrate the boundary layer all the way to the near-wall region of
the flow. However, the region outside the mean boundary layer displays an additional spectral peak involving strongly
oblique waves near 𝑚 ≈ 125. This peak occurs at distances of up to 2 times the boundary layer thickness away from
the wall. The super harmonic of these oblique disturbances is also present near 𝑚 = 250 and at similar wall-normal
locations. The frequency spectrum also shows higher amplitudes across a broad range of frequencies, albeit this peak
occurs just beyond the boundary-layer edge, not at 𝑧𝑛/𝛿 ≈ 2.

A common observation in schlieren measurements taken during hypersonic boundary layer transition experiments
with blunt cones [46, 47] or blunt ogive-cylinder [48] geometries is the appearance of inclined structures that extend
above the boundary-layer edge. Computational analysis by Paredes et al. [8, 9] has suggested that the observed
disturbances may be associated with the nonmodal amplification of traveling waves. To compare the current solution
with the experimental measurements, the time evolution of numerical schlieren contours in the 𝑥-𝑟 plane is tracked
in Figure 18. Of particular interest are the inclined structures that resemble the analogous structures observed in
experimental schlieren measurements, indicating that such structures can be excited by the freestream acoustic waves.
The convective speed of the structure is approximately equal to the mean flow speed near the edge of the boundary
layer. The structure remains nearly unchanged as it gets convected across an axial interval of approximately 0.1 m. A
similar structured was tracked in the experimental schlieren measurements of Kennedy et al. [47] for a blunt cone at
Mach 6 conditions. The structure was observed to cross the experimental measurement window of nearly the same
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(a) Wall pressure, 𝑝𝑤 (b) Wall heat-flux, 𝑞𝑤

Fig. 15 Power spectrum density of the wall pressure and heat-flux fluctuations over the Mach 8 cone of 𝑅𝑛 = 5.2
mm predicted by three-dimensional DNS with tunnel-like acoustic input. The dashed line indicates a frequency
of 𝑓 ≈ 168 kHz.

(a) x-r plane (b) y-z plane

Fig. 16 Temperature fluctuations 𝑇 ′/𝑇𝑤 with 𝑓 = 167 kHz predicted by three-dimensional DNS with tunnel-like
acoustic input.

length without any significant changes in form. Although not shown, the analysis of crossplane schlieren contours at
successively larger 𝑥 locations indicates the evolution of the three-dimensional unsteady structures within the entropy
layer. Similar to the nonmodal traveling disturbances in the entropy layer [8], these structures are initially located farther
from the wall and approach the boundary layer edge as they convect downstream.

Finally, a three-dimensional view of a numerical schlieren isosurface is shown in Figure 19. The isosurface is
centered at the axial location of one of the inclined structures discussed above. The figure shows how the plane (𝑦 = 0)
of the numerical schlieren cuts through one of such structures formed above the boundary layer, indicating that the
inclined structures observed in the experimental schlieren measurements correspond to three-dimensional structures.
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(a) Azimuthal wavenumber spectrum (b) Frequency spectrum

Fig. 17 Azimuthal wavenumber and frequency spectrum of dimensionless temperature fluctuations 𝑇 ′/𝑇𝑤 along
a wall-normal profile at 𝑥 = 0.3 m.

(a) 𝑡 = 𝑡0 (b) 𝑡 = 𝑡0 + 0.02 ms

(c) 𝑡 = 𝑡0 + 0.04 ms (d) 𝑡 = 𝑡0 + 0.06 ms

Fig. 18 Numerical schlieren (NS) based on the density gradient at different times of the blunt cone.

IV. Summary
In this paper, hypersonic boundary-layer receptivity to broadband freestream acoustic disturbances from the nozzle

wall of a digital conventional wind tunnel is investigated by both DNS and stability analysis for Mach 8 flow over a
7 deg half-angle cone with a nose radius of 𝑅𝑛 = 5.2 mm. The paper first presented a systematic methodology for
extracting and reconstructing broadband acoustic disturbances radiated from the nozzle-wall turbulent boundary layer
of a conventional hypersonic wind tunnel. The study finds that the broadband tunnel noise in the free stream (i.e.,
outside of the nozzle-wall turbulent boundary layer) can be well represented by an acoustic model based on a plane
wave decomposition comprised of a large number of planar, slow acoustic waves. With successful calibration of the
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Fig. 19 Isosurface of the numerical schlieren (colored by the dimensionless wall-normal distance 𝑧𝑛/𝛿) over a
cone section of 𝑥 = [0.345, 0.423] for the Mach 8 cone of 𝑅𝑛 = 5.2 mm predicted by three-dimensional DNS with
tunnel-like acoustic input. The wall distance 𝑧𝑛 is normalized by the boundary layer thickness 𝛿 at the section
start (i.e., 𝑥 = 0.345).

model parameters against the precursor tunnel DNS, the acoustic model can successfully reproduce the frequency and
wavenumber spectra of the broadband tunnel noise. Additionally, the temporal evolution of the stochastic acoustic
structures is well captured by the calibrated model. Given the analytical nature of the derived acoustic model, the
time-series data generated according to such a model can be readily imposed at the outer boundary of a downstream
DNS for studying the receptivity and boundary-layer transition phenomena over test articles of other shapes.

Next, the paper presented DNS results of boundary-layer receptivity to freestream acoustic disturbances and the
growth of instability waves over a Mach 8 blunt cone with 𝑅𝑛 = 5.2 mm. The DNS included both two-dimensional
axisymmetric DNS with linear freestream acoustic waves and three-dimensional DNS with broadband acoustic
disturbances radiated from the tunnel wall, and the results from the DNS were compared with those of the stability
analysis.

The axisymmetric DNS study finds that the amplification of Mack’s second mode for sharper cones with 𝑅𝑛 = 0.05
mm and 𝑅𝑛 = 0.5 mm agrees well with the PSE predictions. For the blunt cone, the stability analysis predicts that
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Mack’s second mode waves begin to amplify around 0.4 m near the end of the computational domain, but there is
significant nonmodal amplification of planar and oblique entropy layer disturbances. Furthermore, the disturbance
structures observed from the DNS of axisymmetric disturbances over the blunt cone with 𝑅𝑛 = 5.2 mm are similar to the
nonmodal disturbances predicted by the optimal growth analysis, demonstrating that disturbance structures resembling
the nonmodal disturbances can be excited by freestream acoustic disturbances.

The three-dimensional DNS of the Mach 8, 𝑅𝑛 = 5.2 mm blunt cone with tunnel-like acoustic input above the bow
shock predicts a laminar boundary layer throughout the 0.45 m length of the computational domain. The spectra of
wall-pressure and heat-transfer fluctuations at 𝑥 = 0.4 m show the signature of axisymmetric as well as moderately
oblique waves centered near 168 kHz, similar to the predictions of nonmodal, optimal growth analysis. Furthermore, the
azimuthal wavenumber and frequency spectrum of the temperature fluctuations as a function of the wall-normal distance
at 𝑥 = 0.3 m show higher amplitudes for three-dimensional waves with an azimuthal wavenumber of approximately
125, at a wall-normal distance of nearly 2.4 times the boundary layer thickness. The frequency spectrum also shows
higher amplitudes above the boundary layer thickness. The numerical schlieren contours show the inclined structures
commonly observed in blunt cone experiments and demonstrate that they correspond to three-dimensional structures,
and can be excited by freestream disturbances in conventional hypersonic experimental facilities in the presence of an
entropy layer due to blunt nose tips.

Ongoing and future work includes more detailed data analysis to provide further information regarding the role of the
freestream disturbances and the nonmodal growth of traveling disturbances within the entropy layer during the transition
process as well as additional DNS runs to cover a longer portion of the cone in order to reach the final breakdown stages
of laminar-turbulent transition.
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