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Modal and nonmodal instability characteristics of cylindrically blunted flat plates with
varying leading edge radii are described for Mach 4 andMach 6 freestream conditions. The se-
lection of leading edge radii and freestream parameters is informed by experimental conditions.
The investigation of this 2D problem provides a slow entropy layer swallowing which allows for
an isolated development of perturbations seeded upstreamwithin different wall-normal regions
of the flow. At both Mach numbers, a decrease in modal instability amplification was seen as
the leading edge radius was increased. Nonmodal analysis reveals amplifying perturbations in
the boundary layer as well as in the entropy layer. The medium bluntness regime exhibits the
strongest amplification of nonmodal disturbances that is nonmonotonic in character. Small
amplitude boundary forcing at the plate surface or volumetric forcing at various wall-normal
heights was used to account for receptivity effects. While wall forcing effectively inducedmodal
instabilities, only an actuation above the boundary layer captured disturbances that amplify
within the entropy layer. The optimal nonmodal theory’s entropy-layer disturbance evolution
exhibited outstanding agreement with controlled forcing, including receptivity effects. The
evolution of entropy-layer disturbances from the optimal nonmodal theory showed excellent
agreement with the results of receptivity to controlled forcing. Therefore, the nonmodal opti-
mal growth analysis may provide a useful as well as efficient technique to identify the complete
disturbance spectrum in blunt hypersonic configurations, where both modal and nonmodal
disturbances can amplify in the boundary-layer and entropy-layer regions.

Nomenclature

ℎC = total enthalpy [kg m2 s2]
ℎb = streamwise metric factor
ℎZ = spanwise metric factor
" = Mach number
# = Logarithmic amplification factor
q̂ = vector of amplitude variables
q̆ = vector of disturbance function variables
q̄ = vector of base flow variables
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q̃ = vector of perturbation variables
'4∞ = freestream unit Reynolds number [m−1]
'= = leading-edge radius [mm]
) = temperature [K]
)F = wall temperature [K]
(D, E, F) = streamwise, wall-normal, and spanwise velocity components [m s−1]
(G, H, I) = Cartesian coordinates
U = streamwise wavenumber [m−1]
V = spanwise wavenumber [m−1]
Xℎ = boundary-layer thickness [mm]
^ = streamwise curvature [m−1]
l = disturbance angular frequency [s−1]
d = density [kg m−3]
(b, [, Z) = streamwise, wall-normal, and spanwise coordinates
Superscripts
∗ = dimensional value
Subscript
∞ = freestream value

I. Introduction
Due to the impact of laminar to turbulent transition on the skin friction and the surface heating on aerospace vehicles,

the design of such vehicles requires an adequate understanding of the underlying mechanisms leading to transition. For
hypersonic vehicles, in particular, these effects are significantly amplified, and yet, the exact cause behind a number
of transition scenarios in the hypersonic speed regime remains unexplained at this point. Transition due to weak
freestream disturbances can be categorized into three stages: boundary layer receptivity, linear growth and interactions
of eigenmodes, and nonlinear breakdown to turbulence once critical amplitudes are achieved. Tollmien-Schlichting
waves allow the excitement of shorter wavelengths in low-speed flows [1]. The wind tunnel experiments of Kendall [2]
showed the second Mack mode as being the most dominant instability for hypersonic boundary-layers. Subsequent
experimental and numerical studies confirmed that the modal growth of Mack-mode instabilities (second-mode waves)
is most likely responsible for laminar-turbulent transition on sharp axisymmetric cones at zero degrees angle of attack
[3]. Furthermore, Stetson’s work [4] has demonstrated the effects of nosetip bluntness on the formation of an entropy
layer that may extend well downstream of the nosetip region on axisymmetric cones. With an increasing nosetip radius,
the onset of transition is moved downstream. This is supported by the increasing entropy layer having a stabilizing
effect on the growth of the Mack-mode instabilities, thus delaying transition. However, experiments have demonstrated
a slowdown in the downstream movement of the transition location, and an eventual reversal at nosetip radii greater
than some critical value of nosetip bluntness. This reversal conflicts with the predictions of linear stability theory,
which predicts that the Mack-mode growth is greatly reduced at the higher tip bluntness. The available linear stability
analyses [5–8] agree that transition reversal cannot be predicted by only considering modal instability amplification,
because Mack’s second mode disturbances are strongly stabilized by the presence of the entropy layer, and the first
mode, commonly responsible for the onset of transition at supersonic boundary-layer-edge conditions, is not destabilized.
Additionally, the modal amplification of entropy-layer modes is marginal as reported by Refs. [9, 10].

Because of the failure of the modal instability theory to predict transition within the swallowing distance of the
entropy layer, nonmodal growth was proposed by Paredes et al. [11] as the potential basis for a physics-based model
for the experimentally observed onset of transition. Results indicate that stationary disturbances that are initiated in
the vicinity of the nosetip can undergo relatively significant nonmodal amplification that increases with the nosetip
bluntness. This finding may not provide a definitive link between transient growth and the onset of transition, but it is
qualitatively consistent with the experimental observations that transition during the reversal regime on large bluntness
configurations was highly sensitive to wall roughness, and additionally, was dominated by disturbances originating near
the nosetip.

However, for moderately-large bluntness values, transition can occur significantly downstream from the nosetip,
i.e., over the frustum of the cone [4]. For these moderately blunt conditions, experiments by Stetson [4] and Jewell
et al. [12] indicated that uncontrolled nosetip roughness did not influence the transition onset location, suggesting that
unsteady freestream disturbances may play a role in initiating frustum transition over moderately-large bluntness cones.
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Computational analysis by Refs. [11, 13, 14] has shown significant nonmodal growth of both planar and oblique traveling
disturbances that peak within the entropy layer and above the boundary-layer edge. The linear, nonmodal amplification
of the Mack’s energy norm associated with the nonstationary disturbances was lower than that for the three-dimensional
stationary disturbances, but increased as the nosetip bluntness was increased [14]. Therefore, Paredes et al. [14]
suggested that nonstationary nonmodal traveling disturbances that peak within the entropy layer could lead to transition
onset in the absence of appreciable modal instability amplification. Furthermore, Paredes et al. [15] demonstrated that,
even though the linear nonmodal disturbances are primarily concentrated outside the boundary-layer, their nonlinear
interaction can generate stationary streaks that penetrate and amplify within the boundary-layer, eventually inducing the
onset of transition via the breakdown of these streaks.

Transition reversal has also been experimentally reported on blunted flat plates by Lysenko [16]. The transition
mechanism is somewhat different from blunted cones due to shorter entropy-layer swallowing length and azimuthal
spreading, and is the focus of this work. Recent work by Goparaju et al. [17] studied the effects of leading-edge
bluntness on the receptivity and stability of the boundary layer over a flat plate at zero degrees angle of attack and Mach
6 flow conditions. Direct numerical simulations (DNS) were conducted with random forcing upstream of the model.
The results show a change in the induced boundary layer disturbances as the flat-plate bluntness was increased. The
instability waves for the blunter models were observed near the generalized inflection point of the entropy layer above
the boundary layer edge and resembled the nonmodal entropy-layer waves captured by Paredes et al. [14] for blunt
cones. Additional calculations with forcing disturbances for blunt flat-plates are presented by Goparaju and Gaitonde
[18] with flow conditions corresponding to the Mach 4 flow of the wind-tunnel experiments of Lysenko [16]. Again,
entropy-layer disturbances were most efficiently excited when the forcing was located above the boundary-layer edge.
They also employed momentum potential theory on DNS results to provide a physics-based decomposition of the flow
field (acoustic, vortical, entropic components) to study modal evolution in linear and weakly nonlinear regimes.

The present paper investigates the effect of leading-edge bluntness on the modal and nonmodal instability
characteristics of the boundary layer over such blunted flat plates at Mach 4 and Mach 6. The methodologies used to
study the modal and nonmodal disturbances are summarized in Section II. Then, the laminar boundary-layer flow over
the selected configurations and the modal instability analysis results are presented in Section III. Concluding remarks
are given in Section IV.

II. Theory
In this section, we outline the methodology used for the analysis of disturbance amplification over the blunted

flat plates of interest. Following the work of Refs. [11, 14], we use the harmonic linearized Navier-Stokes equations
(HLNSE) and the linear parabolized stability equations (PSE) to investigate both modal and nonmodal disturbances.

A. Governing Equations for Modal and Nonmodal Disturbances
The present work is focused on the boundary layers over two dimensional blunted flat plates in a hypersonic flow.

For this problem, the computational coordinates are defined as an orthogonal, body-fitted coordinate system, with
(b, [, Z) denoting the streamwise, wall-normal, and spanwise coordinates, respectively, and (D, E, F) representing the
corresponding velocity components. Density and temperature are denoted by d and ) . The metric factors are defined as

ℎb = 1 + ^[, (1)
ℎZ = 1, (2)

where ℎb and ℎZ are associated with the streamwise and spanwise curvature, respectively, and ^ denotes the streamwise
curvature. The Cartesian coordinates are represented by (G, H, I). The vector of perturbation variables is denoted
by q̃(b, [, Z , C) = ( d̃, D̃, Ẽ, F̃, )̃)) , and the vector of disturbance functions is q̆(b, [, Z) = ( d̆, D̆, Ĕ, F̆, )̆)) . The vector
of basic state variables is q̄(b, [, Z) = ( d̄, D̄, Ē, F̄, )̄)) . For two-dimensional geometries, the basic state variables are
independent of the spanwise coordinate and the linear perturbations can be assumed to be harmonic in time and in the
spanwise direction, which lead to the following expression for the perturbations,

q̃(b, [, Z , C) = q̆(b, [) exp [i (VZ − lC)] + c.c., (3)

where the V is the spanwise wavenumber and l is the angular frequency. The disturbance functions q̆(b, [, Z) satisfy the
HLNSE [11], which linear operators depend on the basic state variables and parameters, and on the angular frequency
and spanwise wavenumber of the perturbation.
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The PSE approximation to the HLNSE is based on isolating the rapid phase variations in the streamwise direction
via the disturbance ansatz

q̆(b, [) = q̂(b, [) exp
[
i
∫ b

b0

U(b ′) db ′
]
, (4)

where the unknown, streamwise varying wavenumber U(b) is determined in the course of the solution by imposing an
additional constraint ∫

[

q̂∗
mq̂
mb

ℎb ℎZ d[ dZ = 0. (5)

Hence, the amplitude functions q̂(b, [, Z) = ( d̂, D̂, Ê, F̂, )̂)) vary slowly in the streamwise direction in comparison with
the phase term exp

[
i
∫ b

b0
U(b ′) db ′

]
. Substituting Eq. (4) into the HLNSE and invoking scale separation between the

streamwise coordinate and the other two directions to neglect the viscous terms with streamwise derivatives, the PSE
are obtained.

As discussed in Ref. [11], Eq. (5) constrains the PSE disturbances to have a unique, local wavenumber at any
streamwise location, and therefore, the PSE are likely to encounter difficulties when the perturbation field includes
multiple disturbances with disparate variation along the streamwise direction. Optimal growth perturbations are known
to include a superposition of multiple eigenmodes of the quasiparallel disturbance equations, and therefore, the HLNSE
are used in the present work to study the optimal perturbations.

The onset of laminar-turbulent transition is estimated using the logarithmic amplification ratio, the so-called #-factor,
relative to the lower bound location b� where the disturbance first becomes unstable,

#q = −
∫ b

b�

U8 (b ′) db ′ + ln
[
q̂(b)/q̂(b� )

]
, (6)

where q̂ denotes an amplitude norm of q̂, i.e., the disturbance energy norm that is defined as

�̂ (b) = 1
!Z

∫
[

q̂(b, [, Z)�M� q̂(b, [, Z) ℎb ℎZ d[, (7)

where M� is the energy weight matrix and the superscript � denotes conjugate transpose. The positive-definite energy
norm used here was derived by Chu [19] and used by Mack [20] and Hanifi et al. [21] for linear stability theory. This
energy norm is defined as

M� = diag
[

)̄ (b, [)
Wd̄(b, [)"2 , d̄(b, [), d̄(b, [), d̄(b, [),

d̄(b, [)
W(W − 1))̄ (b, [)"2

]
. (8)

For the nonmodal analysis, the HLNSE are solved. The optimal initial disturbance, q̃0, is defined as the initial (i.e.,
inflow) condition at b0 that maximizes the objective function, �, which is defined as a measure of disturbance growth
over a specified interval [b0, b1]. The definition used in the present study correspond to the outlet energy gain [22, 23]
that is defined as

� =
� (b1)
� (b0)

. (9)

The variational formulation of the problem to determine the maximum of the objective functional � leads to an optimality
system [24], which is solved in an iterative manner, starting from a random solution at b0 that must satisfy the boundary
conditions. The HLNSE, Lq̃ = 0, are used to integrate q̃ up to b1, where the final optimality condition is used to obtain
the initial condition for the adjoint equations integration, L†q̃† = 0.

III. Results
This section begins with the presentation of the laminar flow solution over the different leading edge bluntness flat

plates at zero degrees angle of attack in a Mach 4 and 6 flow. The basic state description is followed by modal and
nonmodal analysis, as well as linear forcing analysis.
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A. Laminar Boundary-Layer Flow
The present Mach 4 configurations are selected to match the direct numerical simulations carried out in Ref. [18]

based on experiments conducted by Lysenko [16]. The working fluid is air and effects of chemistry and molecular
vibration are negligible. The leading edge is a cylinder with bluntness that varies between '= = 0.05, 0.5, and 2.5 mm,
and corresponds to small, medium, and large leading edge bluntness, respectively, based on Stetson’s [4] classification.
It is followed by a flat plate of length ; = 400 mm. At the higher leading edge bluntness of '= = 2.5 mm, transition
reversal was experimentally reported by Lysenko [16].

The presented results were computed with a computational grid composed of 1201×401 points along the streamwise
and wall-normal directions, respectively. Enough points are clustered next to the model surface to resolve the thickness of
the boundary layer. The laminar flow solutions are computed by using a second-order accurate algorithm as implemented
in the finite-volume compressible Navier-Stokes flow solver VULCAN-CFD∗ [25]. The VULCAN-CFD solution is
based on the full Navier-Stokes equations and uses the solver’s built-in capability to iteratively adapt the computational
grid to the bow shock. Sutherland’s law for air is used to calculate the dynamic viscosity as a function of temperature.
Freestream conditions are given in table 1. An isothermal wall with )∗F = 255.5 K is used. The Mach 6 conditions were
defined by keeping the stagnation temperature, freestream Reynolds number and wall temperature the same as for the
Mach 4 case. Thus, the Reynolds number based on leading edge bluntness is 1265, 12650, and 63250 corresponding to
'= = 0.05, 0.5, and 2.5 mm. The Mach number contours of the basic state solutions are given in Fig. 1 for all three
bluntnesses and both freestream conditions. The formation of the entropy layer downstream of the curved bow shock
in the vicinity of the leading edge is reflected by the region of low Mach number values that becomes thicker as the
bluntness and freestream Mach number are increased. While the entropy layer thickness decreases and gets closer to the
boundary layer edge in blunt cone configurations [14, 26], the entropy layer remains nearly constant to the wall for the
present cases.

Table 1 Flow conditions used for the blunted flat plates with '= = 0.05, 0.5, and 2.5 mm.

"∞ D∞ [m/s] d∞ [kg/m3] )∞ [ ] )0 [ ] )wall [ ] )wall/)wall,adiabatic %0 [Pa] '4∞ [m-1]
4 666.32 0.1770 69.05 290 255.48 0.9959 5.3268 × 105 25.3 × 106

6 715.30 0.0744 35.37 290 255.48 1.0159 1.1926 × 106 25.3 × 106

Figure 2 shows the streamwise evolution of the boundary-layer thickness and edge Mach number over the flat
plate for both aforementioned conditions. The boundary-layer edge, Xℎ, is defined as the wall-normal position where
ℎC/ℎC ,∞ = 0.995, with ℎC denoting the total enthalpy, i.e., ℎC = ℎ+0.5(D̄2+ Ē2+ F̄2), where ℎ = 2?)̄ is the static enthalpy.
The edge Mach number values are extracted at a wall-normal distance equal to 1.5Xℎ to obtain more representative
values. Increasing the bluntness of the plate from '= = 0.05 mm to '= = 0.5 mm slightly decreases the boundary
layer thickness in the vicinity of the leading edge, but increases the boundary layer thickness further downstream. The
near-leading-edge effect is more pronounced when the bluntness is changed from '= = 0.5 mm to '= = 2.5 mm. The
larger bluntness values lead to lower edge Mach number values for both freestream Mach numbers. Wall-normal
profiles of Mach number and temperature taken at selected locations are shown in Figs. 3 and 4, respectively. The
streamwise Mach number evolution for Mach 4, '= = 0.5 mm from two different grids and solvers, (VULCAN (red),
SAFF (black-dashed) [18, 27]) are depicted in Fig. 3. The gradients in the boundary and entropy layers matches in both
approaches, confirming the accuracy of these noncanonical base flow computations. The effect of the entropy layer
on the Mach number are most visible for Mach 6 at G = 0.08 m by the nonmonotonic wall-normal gradients in Mach
number above the boundary layer edge. The decrease in Mach number past the maximum, which corresponds to a
bluntness-dependent wall-normal location, eventually reverses and the Mach number reaches its freestream value after
the shock (not shown in Figs. 3-4 as the profiles are cutoff before the shock).

B. Linear Stability Analysis
The modal and nonmodal instability analysis of the boundary-layer over the flat plates is performed via solution

of the PSE and HLNSE. The PSE are used to study the modal amplification of the boundary-layer instability waves.
The logarithmic amplification factor of planar and oblique waves at b = 0.28 is shown in Fig. 5(a,b,c) for all flat plates
at Mach 4 and in Fig. 6(a,b,c) at Mach 6. For both freestream conditions and all bluntnesses, the most amplified
disturbance is found for an oblique wave. These waves correspond to Mack’s first mode boundary-layer instabilities

∗visit http://vulcan-cfd.larc.nasa.gov for further information about the VULCAN-CFD solver
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Mach contours for flat plates at (a,c,e) Mach 4 and (b,d,f) Mach 6 conditions and leading-edge bluntness
of (a,b) '= = 0.05 mm, (c,d) 0.5 mm, and (e,f) 2.5 mm.
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Fig. 2 Streamwise evolution of the (a) boundary-layer thickness and the (b) edge Mach number for selected
bluntness parameters.
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Fig. 3 Mach number profiles for each geometry at selected streamwise locations (a) G = 0.08, (b) G = 0.18,
(c) G = 0.28 m. The legend remains consistent with Fig. 2. The dashed black lines are DNS results using SAFF
for the Mach 4, '= = 0.5 mm flat plate. The DNS results are reproduced from [27].

0

5

10

15

20

25

30

0 50 100 150 200 250 300

η
(m

m
)

T (K)

(a)

0

5

10

15

20

25

30

0 50 100 150 200 250 300

η
(m

m
)

T (K)

(b)

0

5

10

15

20

25

30

0 50 100 150 200 250 300

η
(m

m
)

T (K)

(c)

Fig. 4 Temperature profiles for each geometry at selected streamwise locations (a) G = 0.08, (b) G = 0.18,
(c) G = 0.28 m.

and are also captured in the perturbation spectral signature of the forced DNS results [18]. The first mode dampens as
the leading edge bluntness is increased for both freestream conditions. In addition, a planar peak is captured for the
Mach 6, '= = 0.05 mm geometry. Fig. 5(d,e,f) and Fig. 6(d,e,f) show the optimal disturbance energy gain based on the
HLNSE for the same frequency and wavenumber space at Mach 4 and 6, respectively. Inflow and outflow locations are
set to b0 = 0.02 m and b1 = 0.28 m. A good agreement with the most unstable mode captured by the PSE at the same
streamwise location is found for each combination of leading edge radius and freestream condition. As the bluntness is
increased from '= = 0.05 mm to '= = 0.5 mm for both Mach numbers, the frequency of the oblique wave decreases
slightly. This change in frequency is a consequence of the increase in boundary-layer thickness as shown in Fig. 2(a).
The wavenumber associated with the oblique wave decreases with increasing bluntness and increasing Mach number.
The secondary, planar peak is identified by nonmodal analysis at higher frequencies 80 ≤ 5 ≤ 120 kHz. The increase in
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this planar peak with respect to '= is nonmonotonic for both Mach numbers as it initially increases in magnitude from
'= = 0.05 to '= = 0.5 mm but decreases from '= = 0.5 to '= = 2.5 mm. For Mach 6, both oblique and planar modes
are comparable in amplitude at '= = 0.5 mm. The forced DNS results at Mach 4 [27] also show the amplification of
disturbances at the same range of frequencies between 60 and 110 kHz when the forcing is located at the entropy layer
edge. The associated wavenumber and frequency for the oblique and planar disturbances are shown in table 2 as given
by the optimal disturbance growth based on the HLNSE for both freestream conditions.

(a) (b) (c)

(d) (e) (f)

Fig. 5 #-factor contours calculated with (a,b,c) PSE at b = 0.28 m and the contours of optimal disturbance
energy gain over the interval b0 = 0.02 m to b1 = 0.28 m as calculated with (d,e,f) HLNSE for the Mach 4 flat
plates with leading edge bluntness (a,d) '= = 0.05 mm, (b,e) '= = 0.5 mm, (c,f) '= = 2.5 mm.

The obtained flow perturbations for the planar disturbance at Mach 4 for the '= = 0.5 mm geometry are presented in
Fig. 7 and the corresponding DNS temperature perturbations are shown in Fig. 8. The DNS forcing location was set at
G = 0.06 m and at the entropy-layer edge with a monopole width of 5 mm. The entropy-layer edge, X( , is defined as the
location where the local entropy increment is 0.25 times the entropy increment at the wall (Δ((b, [ = X() = 0.25Δ(F0;;)
[11]. The boundary-layer and entropy-layer edges are shown as solid and dashed lines, respectively. Although the
optimal planar disturbance is at 5 = 80 kHz, the DNS was performed for 5 = 66.6 kHz and thus both are set to this
frequency for direct comparison. Qualitatively, the resultant mode shapes from the two approaches are equivalent, with
streamwise tilted temperature fluctuations in the entropy-layer and equal streamwise wavelength. This comparison shows
that the entropy-layer optimal disturbances can be realized by including receptivity effects from controlled forcing.
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(a) (b) (c)

(d) (e) (f)

Fig. 6 #-factor contours calculated with (a,b,c) PSE at b = 0.28 m and the contours of optimal disturbance
energy gain over the interval b0 = 0.02 m to b1 = 0.28 m as calculated with (d,e,f) HLNSE for the Mach 6 flat
plates with leading edge bluntness (a,d) '= = 0.05 mm, (b,e) '= = 0.5 mm, (c,f) '= = 2.5 mm.

Table 2 Frequency and spanwise wavenumber corresponding to maximum planar and oblique optimal distur-
bance energy gain based on the HLNSE for the different forebodies.

Leading edge radius
"∞

Planar (< = 0) Oblique
'=, mm 5 , kHz 5 , kHz V, m−1

0.05
4

- 20 800
0.5 80 15 750
2.5 80 15 650
0.05

6
125 20 650

0.5 70 10 550
2.5 65 10 450

Contours of flow perturbations associated with the maximum overall and maximum planar waves for the '= = 0.05
mm flat plate at Mach 6 are shown in Figs. 9 and 10, respectively. The oblique Mack’s first-mode instability with
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Fig. 7 Contours of flow perturbations associated with the planar disturbance with 5 = 66.6 kHz for the Mach
4, '= = 0.5 mm, flat plate. The continuous black line represents the boundary-layer edge, while the dashed black
line represents the entropy-layer edge.

Fig. 8 DNS contours of temperature perturbations associated with the planar disturbance with 5 = 66.6 kHz
for the Mach 4, '= = 0.5 mm, flat plate (from Ref. [27]).

5 = 20 kHz and V = 650 m−1 remains at the boundary-layer edge. In contrast, the temperature fluctuations of the planar
Mack’s second mode with 5 = 125 kHz are centered slightly above the boundary layer, while the streamwise velocity
perturbations concentrate close to the wall.

At the higher leading edge bluntness of '= = 2.5 mm, the most amplified optimal disturbance is an oblique wave
with a lower frequency 5 = 10 kHz and wavenumber V = 450 m−1 than for '= = 0.05 mm. The temperature and
streamwise velocity components shown in Fig. 11 confirm this disturbance corresponds to a Mack’s first mode instability.
The planar optimal disturbance with 5 = 65 kHz is much further from the wall, residing between the boundary-layer
and entropy-layer edges (Fig. 12). Both, the temperature and streamwise velocity perturbation components, do not
penetrate the boundary-layer. The velocity component of the entropy-layer disturbance shows two layers of waves in the
disturbance. A set of waves with peak fluctuations at [ ≈ 8 and another, with a −180◦ phase shift, at [ ≈ 15 is observed.
This double layer structure eventually collapses into a single wave for higher wavenumbers, visible in Fig. 13. The
temperature fluctuation of this entropy-layer disturbance keeps a similar shape between V = 0 and V = 450 m−1 . The
implications of this change in the mode shape might be significant in the transfer of energy from the entropy-layer to the
boundary-layer, and will be examined in detail in future work.

C. Linear Forcing Analysis
The Mach 6 laminar basic state is forced with a disturbance given by a Gaussian bump (eq. 10) used to perturb the

streamwise velocity. Flat plates with '= = 0.05 and '= = 2.5 mm are used and specific parameters are outlined in table
3. The streamwise forcing location is set to b0 = 0.07 m and standard deviation fb = f[ = 0.001 m remain constant
throughout. To examine receptivity to controlled forcing, the wall-normal location is varied between being on the wall,
halfway between the boundary and entropy-layer edges, and at the entropy layer edge. The forced disturbance growth is
measured until b1 = 0.28 m and compared to optimal growth analysis using the same frequency-spanwise wavenumber
parametric space. For the '= = 0.05 mm flat plate, the entropy layer edge is close to the boundary layer edge, i.e.,
the entropy layer is 51% thicker than the boundary layer, and both oblique Mack’s first mode and the high frequency
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Fig. 9 Contours of flow perturbations associated with the optimal disturbance with 5 = 20 kHz and V = 650
m−1 for the Mach 6, '= = 0.05 mm, flat plate. The continuous black line represents the boundary-layer edge,
while the dashed black line represents the entropy-layer edge.

Fig. 10 Contours of flow perturbations associated with the optimal planar disturbance with 5 = 125 kHz for
the Mach 6, '= = 0.05 mm, flat plate.

Fig. 11 Contours of flow perturbations associated with the optimal disturbance with 5 = 10 kHz and V = 450
m−1 for the Mach 6, '= = 2.5 mm, flat plate.
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Fig. 12 Contours of flow perturbations associated with the planar entropy layer disturbance with 5 = 65 kHz
for the Mach 6, '= = 2.5 mm, flat plate.

Fig. 13 Contours of flow perturbations associated with the entropy layer disturbance with 5 = 65 kHz and
V = 450 m−1 for the Mach 6, '= = 2.5 mm, flat plate.

5 = 120 − 125 kHz, planar Mack’s second mode disturbances are captured for all forcing locations. The results for the
forcing location set at the entropy layer edge show a weaker response of the Mack’s second mode disturbances and the
peak switches from 125 kHz to 120 kHz. For the blunt leading edge, the oblique mode is amplified when forcing is set
on the wall surface, but becomes weaker as the disturbance location is set away from the wall. The amplification of
high-frequency, planar disturbances is much weaker as compared to the sharp leading edge, because the Mack’s second
modes become stable for the blunter cases, as shown by the modal PSE analysis results of Fig. 6(c), and is not present
for surface forcing. The nonmodal entropy layer disturbances are only excited when the forcing is located above the
boundary layer edge as reported by Goparaju and Gaitonde [18] who performed controlled forced DNS for the Mach 4
configurations. Hence, the nonmodal analysis provides complete spectral and modal structures about the amplifying
perturbations in the boundary- and entropy-layers. By including receptivity effects, narrower bands of perturbations are
amplified based on the actuator location and dynamics. The frequency and wavenumber of the different disturbance
peaks are reported in table 4.

6(b, [) = � exp

(
− 1

2

(
(b − b0)2

f2
b

+ ([ − [0)2

f2
[

))
(10)
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Table 3 Forcing parameters for the sharp and blunt flat plates at Mach 6. Both geometries have an on-wall,
halfway between the boundary and entropy-layer edges, and at the entropy layer edge forcing condition.

'=, mm Xℎ , mm X( , mm b0, mm fb , mm [0, mm f[ , mm

0.05 0.9233 1.3951
70 1 0 1
70 1 1.16 1
70 1 1.38 1

2.5 0.8460 15.6
70 1 0 1
70 1 8.26 1
70 1 15.5 1

Table 4 Frequency and spanwise wavenumber corresponding to maximum planar and oblique forced distur-
bance energy gain based on the HLNSE at Mach 6.

Leading edge radius Forcing location Planar (< = 0) Oblique
'=, mm b, [ 5 , kHz 5 , kHz V, m−1

0.05
0.07 m, wall

125 15 500
2.5 - 10 450
0.05

0.07 m, 1
2 (Xℎ + X()

125 20 600
2.5 80 - -
0.05

0.07 m, X(
120 20 600

2.5 90 - -

IV. Summary and Concluding Remarks
For blunted flat plates at zero degrees angle of attack, laminar boundary-layer parameters as well as modal and

nonmodal stability analysis results are reported. Results are presented for two different flow conditions with a constant
'4∞ = 25.3 × 106 m-1 and two different Mach numbers of "∞ = 4 and "∞ = 6, respectively. The selected leading
edge radii are 0.05, 0.5, and 2.5 millimeters, corresponding to Reynolds number values of 1265, 12650, and 63250,
respectively. The Mach 4 conditions match those of previous experimental measurements [16] and DNS with external
forcing [18, 27], whereas the Mach 6 conditions were selected to investigate the effect of flat plate bluntness on Mack’s
second mode instability. According to the modal analysis based on the parabolized stability equations, Mack’s first-mode
instability is the most amplified disturbance type under both flow conditions. Similarly, the most amplified disturbances
identified by the nonmodal, optimal growth analysis based on the harmonic linearized Navier-Stokes equations are
within the frequency and spanwise wavenumber range of Mack’s first-mode instabilities. For the Mach 4 flat plates with
leading-edge bluntness '= = 0.5 mm and '= = 2.5 mm, the optimal growth analysis also uncovers disturbances with
significant amplification within a frequency range of 60 to 120 kHz, which correspond to entropy layer disturbances.
At Mach 6, modal and nonmodal analysis identifies Mack’s second mode instabilities over a narrow frequency range
of 115 kHz to 135 kHz for '= = 0.05 mm, as well as identifying a broadband, nonmodal amplification of entropy
layer disturbances for the blunter flat plates with '= = 0.5 mm and '= = 2.5 mm. The entropy layer disturbances are
amplified via nonmodal mechanisms and their peak fluctuation amplitudes occur above the boundary layer and near the
outer edge of the entropy layer. Flow perturbations associated with the entropy-layer disturbances from the nonmodal
results for the Mach 4, '= = 0.5 mm flat plate matched well with those obtained in the previously reported forced DNS
results [18]. For Mach 6 configurations with leading edge radii of 0.05 and 2.5 mm, a parametric linear force analysis is
presented. When the initial disturbance is introduced near the wall, oblique first mode instabilities are generated for the
sharp leading edge, yielding a higher amplification when the forced disturbance is introduced above the boundary-layer
edge. For the blunt leading edge, the oblique mode is amplified for forcing at the plate surface, but remains weak when
the forcing is away from the wall. Therefore, while selective, narrower bands of perturbations are captured by including
receptivity to specific types of forcing, the nonmodal analysis provides more complete spectral details about the potential
amplification of modal and nonmodal disturbances in the entire flow field over blunted hypersonic configurations.
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(a) (b) (c)

(d) (e) (f)

Fig. 14 HLNSE forcing on the Mach 6 (a,b,c) '= = 0.05 mm and (d,e,f) '= = 2.5 mm flat plates. The forcing
wall-normal location is set (a,d) at the wall, (b,e) halfway between the boundary and entropy-layer edges, and
(c,f) at the entropy layer edge.
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