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Motivation
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Can streaks delay transition in compressible BLs?!

@ Holloway and Sterrett’ studied the effect of Discrete Roughness Elements
(DREs) on compressible BLs

@ Wind tunnel: Langley 20-inch Mach 6 tunnel and Mach 6.2 blowdown tunnel
@ Sketch of model assembly
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IpF. Holloway and J.R. Sterrett. Effect of controlled surface roughness on boundary-layer transition and heat transfer at
Mach number of 4.8 and 6.0. NASA TR-D-2054. 1964.
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Can streaks delay transition in compressible BLs??

@ Heating-rate, g, evolution for selected roughness heights, k
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@ Transition onset moves downstream only for M = 6 and k < §

2pF. Holloway and J.R. Sterrett. Effect of controlled surface roughness on boundary-layer transition and heat transfer at
Mach number of 4.8 and 6.0. NASA TR-D-2054. 1964.
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Present study

@ Study the effects of realizable streaks on hypersonic boundary layer
instabilities for axisymmetric hypersonic configurations

» Use optimized wall-mounted vortex generators (VGs) to induce the
streaks y
Assumptions

@ Transition location is based on the same N-factor value for both perturbed
and unperturbed flows

@ Scattering of upstream perturbations by the VGs does not play an important
role in overall transition process

v

Stability Analysis of Streaks Induced by Optimized Vortex Generators 4/19



Present study

Flow problem: Hypersonic boundary-layer flow over a 7° half-angle cone

Stability analysis of unperturbed flow

Full Navier-Stokes solution of perturbed flow with wall-mounted VGs

Stability analysis of perturbed boundary-layer flow

periodic array periodic array  instability
of actuators of streaks waves

Stability Analysis of Streaks Induced by Optimized Vortex Generators 5/ 19



Vortex Generator Shape Optimization®
@ SU2:3 open-source suite for multiphysics simulation and design

@ SU2 adjoint VG shape optimization algorithm developed by Ref. [4]
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objective
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@ Objective function J defined as the integral of the streak amplitude A:

&2
J= [T Q) = 5, max(max(u) ~ min(u)

. U5

@ A constraint is imposed to keep the max(A) below an specified value

3https://su2code.github.io/

4C. Pederson et al. Shape optimization of vortex generators to control Mack mode amplification. AIAA Paper 2020-2963.
2020.
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Linear Plane-Marching PSE®

@ Decomposition of flow variables
a€,n.¢.t) = al€n.¢)+andt)
a0 = aen e i [a()a )

@ Linear plane-marching PSE

8 P —

04
G—dQ = 0
/Q 29

@ Transition onset estimated by using an N-factor criterion:

¢ d, -
M(E) = [ oel€)dc' 0e©) = —oul) + 12 Iog(E(O): oe(t0) =0

5P. Paredes. “Advances in global instability computations: from incompressible to hypersonic flow”. PhD thesis. Universidad
Politécnica de Madrid, 2014.
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HIFiRE-1 Flight Experiment

@ HIFIRE-1 flight experiment at t = 21.5 s during ascent phase:®
> 7° half-angle cone, nose radius r, = 2.5 mm, cone length L, =2.0 m
» My, =53, Reso = 13.42 x 10° m~1, T/ Tag ~ 0.35

@ Solution computed with VULCAN-CFD

@ Stability analysis confirmed that transition is driven by planar Mack modes’

@ Transition location @ N-factor curves
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@ Measured transition location at t = 21.5 s is /L = 0.85: N, = 14.7

SR. Kimmel et al. "HIFiRE-1 ascent-phase boundary-layer transition”. In: J. Spacecraft Rockets 52.1 (2015), pp. 217-230.

7F. Li et al. “Transition analysis for the ascent phase of HIFIRE-1 flight experiment”. In: J. Spacecraft Rockets 52.5 (2015),
pp. 1283-1203.
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Grid Refinement Study

@ Reference DNS solution computed using a 7:-order WENO solver®
@ 2 grids over original unmodified VGs: 245x49x25 and 491x97x128
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@ 245x49x25 streak amplitude showed larger differences from DNS than 491x97x128
@ 491x97x128 mesh used for optimization

8M. Wu and M.P. Martin. “Direct numerical simulation of supersonic boundary layer over a compression ramp”. In: AIAA J.
45.4 (2007), pp. 879-889.
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Array of Vortex Generators®

@ VGs designed on the basis of optimal growth theory
@ Single array of VGs at &vg/L = 0.61
@ Mach number contours @ N-factor curves
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@ Single VG array leads to 17% transition delay
@ Induces streak instabilities (SI) which could lead to transition

@ Could the VG design be optimized to yield high-efficiency streaks for BLT
control?

9P. Paredes, M. Choudhari, and F. Li. Transition delay via vortex generators in a hypersonic boundary layer at flight
conditions. AIAA Paper 2018-3217. 2018.
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Adjoint Convergence
@ Objective function evaluation plateaus and does not increase further
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Design Iteration

@ Adjoint density residual reduced to 1078, solution density residual reduced
to 10713

@ Objective function was improved > 100% compared to baseline design
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Shape Optimization of Vortex Generators

@ Objective function: Integral of streak amplitude with constraint max(A) < 0.18.

@ Original top-down VG shape @ Original streak amplitude
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Shape Optimization of Vortex Generators

@ Objective function: Integral of streak amplitude with constraint max(A) < 0.18.

@ Final streak amplitude
0.25

@ Final optimized VG shape
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@ Optimized streak amplitude remains nearly constant at max(A)
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Vortex Generator Evolution

@ Zoom of initial and final VG shapes (axes ratios altered for better perspective)

@ Original vortex generator @ Optimized vortex generator
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@ Original ovular ramp shape evolves to a final more complex shape

ability Analysis of Streaks Induced by Optimized Vol Generators



Wake Stability Analysis

@ Optimized VGs with max(A) < 0.18

@ Mach number contours

@ Amplification of second-mode instabilities
length of the vehicle

@ Optimized N-factor curves
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well below their critical value along the

@ Streak instabilities do not grow enough to induce transition
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Results

Shape Optimization of Vortex Generators

@ Nsi crie cannot currently be calculated with high confidence

» Reducing streak amplitude will subsequently reduce SI amplification
@ Objective function: Integral of streak amplitude with constraint max(A) < 0.16.

@ Streak amplitude evolution

@ Shape optimization 0.25
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@ Reduced max(A) shows similar downstream streak evolution
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Wake Stability Analysis

@ Optimized VGs with max(A) < 0.16

@ Optimized N-factor curves
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@ Amplification of second-mode instabilities well below their critical value along the
length of the vehicle

~

@ Maximum N-factor of streak instabilities reduced by an approximate factor of 2
with respect to max(A) < 0.18
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Summary and Conclusions

Summary and Conclusions
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Summary and Conclusions

Summary and Conclusions

@ The potential of realizable streaks to stabilize a hypersonic
boundary-layer flow at flight conditions is investigated

@ Optimized vortex generators have the potential to significantly delay
boundary layer transition

@ While a maximum of 17% transition delay is estimated with the
baseline VG design, a 130% delay (total length) is likely with
optimized VGs

@ Range of max(A) values shows potential for damping MM instabilities

@ Potential for future work allowing positive and negative wall
deformations for optimized VGs

@ Looking into the physical mechanisms behind slow decay of induced
streak amplitude
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