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Motivations

Previous Experiments and DNS
Geometry and flow conditions informed by experimental1 and DNS2 work
Blunt flat plates with leading edge Rn = 0.5 mm and total length l = 400 mm
M∞ = 4, Re = 25.3× 106 m-1 → Ren = 12650
Identified linear disturbances downstream when perturbations were introduced
close to the nose, at entropy layer edge
Comparison of density fluctuations at the entropy layer edge for (case 1) wall
forcing, (case 2) BL forcing, (case 3) EL edge forcing.

1V. Lysenko. “Influence of the entropy layer on the stability of a supersonic shock layer and transition of the laminar boundary layer to
turbulence”. In: Applied Mechanics and Technical Physics 31(06) (1990), 868 (5 pages).

2H. Goparaju and D. Gaitonde. Receptivity and instability of entropy-layer disturbances in blunted plate transition. AIAA 2021-2877. 2021. doi:
10.2514/6.2021-2877.
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Computational Analysis Laminar Basic State Solution

Laminar Basic State Solution
VULCAN-CFD: shock-capturing, 2nd -order finite-volume NS solver
Shock-adapted grid with 1201× 601 grid points
Rn = 0.05, 0.5, and 2.5 mm; total length l = 400 mm
Re = 25.3× 106 m-1, T0 = 290 K, Tw = 255.48 K, Sutherland’s law
Ren = 1265, 12650, and 63250

M∞ u∞ [m/s] ρ∞ [kg/m3] T∞ [K ] Twall/Twall,adiabatic P0 [Pa]
4 666.32 0.1770 69.05 0.9959 5.3268× 105

6 715.30 0.0744 35.37 1.0159 1.1926× 106

M∞ = 6, Rn = 0.05 mm M∞ = 6, Rn = 2.5 mm
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Computational Analysis Laminar Basic State Solution

Axial Evolution
Effect of leading edge bluntness and freestream conditions
Rn = 0.05, 0.5, 2.5 mm; M∞ = 4, M∞ = 6
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Close to leading edge: δh decreases as Rn increases
Downstream, Rn = 0.05 mm → Rn = 0.5 mm: δh increases
Increasing bluntness decreases Me
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Computational Analysis Laminar Basic State Solution

Wall-Normal Profiles - Mach number
Rn = 0.05, 0.5, 2.5 mm; M∞ = 4, M∞ = 6

x = 0.08 m
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x = 0.28 m

0

5

10

15

20

25

30

0 1 2 3 4 5 6

η
(m

m
)

M

Mach 4, Rn = 0.5 mm: matches DNS
Mach 6, x = 0.08 m: nonmonotonic wall-normal gradients in Mach number above
the boundary-layer edge → entropy layer effects
Profiles are cutoff before the shock
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Computational Analysis Laminar Basic State Solution

Wall-Normal Profiles - Temperature
Rn = 0.05, 0.5, 2.5 mm; M∞ = 4, M∞ = 6

x = 0.08 m

0

5

10

15

20

25

30

0 50 100 150 200 250 300

η
(m

m
)

T (K)

x = 0.18 m

0

5

10

15

20

25

30

0 50 100 150 200 250 300

η
(m

m
)

T (K)

x = 0.28 m

0

5

10

15

20

25

30

0 50 100 150 200 250 300

η
(m

m
)

T (K)

Profiles eventually converge to freestream conditions
Increasing bluntness increases temperature
Increasing Mach number decreases temperature
Profiles are cutoff before the shock
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Computational Analysis Modal Analysis

Linear Modal Analysis3

Decomposition of flow variables:
q(ξ, η, ζ, t) = q̄(ξ, η) + εq̃(ξ, η, ζ, t); q̄ = O(1); ε� 1

Harmonic Linearized Navier-Stokes Equations (HLNSE):
I exploit basic state independence w.r.t. time and spanwise direction
I solution of a 2D linear system of equations

q̃(ξ, η, ζ, t) = q̆(ξ, η) exp [i (βζ − ωt)]

q̄∞

q̆

Parabolized Stability Equations (PSE):
I exploit slow variations in streamwise direction via separation of scales
I parabolic integration in ξ coupled with normalization condition

q̆(ξ, η) = q̂(ξ, η)θ(ξ); θ(ξ) = exp
[

i
∫ ξ

ξ0

α(ξ′) dξ′
] q̄∞

q̂

θ

3P. Paredes et al. “Nosetip bluntness effects on transition at hypersonic speeds: experimental and numerical analysis”. In:
Journal of Spacecraft Rockets 56.2 (2019). doi: 10.2514/1.A34277.
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Computational Analysis Modal Analysis

Linear Modal Analysis
Mach 4, ξ = 0.28 m

Oblique disturbance, corresponding to Mack’s first mode, is most amplified
As the bluntness is increased, the disturbance: dampens, shifts to lower frequency,
wavenumber decreases

I Due to increased boundary-layer thickness influencing this boundary-layer
disturbance
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Computational Analysis Modal Analysis

Linear Modal Analysis
Mach 6, ξ = 0.28 m

Oblique disturbance, corresponding to Mack’s first mode, is most amplified
Weaker oblique disturbance than Mach 4
Wavenumber associated with oblique disturbance decreases for higher M∞
Secondary, planar disturbance corresponding to Mack’s second mode captured for
Rn = 0.05 mm
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Computational Analysis Nonmodal Analysis

Linear Nonmodal or Inflow-Resolvent Analysis4,5

Initial location selected close to the leading edge (ξ0 = 0.02 m)
Final location selected to match previous results (ξ1 = 0.28 m)
Optimal initial disturbance, q̃0: initial condition at ξ0 that maximizes J :

I Outlet energy gain: J = Gout
E = E(ξ1)

E(ξ0)

Energy norm: E(ξ) =
∫

η
q̃(ξ)∗M(ξ)q̃(ξ) hξ hζ dη

M(ξ) = diag
[

T̄ (ξ)
γρ̄(ξ)M2 , ρ̄(ξ), ρ̄(ξ), ρ̄(ξ), ρ̄(ξ)

γ(γ − 1)T̄ (ξ)M2

]
Variational formulation using direct and adjoint HLNSE

L(q̃, q̃†) = J(q̃)− 〈q̃†,Lq̃〉

Parametric analysis w.r.t. wavenumber (β) & frequency (f )

4P. Paredes et al. “Optimal growth in hypersonic boundary layers”. In: AIAA Journal 54.10 (2016), pp. 3050–3061. doi: 10.2514/1.J054912.
5P. Paredes et al. “Nosetip bluntness effects on transition at hypersonic speeds: experimental and numerical analysis”. In:

Journal of Spacecraft Rockets 56.2 (2019). doi: 10.2514/1.A34277.
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Computational Analysis Nonmodal Analysis

Nonmodal
Mach 4, optimal disturbance energy gain over ξ0 = 0.02 m to ξ1 = 0.28 m

Rn = 0.05 mm Rn = 0.5 mm Rn = 2.5 mm

Most unstable, oblique, mode location agrees with PSE
Planar peak is identified at higher frequencies 80 ≤ f ≤ 120 kHz

I Non-monotonic increase with respect to Rn

DNS with entropy layer edge forcing shows amplification of disturbances at
60 ≤ f ≤ 110 kHz
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Computational Analysis Nonmodal Analysis

Nonmodal
Mach 6, optimal disturbance energy gain over ξ0 = 0.02 m to ξ1 = 0.28 m

Rn = 0.05 mm Rn = 0.5 mm Rn = 2.5 mm

Most unstable, oblique, mode location agrees with PSE
I Secondary peak for Rn = 0.05 mm (Mack’s second mode) also matches

Planar peak is identified at higher frequencies 80 ≤ f ≤ 120 kHz
I Non-monotonic increase with respect to Rn

Rn = 0.5 mm: both oblique and planar modes are comparable in amplitude
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Computational Analysis Nonmodal Analysis

Contours of Flow Perturbations - Mach 4, Rn = 0.5 mm

Nonmodal: f = 66.6 kHz, β = 0

DNS (Goparaju & Gaitonde, 2021): f = 66.6 kHz, β = 0, forcing at x = 0.06 m,
δS with monopole width of 5 mm

Nonmodal analysis and forced DNS capture the same entropy-layer
disturbances
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Computational Analysis Nonmodal Analysis

Contours of Flow Perturbations - Mach 6, Rn = 0.05 mm

Oblique: f = 20 kHz, β = 650 → Mack’s first mode

Planar: f = 125 kHz, β = 0 → Mack’s second mode
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Computational Analysis Nonmodal Analysis

Contours of Flow Perturbations - Mach 6, Rn = 2.5 mm

Planar: f = 65 kHz, β = 0 → entropy-layer disturbance

Oblique: f = 65 kHz, β = 450 → entropy-layer disturbance
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Computational Analysis Linear Forcing Analysis

Linear Forcing Analysis
Perturb streamwise velocity at ξ0 = 70 mm for Mach 6, Rn = 0.05 and 2.5 mm
Perturb at different wall-normal locations: on-wall, 1

2 (δh + δS), δS

Gaussian bump

g(ξ, η) = A exp

(
− 1

2

(
(ξ − ξ0)2

σ2
ξ

+ (η − η0)2

σ2
η

))

Rn, mm δh, mm δS , mm ξ0, mm σξ, mm η0, mm ση, mm

0.05 0.9233 1.3951
70 1 0 1
70 1 1.16 1
70 1 1.38 1

2.5 0.8460 15.6
70 1 0 1
70 1 8.26 1
70 1 15.5 1

Forced disturbance growth taken until ξ1 = 0.28 m
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Computational Analysis Linear Forcing Analysis

Linear Forcing Analysis - Mach 6, Rn = 0.05 mm
wall 1

2 (δh + δS) δS

Low-frequency streaks, oblique Mack’s first mode, and planar Mack’s second mode
disturbances captured for all forcing locations
Stronger oblique Mack’s first mode as forcing is set further from the wall
Entropy layer forcing yields weaker response of Mack’s second mode disturbances
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Computational Analysis Linear Forcing Analysis

Linear Forcing Analysis - Mach 6, Rn = 2.5 mm
wall 1

2 (δh + δS) δS

Weak oblique Mack’s first mode and weakens as forcing is set further from the wall
Much weaker planar disturbances because Mack’s second mode becomes stable for
higher Rn

Nonmodal entropy-layer disturbances excited only when forcing is above
boundary-layer edge (in agreement with forced DNS)
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Summary and Concluding Remarks

Concluding Remarks
PSE and HLNSE identifies Mack’s first mode instability as most amplified for both
flow conditions (M∞ = 4 and 6)
Mack’s second mode instabilities captured at Mach 6 for Rn = 0.05 mm
Broadband, nonmodal entropy-layer disturbances captured for Rn = 0.5, 2.5 mm
Nonmodal analysis and forced DNS capture the same entropy-layer disturbances
Linear forcing analysis at Mach 6:

I Rn = 0.05 mm: low frequency streaks as well as Mack’s first and second modes
found for all forcing locations

I Rn = 2.5 mm: wall forcing only induces oblique Mack’s first mode and off-wall
forcing induces entropy-layer diturbances

By including receptivity effects with linear forcing analysis, narrower bands of
perturbations are amplified based on the actuator location, shape, and dynamics
Nonmodal analysis shown to be a useful and efficient technique to identify the
complete disturbance spectrum in blunt hypersonic configurations
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