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Introduction

• Ocean Worlds Exploration Program
- Search for Extraterrestrial Life

- Ceres, Europa, Enceladus, Pluto

- Challenges: 

▪ Operate under extreme environmental conditions

▪ Break through up to 40 km thick ice

• Robotic Probe
- Small, robust, long-lived electrical energy and heat source

- Traditional nuclear power systems require significant radioactive shielding

- Enriched actinide-based systems: significant fabrication, safety, launch costs



Innovation

• Lattice Confinement Fusion (LCF) Technology

- Develop a non-fissile, compact, nuclear energy 
source sufficient to power and provide heat for 
melting and boring through icy shelves with 
untethered, autonomous probes.

- Future development could go beyond the icy-moon 
mission to a lightweight power source for human & 
robotic missions.

Depiction of the ocean underneath Europa's icy layer 



• Traditional fusion: Heats plasma 10x hotter than center of sun – hard to control

• LCF addresses the pressure, temperature, and containment challenges with fusion
• Heats very few atoms at a time

• Approaches solar fuel density

• Lattice provides containment

• A trigger (e.g. electron beam) starts & controls reactions

How LCF Works
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High Fuel Density
(billion times more dense than traditional fusion)

Technical Details Simplified

Viable Fusion

Hot He-3

https://www1.grc.nasa.gov/space/science/lattice-confinement-fusion/



Hybrid Fusion-Fast Fission
• Takes advantage of both processes

- Fusion reactions provide the neutrons to 
fission non-fissile material

- Require ~2MeV neutrons to fission natural 
thorium and uranium

- Fusion reactions can provide up to 14.1 MeV 
neutrons

Fusion

Reaction

MeV Occurrence useful particle 

energy (MeV)

D(d,n)3He 4.00 primary  50% n=2.45

D(d,p)T 3.25 primary  50% p=3.00

D(3He,p) 18.30 secondary p=15.00

D(t,n) 17.60 secondary n=14.10

T(t,)2n 11.30 low probability n=1 to 9

3He(3He,)2p 12.86 low probability p=1 to 10

Fission

Reaction

MeV Occurrence useful 

particle/energy 

(MeV)

232Th(n,𝜸)f 200 high probability n=1 to 9

232Th(p,𝜸)f 200 some probability p=1 to 10

238U(n,𝜸)f 200 high probability n=1 to 9

238U(p,𝜸)f 200 some probability p=1 to 10



Innovation
• Addressing Icy World 

Conditions
- Icy crust likely exist over a 

pressure range from vacuum to 
possibly over 10 kbar

- Temperature range from 
cryogenic to > 270 ºK

- Various ice phases impact probe 
travel rate and pressure

- Sub-surface lakes likely1

- With these conditions, variable 
power output is required

• `

https://commons.wikimedia.org/wiki/File:Phase_diagram_of_water.svg

1 R. Culbert, et al., “Double ridge formation over shallow water sills on Jupiter’s moon Europa”, 

Nature Communications, 13:2007 (2022)



Potential Impact

• Probes for icy moons require unacceptable amounts of 238Pu isotope.

• A small, low-mass, variable power source is needed.

• New hybrid approach yields a variable output power source smaller than 
existing fissile reactors.

• Non-fissile alternative to high-enriched uranium (HEU) or high-assay, low-
enriched uranium (HALEU) core saves uranium enrichment, security and 
launch safety costs.

• Efficient operation with reactor thermal waste heat allows probe to melt and/or 
vibrate through ice shelf.



Mission Context
• Icy World Exploration

- Proposed probe will have 
architecture capable of powering the 
probe and a drilling mechanism with 
enough Watt-electric and Watt-
thermal to accomplish its mission

- Heated and/or (ultra) sonic drilling 
mechanism will enable the probe to 
travel through icy crusts

- Europa and Enceladus are icy world 
candidates

Europa Cutaway

Enceladus Cutaway



Technical Approach

• Evaluate the requirements for operating a robotic probe to melt or bore through 
an ice shelf.

• Model the LCF fast fission process based on first principals (using non-fissile 
materials such as depleted uranium or thorium in a molten lithium salt) and 
previous experimental results to provide guidance for building a hybrid fusion 
fast fission reactor providing power and heat to operate the probe.

Example of geometry layout 

of MCNP model of depleted 

uranium enclosed within a 

tube and surrounded by a 

neutron reflecting beryllium 

cylindrical sleeve.



Conclusions

• Future space missions that explore the icy worlds of our galaxy will need robust 
autonomous robotic melting and/or boring probes to enable breaking through the 
icy surface.

- Require a skinny probe so reactor needs to be compact

- Breaking through the various ice phases requires a probe to be throttleable and not overheat

• Although traditional fission-based power sources could meet most of the 
requirements of such a mission, the cost and required handling of fissile materials 
such as HEU and 238Pu are unattractive.

- Traditional fission not as controllable and subject to overheating

• A hybrid fusion-fission reactor could be the answer to making accessing icy world 
oceans safer and less costly than using fission-based reactors

- LCF as the source of energetic neutrons and molten salts as the fissionable material

- Provides both heat and power for the robotic probe



Takeaways
• Hybrid Fusion-Fast Fission Power system

- No HEU or HALEU necessary

- Built on NASA GRC1 and US Navy research2 published in Phys Rev C and elsewhere

- With scaling, suitable for ice crust penetration, power and deep space propulsion

- Variable output power possible so probe is throttleable

- Compact system supports small size of the probe

• Recognition of Icy World ice-phase temperature and pressure changes
- Requires power/penetration flexibility

- Possible near-surface ice pools3

• Combined ice melting/ultrasonic penetration
- Takes advantage of skin layer adjacent to probe

1. Pines, et. al., “Nuclear Fusion Reactions in Deuterated Metals”, Phys Rev C., 101, 044609 (2020)
2. Mosier-Boss, et al., “Investigation of Nano-Nuclear Reactions in Condensed Matter”, Defense Threat Reduction Agency, 

(2016).
3. R. Culbert, et al., “Double ridge formation over shallow water sills on Jupiter’s moon Europa”, Nature Communications, 13:2007 

(2022)
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A Mission Context

• Europa Clipper Mission
- Europa Tunnelbot proposed as part of 

Europa/Ocean Worlds Lander Mission 
Concept

- Proposed probe will have architecture 
capable of powering the probe and a drilling 
mechanism with enough Watt-electric and 
Watt-thermal to accomplish its mission

- Heated and/or (ultra) sonic drilling 
mechanism will enable the probe to travel 
through Europa’s icy crust

Parameter Value 

Mean radius 1560.8 km

Volume 1.593x1010 km3

Mass 4.799844x1022 kg

Mean density 3.013 g/cm3

Mean surface 

temperature

-171 °C

Depth of ice layer 10-30 km

Depth of ocean ~100 km

Characteristics of Europa


