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 29 

Abstract 30 

Remote sensing-based evapotranspiration (ET) products have been evaluated primarily using 31 

data from northern middle latitudes; therefore, little is known about their performance at low 32 

latitudes. To address this bias, an evaluation dataset was compiled using eddy covariance data 33 

from 40 sites between latitudes 30° S and 30° N. The flux data were obtained from the emerging 34 

network in Mexico (MexFlux) and from openly available databases of FLUXNET, AsiaFlux, and 35 

OzFlux. This unique reference dataset was then used to evaluate remote sensing-based ET 36 

products in environments that have been underrepresented in earlier studies. The evaluated 37 

products were: MODIS ET (MOD16, both the discontinued collection 5 (C5) and the latest 38 

collection (C6)), Global Land Evaporation Amsterdam Model (GLEAM) ET, and Atmosphere-39 

Land Exchange Inverse (ALEXI) ET. Products were compared with unadjusted fluxes (ETorig) 40 

and with fluxes corrected for the lack of energy balance closure (ETebc). Three common 41 

statistical metrics were used: coefficient of determination (R2), root mean square error (RMSE), 42 

and percent bias (PBIAS). The effect of a vegetation mismatch between pixel and site on product 43 

evaluation results was investigated by examining the relationship between the statistical metrics 44 

and product-specific vegetation match indexes. Evaluation results of this study and those 45 

published in the literature were used to examine the performance of the products across latitudes. 46 

Differences between the MOD16 collection 5 and 6 datasets were generally smaller than 47 

differences with the other products. Performance and ranking of the evaluated products depended 48 

on whether ETorig or ETebc was used. When using ETorig, GLEAM generally had the highest R2, 49 

smallest PBIAS, and best RMSE values across the studied land cover types and climate zones. 50 

Neither MOD16 nor ALEXI performed consistently better than the other. When using ETebc, 51 

none of the products stood out in terms of both low bias and strong correlations. The use of ETebc 52 
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instead of ETorig affected the biases more than the correlations. The product evaluation results 53 

showed no significant relationship with the degree of match between the vegetation at the pixel 54 

and site scale. The latitudinal comparison showed tendencies of lower R2 (all products) but better 55 

PBIAS and normalized RMSE values (MOD16 and GLEAM) for forests at low latitudes than for 56 

forests at northern middle latitudes. For non-forest vegetation, the products showed no clear 57 

latitudinal differences in performance. 58 

 59 
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  61 



4 

1. Introduction 62 

The low latitudes (30° S–30° N) are characterized by large contrasts in terrestrial 63 

evapotranspiration (ET). They are home to tropical rainforests and other ecosystems with 64 

abundant rainfall where energy (radiation) is the main constraint to ET (see, for example, Fisher 65 

et al., 2009; Bruijnzeel et al., 2011). They are also home to tropical and subtropical arid and 66 

semi-arid ecosystems where ET is limited by water supply (see, for example, Eamus et al., 2013; 67 

Delgado-Balbuena et al., 2019). Estimates of ET for this region are needed for local and regional 68 

applications such as water resource management and drought monitoring and for global 69 

applications such as climate change studies (Wang and Dickinson, 2012; Fisher et al., 2017). The 70 

spatial and temporal scale of these applications require other methods than those used to study 71 

ET at the plot to ecosystem scale (i.e., lysimeter, sap flow, and micrometeorological methods). 72 

Recently, the potential of remote sensing-based ET estimates for these purposes has been 73 

recognized (Dolman et al., 2014; Fisher et al., 2017; Sheffield et al., 2018). 74 

Since the 1990s, numerous remote sensing-based ET models have been developed (see Ke Zhang 75 

et al., 2016 for an overview). These models can be broadly divided into three categories (in no 76 

specific order): models based on the (1) Penman-Monteith (Monteith, 1965) or (2) Priestley-77 

Taylor (Priestley and Taylor, 1972) equations and (3) models that determine the sensible heat 78 

flux (H) and calculate ET (or latent heat flux, LE) as the residual of the surface energy balance 79 

(i.e., so-called SEB models; Wang and Dickinson, 2012; Ke Zhang et al., 2016; Chen and Liu, 80 

2020). Of interest to the user community is the development of global ET products from these 81 

models that are readily available to the public and regularly updated to include the latest data. 82 

Two such datasets have been produced since the early 2010s: 1) the MODIS ET product based 83 

on the MOD16 algorithm (Penman-Monteith type model; Mu et al., 2007, 2011; Running et al., 84 

2019); and 2) the ET product from the Global Land Evaporation Amsterdam Model (GLEAM; 85 
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Priestley-Taylor type model; Miralles et al., 2011; Martens et al., 2017). More recently, global 86 

ET datasets based on the SEB model of Senay et al. (2013, 2020) and the Penman-Monteith-87 

Leuning (PML) model of Yongqiang Zhang et al. (2016, 2019) have become available. Efforts 88 

are also underway to develop a global ET product based on the Atmosphere-Land Exchange 89 

Inverse (ALEXI) model (another SEB-based approach; Anderson et al., 2011; Hain and 90 

Anderson, 2017; Holmes et al., 2018). 91 

Measurements of ET from eddy covariance flux towers have been used as the standard reference 92 

data against which remote sensing-based ET products are evaluated (Miralles et al., 2011; Mu et 93 

al., 2011; Holmes et al., 2018; Yongqiang Zhang et al., 2019; Senay et al., 2020), despite the 94 

problems related to the lack of energy balance closure observed at eddy covariance sites and the 95 

scale difference between the flux footprint and the model pixels (see below). Broadly speaking, 96 

two different types of evaluation studies can be distinguished: 1) those that evaluate the 97 

published ET datasets (hereafter referred to as product evaluation studies); and 2) those that 98 

evaluate the performance of the underlying models (model evaluation studies). In the latter type 99 

of study, all models are run with the same input data to isolate the effect of different modeling 100 

approaches from differences in forcing data (Vinukollu et al., 2011a, b; McCabe et al., 2016; 101 

Michel et al., 2016; Melo et al., 2021). Because remote sensing ET models are sensitive to 102 

changes in input data (Vinukollu et al., 2011b; Badgley et al., 2015), the results of model 103 

evaluation studies do not necessarily apply to the actual products. 104 

The performance of remote sensing-based ET products at low latitudes is largely unknown 105 

because most evaluation studies have focused on the northern middle latitudes (30° N–60° N; 106 

Miralles et al., 2011; Mu et al., 2011; Kim et al., 2012; Hu et al., 2015; Velpuri et al., 2013; Tang 107 

et al., 2015; Reitz et al., 2017; Holmes et al., 2018; Khan et al., 2018). The few studies that 108 

evaluated ET products at low latitudes did this at a small number (two to five) of eddy 109 
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covariance sites (Ruhoff et al., 2013; Ramoelo et al., 2014; Aguilar et al., 2018; Souza et al., 110 

2019). The bias toward the northern middle latitudes can be explained by geographic differences 111 

in the availability of eddy covariance data (Schimel et al., 2015; Villareal and Vargas, 2021). 112 

Because of the lack of evaluation results from the low latitudes, it is unknown whether global 113 

remote sensing-based ET products perform equally well at all latitudes. One can think of several 114 

reasons why this might not be the case. For example, the MOD16 ET algorithm was calibrated 115 

using eddy covariance data from sites located primarily in the US and Canada (Mu et al., 2011). 116 

Hence, it is possible that the model is less accurate in other regions of the world, including the 117 

low latitudes (Kun Zhang et al., 2019). Similarly, GLEAM uses constant values for the Priestley-118 

Taylor coefficient (α; Miralles et al., 2011), while α varies with climate (Shuttleworth, 1993) and 119 

forest type (Komatsu, 2005). Because the distribution of climate and forest types is related to 120 

latitude, the use of constant values for α may result in (apparent) latitude-dependent biases in ET. 121 

Latitudinal differences in product performance can also be caused by regional differences in 122 

input data quality (Vinukollu et al., 2011b) or cloud cover (Running et al., 2019). 123 

While eddy covariance observations of ET are probably the best option to evaluate remote 124 

sensing datasets, there are two problems to consider: 1) the energy balance observed at eddy 125 

covariance sites is usually not closed; and 2) the footprint of the eddy covariance observations 126 

and the pixels of the ET products have different spatial scales. The degree of energy balance 127 

closure is quantified by the energy balance ratio (EBR), which is the ratio of turbulent energy 128 

fluxes (H + LE) to available energy, A (Wilson et al., 2002). Available energy is the difference 129 

between net radiation (Rn) and changes in energy storage. The average EBR observed at eddy 130 

covariance sites is about 0.8 (Wilson et al., 2002; Stoy et al., 2013). While the cause of the 131 

energy imbalance is still being investigated, there are several plausible explanations, including 132 

the systematic underestimation of the eddy covariance fluxes (Frank et al., 2016; Gao et al., 133 
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2017; Mauder et al., 2020). As a practical solution to the closure problem, the energy surplus is 134 

added to H and LE. Because it is unknown in what proportion the energy should be divided 135 

between the fluxes (Mauder et al., 2020), the surplus is usually distributed in proportion to the 136 

magnitude of H and LE, which preserves the Bowen ratio (Twine et al., 2000). Comparisons 137 

with independent estimates of ET have yielded contrasting results, with some studies finding 138 

better agreement for energy balance closure-corrected ET (Barr et al., 2012; Mauder et al., 2018) 139 

and others for unadjusted ET (Denager et al., 2020). Although the energy balance closure 140 

problem has been recognized for many years (Wilson et al., 2002; Foken et al., 2011), its effect 141 

on the evaluation results of remote sensing-based ET products or models has rarely been 142 

examined (Michel et al., 2016; Melton et al., 2021). 143 

The evaluation results can also be affected by the scale difference between the footprint of the 144 

eddy covariance observations and the pixels of the ET products. The flux footprint is typically 145 

smaller than 1 km2 (Chu et al., 2021), while the pixel sizes of ET products are as small as 0.25 146 

km2 (MOD16) and as large as 750 km2 (GLEAM). The scale difference can result in a mismatch 147 

in vegetation between pixel and site (Hobeichi et al., 2018; Jiménez et al., 2018). Such a 148 

mismatch may also result from errors in the vegetation input data used by the models (due to, for 149 

example, incorrect classification). Because most models calculate ET using land cover-specific 150 

parameters (Anderson et al., 2007; Miralles et al., 2011; Mu et al., 2011), a mismatch between 151 

the actual vegetation of the observation site and that detected in the model pixel could potentially 152 

affect the evaluation results (Hu et al., 2015). However, the few studies that have examined this 153 

issue found no clear effect (Hobeichi et al., 2018; Jiménez et al., 2018). 154 

The objectives of this study were to: 1) evaluate the performance of the MOD16 and GLEAM 155 

global ET products as well as of ET based on the ALEXI model at 40 eddy covariance sites in 156 

the low latitudes; 2) examine the effect of the energy balance closure problem on product 157 
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evaluation results; 3) examine the dependence of product evaluation results on the vegetation-158 

match between pixel and site; and 4) investigate potential latitudinal dependence of product 159 

performance. The MOD16 and GLEAM products were chosen because they are the longest 160 

regularly produced remote sensing-based ET datasets. From MOD16, both the discontinued 161 

collection 5 (C5) and the latest collection (C6) were evaluated (Mu et al., 2011; Running et al., 162 

2019). In the case of GLEAM, the v3.3a dataset was evaluated (Martens et al., 2017). While 163 

most applications of ALEXI have focused on the continental US, recent efforts have paved the 164 

way for routine global implementation of ALEXI (Hain and Anderson, 2017). The reference 165 

dataset compiled in this study provides an excellent opportunity to evaluate the performance of 166 

ALEXI at low latitudes. The products were evaluated using a reference dataset of eddy 167 

covariance observations, including data from the emerging flux network in Mexico (MexFlux; 168 

Vargas et al., 2013; Delgado-Balbuena et al., 2018) and from openly available databases of 169 

FLUXNET (Pastorello et al., 2020), AsiaFlux, and OzFlux (Beringer et al., 2016). 170 

 171 

2. Methods 172 

2.1. Data 173 

The remote sensing-based ET products evaluated in this study have different spatial and 174 

temporal resolutions (Table 1). The comparisons with the eddy covariance ET observations were 175 

made at the original spatial resolution of each product, except in the case of MOD16 C6 for 176 

which the 500-m data were resampled to a 1-km resolution to match MOD16 C5. Using the 177 

original spatial resolution is the common practice when evaluating these products against eddy 178 

covariance data (see references in Table S4). An exception was made for MOD16 C6 to allow 179 

for a more direct comparison with the previous C5 version. The effect of the scale mismatch 180 

between product pixel and flux footprint on the evaluation results was examined using the 181 
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vegetation match index (Section 2.3). For each product, ET data were obtained from the pixels 182 

matching the location of the flux towers (Velpuri et al., 2013; Hu et al., 2015). To evaluate all 183 

products at the same temporal resolution (some performance statistics depend on the temporal 184 

resolution of the data), the daily GLEAM and ALEXI data were averaged over the 8-day MODIS 185 

interval. This was the highest common temporal resolution possible among the evaluated 186 

datasets. Likewise, the eddy covariance data were averaged to yield mean daily ET for each 187 

MODIS interval (Section 2.1.4). 188 

The remote sensing ET products were evaluated by grouping the data by land cover type and 189 

climate zone (Section 2.2). The eddy covariance data from the various sites were collected 190 

during different periods between 2000 and 2019, with the length of the data records ranging from 191 

1 to 11 years (Table 2). Hence, the flux datasets for a given land cover type or climate zone may 192 

not coincide in time. In addition, data availability varied among the evaluated products. MOD16 193 

C5 was discontinued in 2015 and GLEAM data for 2019 were not available at the time of 194 

download (Table 1). For GLEAM and ALEXI, seven and four sites, respectively, were omitted 195 

from the analysis because the fraction of open water in the corresponding pixels was too high 196 

due to proximity to the coast (Sections 2.1.2 and 2.1.3). This problem did not affect MOD16 197 

because of the smaller pixel size. As a result, the amount of data available for each of the 198 

comparisons by land cover type and climate zone often varied from product to product (Table 3). 199 

Ideally, one would compare the products using a common reference dataset (i.e., same sites and 200 

same MODIS intervals). However, this would reduce the amount of available data by about one-201 

third (12 fewer sites and about 36% fewer MODIS intervals). Therefore, it was decided to 202 

perform the regression analysis of observations versus product estimates (Section 2.2.1) and the 203 

comparison of the performance statistics by land cover type and climate zone (Sections 2.2.2 and 204 

2.2.3) using the complete dataset. The extent to which the two approaches (all data or a common 205 
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reference dataset) may have influenced the results was examined through a sensitivity analysis 206 

(Section 2.2.4). The seasonal trend analysis (Section 2.2.5) was performed using the common 207 

reference dataset. 208 

The MOD16 and GLEAM ET data were extracted from the published global ET datasets. 209 

Because detailed information about the models and datasets used to generate these products can 210 

be found in the references listed in Table 1, only a brief explanation is provided below. The 211 

ALEXI ET data were calculated specifically for this study. The methodology is described in 212 

Anderson et al. (2011) and Hain and Anderson (2017). For completeness, the main features of 213 

the model and the specific input datasets used are briefly described below. 214 

 215 

<Table 1>  216 

 217 

2.1.1. MODIS ET data 218 

The MOD16 ET product is derived using a three-source Penman-Monteith model, which 219 

estimates ET as the sum of evaporation from the dry canopy (transpiration), wet canopy 220 

(interception loss), and soil (Mu et al., 2007, 2011). Separate calculations are performed for the 221 

day and night. The model uses MODIS retrievals of: albedo (for the calculation of Rn); fraction 222 

of absorbed photosynthetically active radiation, FPAR (to partition Rn between canopy and soil); 223 

land cover type (to assign the physiological parameters needed to calculate the leaf stomatal and 224 

aerodynamic resistances); and leaf area index (to calculate the bulk canopy resistances). The land 225 

cover-specific parameters in the MOD16 algorithm were obtained by comparison with eddy 226 

covariance flux data from 46 sites (located primarily in the US and Canada). MOD16 C5 used 227 

C4 MOD12Q1 Land Cover Type 2 data, while MOD16 C6 uses the MCDLCHKM product 228 

(Running et al., 2019). The meteorological data (incoming shortwave radiation and air 229 
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temperature and humidity) are obtained from reanalysis products (Modern-Era Retrospective 230 

analysis for Research and Applications version 2 (MERRA-2) for C5 and Goddard Earth 231 

Observing System Model Version 5 (GEOS-5) for C6). Transpiration and soil evaporation are 232 

constrained by vapor pressure deficit, VPD (i.e., there is no soil moisture control). The C5 data 233 

were downloaded from the University of Montana’s Numerical Terradynamic Simulation Group 234 

(NTSG) website (https://www.ntsg.umt.edu/project/modis/mod16.php). The C6 data were 235 

obtained from NASA’s Land Processes Distributed Active Archive Center (LP DAAC) 236 

(https://lpdaac.usgs.gov/). The gap-filled version of the C6 dataset was used. The gap-filling 237 

method is the same as that used for MOD16 C5 (Running et al., 2019). Apart from the difference 238 

in resolution, the C5 and C6 datasets were produced using different reanalysis datasets and 239 

different MODIS vegetation and albedo products. 240 

 241 

2.1.2. GLEAM ET data 242 

In GLEAM, ET is defined as the sum of the following processes: transpiration from short and 243 

tall vegetation, bare soil evaporation, rainfall interception loss from tall vegetation, open water 244 

evaporation, and snow sublimation (Miralles et al., 2011; Martens et al., 2017). The rainfall 245 

interception loss module is based on the Gash (1979) analytical rainfall interception model 246 

(Miralles et al., 2010). GLEAM v3.3a used the MEaSUREs VCF5KYRv001 product (Hansen et 247 

al., 2018) to determine the fractions of bare soil, short vegetation, and tall vegetation. The model 248 

first calculates potential ET with the Priestley-Taylor equation using Rn and air temperature from 249 

reanalysis data (ERA-Interim). For bare soil and short vegetation, the typical value of 1.26 is 250 

used for the Priestley-Taylor α coefficient, while for tall vegetation α = 0.97 (Martens et al., 251 

2017). Actual ET is calculated by multiplying potential evaporation with land cover-dependent 252 

stress functions. The stress functions simulate soil water constraints on transpiration and soil 253 



12 

evaporation. Soil water content is estimated using a multilayer running water balance model that 254 

uses a merged precipitation product, ET from the previous time step, and microwave surface soil 255 

moisture as the main inputs. The soil is divided in three layers: shallow (0–10 cm); intermediate 256 

(10–100 cm); and deep (100–250 cm). Tall vegetation can extract water from all three layers, 257 

short vegetation can extract water from the shallow and intermediate layers, and for bare soil 258 

evaporation only water from the shallow layer is available. The stress functions for vegetation 259 

also simulate the effect of phenology using microwave vegetation optical depth. The data were 260 

accessed through the GLEAM website (https://www.gleam.eu). GLEAM pixels containing more 261 

than 20% open water were excluded (this concerned a total of seven sites; Table S2). The open 262 

water fraction (OWF) was obtained from the MOD44B product (Section 2.3). This filtering was 263 

performed only for GLEAM. In the case of ALEXI, sites affected by the presence of open water 264 

were filtered out during production of the dataset (Section 2.1.3), while in the case of MOD16, 265 

no sites were affected because of the smaller pixel size. 266 

 267 

2.1.3. ALEXI ET data 268 

The ALEXI algorithm consists of a two-source SEB model coupled with an atmospheric 269 

boundary layer model (Anderson et al., 1997, 2007). The latent heat flux is calculated separately 270 

for the canopy and soil. An initial estimate of the canopy LE is obtained using the Priestley-271 

Taylor equation with α = 1.26 (assuming potential transpiration). Next, the soil LE is calculated 272 

as the residual of the energy balance. If the resulting soil LE is negative, the actual canopy LE 273 

must be less than the potential value (which may indicate an effect of soil water limitation on 274 

transpiration). The α coefficient is then reduced until the residual soil LE is non-negative. The 275 

calculated LE represents the instantaneous flux at approximately one hour before local noon. 276 

This time corresponds to the end of the time span over which H is calculated (see below). The 277 
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instantaneous latent heat fluxes are extrapolated to daily ET values by multiplying by the ratio of 278 

daily total to instantaneous shortwave radiation and dividing by the latent heat of vaporization. 279 

The ALEXI algorithm calculates H from the morning rise in the radiometric surface temperature 280 

(Hain and Anderson, 2017). By using the temporal change in surface temperature, the effect of 281 

bias in the temperature retrievals on H is minimized. This ALEXI implementation uses the 282 

MODIS land surface temperature product (MYD11C1), retrieved using a generalized split-283 

window atmospheric compensation technique (Wan, 2004). The composite values of surface 284 

temperature are partitioned between canopy and soil using estimates of vegetation cover fraction 285 

from leaf area index. The leaf area index data were obtained from the 8-day MODIS MOD15A3  286 

product (Myneni et al., 2002). Instead of using absolute values of air temperature, ALEXI uses 287 

the slope of the vertical temperature profile (lapse rate) in the boundary layer. The lapse rate 288 

profile, as well as the surface longwave radiation flux and wind speed were obtained from the 289 

NCEP Climate Forecast System Reanalysis product (CFS-R, CFSRv2; Saha et al., 2010). 290 

Incoming shortwave radiation fluxes were obtained from the CERES SYN1deg product 291 

(Doelling, 2012). Soil heat flux is calculated as a diurnal varying function of net radiation 292 

(Santanello and Friedl, 2003). The ALEXI model uses land cover data to assign canopy 293 

parameters such as canopy height (to calculate the aerodynamic resistances to H) and leaf 294 

absorptivity (to estimate Rn for the canopy and soil). The land cover data were obtained from the 295 

MODIS MCD12C1 product (Land Cover Type 2). Since the thermal infrared based surface 296 

temperature observations are only available during clear sky conditions, ALEXI employs a gap-297 

filling technique to generate estimates of weekly totals. The clear-sky fraction of actual ET to 298 

incoming radiation is interpolated to a daily record and then multiplied by the daily incoming 299 

radiation to generate a complete record. Along the coast the coarse-scale meteorological inputs 300 

result in limited retrievals; this is why four coastal sites (Table S2) are not included in the 301 
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ALEXI dataset. 302 

 303 

2.1.4. Eddy covariance ET data 304 

Data from four different flux networks (MexFlux, FLUXNET, AsiaFlux, OzFlux) were used to 305 

evaluate the ET products. The data from MexFlux were obtained directly from the site PIs (12 306 

sites) because they were not available through a repository. The data from the other networks 307 

were obtained through the respective web-based portals. FLUXNET data available under the 308 

open data policy (tier 1) of the FLUXNET2015 dataset were used (Pastorello et al., 2020). This 309 

dataset includes a total of 28 sites between latitudes 30° S and 30 °N. From OzFlux and 310 

AsiaFlux, openly available data from sites not included in FLUXNET2015 were considered 311 

(three and nine sites, respectively). Prior to the more extensive data quality control (see below), 312 

sites for which the data record was too short (< 1 year), latent heat flux data were not available, 313 

or the degree of energy balance closure was too low (EBR < 0.5) were excluded (one site from 314 

MexFlux, four sites from FLUXNET, and seven sites from AsiaFlux). This left a total of 40 sites 315 

for further analysis (Figure 1, Table 2). Information needed for the correction of the soil heat flux 316 

(G) data or for the calculation of the sensible and latent heat storage terms, S (see below) was 317 

obtained from the metadata accompanying the datasets, from articles or other publications, or 318 

directly from the site PIs. 319 

The remote sensing ET products were evaluated using the mean daily eddy covariance ET (mm 320 

day−1) calculated for each MODIS interval. The comparisons were made using the unadjusted 321 

eddy covariance fluxes (ETorig) and those corrected for the lack of energy balance closure 322 

(ETebc). FLUXNET2015 includes corrected fluxes (Pastorello et al., 2020) but the datasets from 323 

the other networks do not. For consistency, the fluxes were corrected using the same method for 324 

all datasets (including FLUXNET2015). After filling the missing half-hourly or hourly values 325 
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(see below), a correction factor was calculated for each MODIS interval as A/(H + LE), where 326 

each term is the average daytime flux in W m−2 (see above for definition of terms). Daytime was 327 

defined as having solar radiation > 10 W m−2. This method is based on the assumption that H and 328 

LE were underestimated by the same percentage (Twine et al., 2000). The available energy was 329 

calculated as Rn − G − S. The correction was only applied to the daytime data because, in 330 

absolute terms, the missing energy is small during the night (Stoy et al., 2013; Mauder et al., 331 

2020) so that the correction will have little effect on total daily ET. In addition, this eliminated 332 

the need to ensure the completeness and consistency of the energy balance data for the nighttime 333 

period. The daytime and nighttime LE as well as the other energy balance terms (only daytime 334 

data) were converted from energy units (W m−2) to millimetres (mm) using a constant value for 335 

the latent heat of vaporization (2.45 MJ kg−1). The unadjusted nighttime fluxes were added to 336 

daytime ETorig and ETebc to give daily ETorig and ETebc. 337 

Data on G were available for 24 of the 40 sites. At all these sites G was measured using the soil 338 

heat flux plate method (Sauer, 2002). For six sites, the measurements were not corrected for heat 339 

storage above the plates (Mayocchi and Bristow, 1995). This correction was applied 340 

retrospectively using the method of Wang and Bou-Zeid (2012). This method calculates G at the 341 

soil surface (which is required in the energy balance calculations) from the time series of G at 342 

any depth. It requires the thermal diffusivity of the soil, which was calculated as the ratio of soil 343 

thermal conductivity to soil volumetric heat capacity. The thermal conductivity was calculated 344 

following Lu et al. (2014) using site-specific soil physical data. The volumetric heat capacity was 345 

calculated from soil bulk density and soil moisture. For sites without data on G but with data on 346 

soil temperature (seven sites), G was estimated using the method of Hsieh et al. (2009). 347 

Estimates of G derived from temperature measurements at depths > 2 cm were corrected for heat 348 

storage using the method of Wang and Bou-Zeid (2012). For the remaining nine sites, G was 349 
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estimated using the method of Mu et al. (2011), using in situ air temperature and Rn, and 350 

vegetation cover estimated from the MODIS FPAR product (MCD15A2H; see Section 2.1.5 for 351 

more details about this dataset). 352 

The sensible and latent heat storage terms are generally not included in the flux datasets (Stoy et 353 

al., 2013; Pastorello et al., 2020). In this study, S was estimated from the half-hourly changes in 354 

air temperature and humidity measured at the reference level (Brutsaert, 1982). This estimate did 355 

not include heat storage in the vegetation biomass. 356 

The data from the 40 sites were carefully screened for inconsistencies. These checks were in 357 

addition to those performed by the site PIs/teams and by some of the networks (FLUXNET, 358 

Pastorello et al., 2014, 2020; OzFlux, Isaac et al., 2017). For the daytime period, all data needed 359 

for the energy balance calculations were checked. For the nighttime period, only the LE data 360 

were screened. The quality checks were similar to those performed by Pastorello et al. (2014) for 361 

FLUXNET2015. Where possible, errors in the radiation, air temperature, and relative humidity 362 

data were corrected with the help of the site PIs, using calculated clear-sky radiation (in the case 363 

of the radiation data), or using data from another sensor or from a nearby station (Allen, 2008; 364 

Pastorello et al., 2014). No attempts were made to correct questionable eddy covariance flux data 365 

(H, LE) or soil data (G, temperature, moisture). 366 

Gap-filling of the data was carried out in two steps. In the first step, gaps in the half-hourly or 367 

hourly data were filled on a daily basis. For the daytime period, missing values of any energy 368 

balance term, x (where x = LE, H, G, S) on a particular day were filled using (ݔ ܴn⁄ )ܴn,i , where 369 

ݔ) ܴn⁄ ) is the average daytime ratio of x to Rn and Rn,i the net radiation during time step i with 370 

missing data. For any x, the maximum allowed percentage of missing values was 30%. For the 371 

nighttime period, missing values of LE on a particular day were replaced by the mean nighttime 372 

LE for that day (also using an upper threshold of 30% for the percentage of missing data). For 373 
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consistency, the same method was used for all datasets (i.e., the gap-filled data in 374 

FLUXNET2015 were not used). In the second step, missing daily values of ETorig and ETebc were 375 

replaced by the mean of the available observations for individual MODIS intervals. The 376 

maximum allowed percentage of missing values was 25% (i.e., two days for an 8-day MODIS 377 

interval) (Hu et al., 2015). 378 

Energy balance closure was analyzed for each site individually by summing the 8-day mean 379 

daytime totals of H + ETorig and A and calculating the energy balance ratio as: EBR = ∑(H + 380 

ETorig)/∑A, with all terms in mm (Wilson et al., 2002). Energy balance closure was also analyzed 381 

by grouping the data according to land cover type and climate zone (Section 2.2). For the pooled 382 

data in each group, the 8-day mean daytime totals of H + ETorig were plotted against A and the 383 

corresponding linear regression line and EBR were calculated. 384 

Geographic coordinates and land cover type data for each site were obtained from the metadata 385 

accompanying the datasets or from the literature (Table 2). The classification scheme of the 386 

International Geosphere-Biosphere Programme (IGBP) was followed. This classification system 387 

is adopted by most flux networks. It is also used in most evaluation studies of remote sensing ET 388 

models (see, e.g., Velpuri et al., 2013; McCabe et al., 2016; Michel et al., 2016). 389 

For each site, the evaporative fraction (EF) was calculated as (Shuttleworth et al., 1989): EF = 390 

∑ETorig/∑(H + ETorig), where ETorig and H are the mean daytime latent and sensible heat fluxes 391 

for each MODIS interval, not corrected for the lack of energy balance closure. The obtained 392 

values are listed in Table 2. 393 

 394 

<Figure 1> 395 

 396 

<Table 2> 397 
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 398 

2.1.5. Other datasets 399 

The Köppen-Geiger climate class of each site was obtained using the 1-km resolution global map 400 

of Beck et al. (2018). The map was downloaded from www.gloh2o.org/koppen/. Each site was 401 

assigned the climate class of the pixel where the flux tower was located. The 40 sites represented 402 

a total of 10 different climate classes (Table 2). For the evaluation of the remote sensing ET 403 

products, these were grouped into four main climate zones (Section 2.2). For each of these 404 

climate zones, the average EF was calculated using the site-specific values listed in Table 2. 405 

To investigate the match between the actual vegetation type at the flux tower site and the 406 

vegetation class or category used in the remote sensing ET models (Section 2.3), the yearly 407 

MODIS land cover (MCD12Q1; 500 m resolution) and vegetation cover (MOD44B; 250 m 408 

resolution) products were used. The data were downloaded from the NASA LP DAAC website. 409 

From MCD12Q1, the Land Cover Type 2 data were used. From MOD44B, the data layers 410 

containing percent tree cover and percent nontree vegetation were used. For each site, the 411 

following three subsets were generated for the years with eddy covariance data: Subset 1) four 412 

pixels of MCD12Q1 data corresponding to the 1-km MOD16 pixel; Subset 2) all pixels of 413 

MOD44B data falling within the 0.25° GLEAM pixel; and Subset 3) all pixels of MCD12Q1 414 

data corresponding to the 5-km ALEXI pixel. These subsets were used in the analysis described 415 

in Section 2.3. 416 

Finally, FPAR data from the MCD15A2H product were used to calculate G with the method of 417 

Mu et al. (2011) (Section 2.1.4). This product is an 8-day composite dataset with a spatial 418 

resolution of 500 m. The data were again obtained from NASA’s LP DAAC. The pixels 419 

matching the location of the flux towers were used. Data with a cloud flag or retrieved by the 420 

backup algorithm were replaced by interpolated values (Zhao et al., 2005). 421 
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 422 

2.2. Evaluation of product performance  423 

The remote sensing ET products were evaluated by grouping the data by IGBP land cover type 424 

and Köppen-Geiger climate zone (Velpuri et al., 2013; McCabe et al., 2016). To avoid groups 425 

with only one site, the woody savanna site was included in the group with the savanna sites and 426 

the closed shrubland site was left out of the evaluations by land cover type (but included in the 427 

evaluations by climate zone). This resulted in the following five groups of vegetation cover 428 

types: evergreen broadleaf forest (EBF); deciduous broadleaf forest (DBF); evergreen needleleaf 429 

forest (ENF); savanna (SAV); and grassland (GRA). 430 

Likewise, the sites were grouped into the following four main climate zones: i) Af, Am: tropical 431 

fully humid and tropical monsoon, respectively (from now on referred to as tropical wet); ii) Aw: 432 

tropical savanna; iii) B: dry; and iv) C: mild temperate. Sites assigned the mild temperate (C) 433 

climate were either located on tropical or subtropical mountains (five sites) or in lowland areas in 434 

the subtropics (three sites) (see also Richter, 2016). Table 3 shows the number of sites and the 435 

number of site years available in the complete dataset for each product by land cover type and 436 

climate zone.  437 

 438 

<Table 3> 439 

 440 

2.2.1. Scatter plots and regression analysis 441 

Scatter plots allow visual evaluation of the match between the remote sensing-based and the 442 

observed ET data (Velpuri et al., 2013; McCabe et al., 2016; see also Chang and Hanna, 2004). 443 

In addition, the slope, intercept, and coefficient of determination (R2) of the fitted linear 444 

regression line provide a quantitative way to evaluate product performance (Willmott, 1982; 445 
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Velpuri et al., 2013; McCabe et al., 2016). Most studies evaluating remote sensing ET products 446 

perform the regression analysis with the product estimates on the y-axis and the observations on 447 

the x-axis (see, e.g., Mu et al., 2011; Velpuri et al., 2013; McCabe et al., 2016). However, 448 

Piñeiro et al. (2008) showed that this can lead to erroneous estimates of the regression 449 

coefficients. Therefore, in this study the observations were used as the y variable and the product 450 

estimates as the x variable (Piñeiro et al., 2008). For each land cover type and climate zone in 451 

Table 3, the eddy covariance observations were plotted against the ET estimates of each product 452 

and the corresponding linear regression lines were calculated, using the pooled data from the 453 

different sites in each group. This analysis was performed using both ETorig and ETebc. 454 

 455 

2.2.2. Statistical performance metrics 456 

In addition to visual inspection of the scatter plots and examination of the regression results, 457 

three commonly used statistics in evaluation studies of remote sensing ET products were 458 

calculated: root mean square error (RMSE), percent bias (PBIAS), and the coefficient of 459 

determination (R2) (see references in Table S4). The use of these common statistics allowed for 460 

comparison with evaluation results from other latitudes (Section 2.4). The selected metrics 461 

provide complementary information about product performance. The RMSE is a measure of total 462 

error (i.e., both random and systematic errors) and is defined by: 463 

 464 

RMSE = ඥܰିଵ ∑[ET(Prod)− ET(Obs)]ଶ   (1) 465 

 466 

where ET(Prod) is the product ET, ET(Obs) the eddy covariance ET, and N the total number of 467 

data points (i.e., the number of MODIS intervals). 468 

The PBIAS is the systematic (bias) error in percent of the average of the observations: 469 
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 470 

PBIAS = ேషభ∑[ET(Prod)ିET(Obs)]
ேషభ ∑ET(Obs)

× 100   (2) 471 

 472 

Third, in addition to the R2 calculated from the pooled data (Section 2.2.1), the R2 of the linear 473 

regression between product ET and observed ET was calculated for each site separately. Besides 474 

being a measure of correlation, R2 indicates how much of the variation in observed ET is 475 

explained by the product ET. 476 

The three metrics were calculated using both ETorig and ETebc. Averages of both sets of RMSE, 477 

PBIAS, and R2 values were calculated for each land cover type and climate zone in Table 3. The 478 

average metrics by land cover type and climate zone were displayed graphically in plots for each 479 

product (McCabe et al., 2016) for ETorig and ETebc. The results for the individual sites can be 480 

found in Tables S2 and S3. 481 

 482 

2.2.3. Combining the different performance metrics into a single score 483 

To facilitate comparison of the overall performance of the different ET products, the individual 484 

metrics (R2, RMSE, PBIAS) were combined into the Ideal Point Error (IPE) score (Elshorbagy et 485 

al., 2010; Dawson et al., 2012). The IPE score takes values between 0 and 1, with 0 indicating 486 

perfect performance (i.e., all metrics are at their optimum values) and 1 being assigned to the 487 

worst performing product. In practice, no product (and no observation) is without error. 488 

Therefore, the best performing product will usually have an IPE greater than 0. The IPE values 489 

were calculated for each of the comparisons by land cover type and climate zone. The calculation 490 

of IPE consists of two steps. In the first step, each performance metric is standardized to the 491 

worst score for that metric. Dawson et al. (2012) provides expressions for this standardization 492 

step for different categories of performance measures (denoted by S1–S5; their Table 1). PBIAS 493 



22 

is not listed in this table. However, as mentioned by Dawson et al. (2012), the flexibility of this 494 

method allows other metrics to be included. PBIAS classifies as an S4 category metric and was 495 

standardized using the corresponding expression. In the second step, the IPE is calculated from 496 

the standardized metrics using Equation (2) in Dawson et al. (2012). The results were plotted as 497 

heatmaps for ETorig and ETebc. 498 

 499 

2.2.4. Sensitivity to the choice of reference dataset 500 

The statistical metrics (R2, RMSE, PBIAS) and the IPE scores were calculated as explained 501 

above but now using the common reference dataset. This direct comparison approach included 502 

12 fewer sites and about 36% fewer MODIS intervals than when using all data (see Table S1 for 503 

the number of sites and site years by land cover type and climate zone). The sensitivity analysis 504 

was performed for ETorig only. Differences in the ranking of products for each of the 505 

comparisons by land cover type and climate zone were determined by comparing the IPE scores 506 

from both approaches. Changes in ranking were indicated by adding an asterisk to the IPE scores 507 

in the heatmap for ETorig. 508 

 509 

2.2.5. Evaluation of seasonal trends in ET from products 510 

The ability of the products to capture seasonal changes in ET was examined by plotting the 511 

average monthly ET for each product together with the average monthly ETorig and ETebc. This 512 

was again done for each land cover type and climate zone in Table 3. To account for the different 513 

timing of the rainy seasons, separate plots were made for sites located in the northern and 514 

southern hemispheres. 515 

 516 

2.3. Vegetation match index (VMI) and open water fraction (OWF) 517 
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The effect of a mismatch between the vegetation at the flux tower site and that detected in the 518 

model pixel on the product evaluation results was examined by calculating a vegetation match 519 

index (VMI). The models underlying the investigated ET products differ in the level of detail 520 

with which they distinguish between different vegetation types. Both MOD16 and ALEXI assign 521 

land cover-specific parameters to a wide range of cover types, while GLEAM only considers two 522 

vegetation categories (i.e., tall and short vegetation). However, also for MOD16 and ALEXI the 523 

largest differences between the land cover-specific parameters occur between tall and short (or 524 

forest and non-forest) vegetation types (Anderson et al., 2007; Mu et al., 2011). Therefore, for all 525 

three products, VMI was calculated based on these two vegetation categories. 526 

The datasets used to calculate the VMIs are described in Section 2.1.5. As explained in Section 527 

1, a mismatch in vegetation can be caused by scale differences or inaccuracies in the vegetation 528 

input data. To account for the latter, vegetation data were selected that were as similar as 529 

possible to those used to generate the products (Sections 2.1.1–2.1.3). For MOD16 and ALEXI, 530 

MCD12Q1 Land Cover Type 2 data were used (Subsets 1 and 3, respectively). The data from 531 

Subsets 1 and 3 were aggregated into forest and non-forest categories. For sites with a forest land 532 

cover (EBF, DBF, ENF; Table 2), VMIMOD16 or VMIALEXI was calculated as the proportion of 533 

forest vegetation present in the 1-km MOD16 or 5-km ALEXI pixel. For sites with a non-forest 534 

land cover (SAV, GRA), the VMIs were calculated as the proportion of non-forest vegetation. 535 

For GLEAM, MOD44B vegetation cover data were used (Subset 2). These data were assumed to 536 

be similar to those of the VCF5KYR product (used as input to GLEAM v3.3a; Section 2.1.2). 537 

The VCF5KYR product is based on AVHRR observations calibrated with MODIS data (Hansen 538 

et al., 2018). In each data layer of the MOD44B product, pixels with water are masked out with a 539 

fill value of 200. Hence, VMIGLEAM was calculated as either the average percent tree cover (for 540 

sites with forest vegetation) or the average percent nontree vegetation (for sites with non-forest 541 



24 

vegetation) multiplied by the fraction of land pixels. In addition, the open water fraction (OWF) 542 

was calculated. This index was used to filter out sites for which the pixel contained more than 543 

20% water (Section 2.1.2). 544 

The dependence of product performance on the vegetation-match between pixel and site was 545 

examined by plotting the performance metrics (R2, RMSE, PBIAS) against VMI. Individual site 546 

values for the metrics were bin-averaged into four evenly spaced intervals of 0.25 VMI units 547 

wide in the case of GLEAM and ALEXI or for each of the five discrete VMI values in the case 548 

of MOD16. For each metric-VMI combination, the linear regression line was calculated. In 549 

addition to visual inspection of the scatter plots, the p-values of the calculated regression slopes 550 

were used to evaluate whether there was a relationship between VMI and product performance. 551 

For this analysis, performance statistics obtained for ETorig were used. 552 

 553 

2.4. Latitudinal comparison of product performance 554 

To investigate latitudinal dependence of the performance of the ET products examined here, a 555 

literature search was conducted to find studies that evaluated these products. To allow for direct 556 

comparison, only studies that evaluated the products with eddy covariance-based ET were 557 

considered. Furthermore, a study needed to report at least one of the three performance metrics 558 

used in this study (R2, RMSE, PBIAS) or provide the data from which these metrics could be 559 

calculated. The performance statistics depend on the averaging time used. Hence, ideally, only 560 

studies using the same time average as used here (8-day) should be considered. This would, 561 

however, drastically reduce the number of evaluation results available. Therefore, studies using 562 

daily or monthly time averages were also included in the initial search. 563 

In the end, a total of 15 studies were found (Table S4). As will be shown below, the evaluation 564 

results were different for ETorig and ETebc. Of the 15 studies found in the literature, 13 used ETorig 565 
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and only two used ETebc. No studies were found that used both. For the final analysis, only 566 

studies using ETorig were considered. The study of Miralles et al. (2011) was also excluded 567 

because: i) GLEAM ET was calculated using in situ measured Rn; ii) comparisons were made 568 

using modelled ET for the vegetation type (i.e., tall or short vegetation) matching that at the 569 

tower site; and iii) days with rainfall were excluded. Likewise, the study of Mu et al. (2011) was 570 

excluded because their evaluation results are in fact calibration results. This yielded a total of 12 571 

studies, including the current one. Most studies used MOD16 C5 because MOD16 C6 was only 572 

recently released. Therefore, the results obtained here for C5 were used. To account for 573 

latitudinal differences in ET, RMSE was normalized by mean ETorig (NRMSE). Not all studies 574 

reported ETorig (Table S4). The studies evaluated product performance at a minimum of two eddy 575 

covariance sites to a maximum of 119 sites. Most studies reported evaluation results for 576 

individual sites but some reported averages for land cover classes (e.g., Velpuri et al., 2013; 577 

Reitz et al., 2017). The latter were treated as if they were results for individual sites. Performance 578 

results were grouped into results for forest and non-forest vegetation; there were not enough 579 

performance data available to create more specific subgroups. The results were further grouped 580 

into three latitudinal bands: southern low latitudes (30° S–0°); northern low latitudes (0°–30° N); 581 

and northern middle latitudes (30° N–60° N). For latitudes outside these regions, there were not 582 

enough data available (Table S4). Table 4 summarizes the number of evaluation results (NER) 583 

available, broken down into results for R2, NRMSE, and PBIAS, and grouped by latitudinal 584 

zone, product, and vegetation category. Averages of each performance metric for each product-585 

vegetation category combination were plotted as a function of latitude. 586 

 587 

<Table 4> 588 

 589 
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3. Results 590 

3.1. Energy balance closure of eddy covariance data 591 

Table 2 shows the daytime energy balance ratio (EBR) for each of the 40 individual sites. The 592 

average daytime EBR for the 40 sites was 0.83, with a standard deviation (SD) of 0.10, and with 593 

values ranging from 0.63 to 1.03. Figures 2 and 3 show scatter plots between the sum of the 594 

daytime turbulent heat fluxes and available energy grouped by land cover type and climate zone, 595 

respectively. The daytime EBR values calculated from the pooled data were similar across land 596 

cover types (ranging from 0.79 to 0.87) and climate zones (ranging from 0.77 to 0.85). The 597 

slopes and intercepts of the regression lines ranged from 0.67 to 0.80 and −0.01 to 0.67 mm 598 

day−1, respectively, across land cover types and from 0.72 to 0.81 and 0.00 to 0.69 mm day−1, 599 

respectively, across climate zones. The coefficient of determination (R2) ranged from 0.64 and 600 

0.82 across land cover types and from 0.59 and 0.82 across climate zones. 601 

 602 

<Figure 2> 603 

 604 

<Figure 3> 605 

 606 

3.2. Evaluation of ET products by land cover type 607 

Figures 4 and S1 show scatter plots comparing eddy covariance-based and remote sensing-based 608 

ET by land cover type for each of the evaluated products for ETorig and ETebc, respectively. First, 609 

the results for ETorig will be examined. Although the scatter plots and the regression results for 610 

MOD16 C5 and MOD16 C6 show some differences, these were generally smaller than the 611 

differences with the other products (see also below). Hence, from now on the two collections 612 

will be referred to as MOD16. When necessary, a distinction will be made between the two. 613 
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Overall, GLEAM ET showed the best agreement with ETorig. This follows from the results of the 614 

regression analysis (i.e., slope closer to 1, intercept closer to 0, higher R2) and can be observed 615 

visually as a narrower distribution of data points around the 1:1 line. For DBF and SAV, the 616 

correlations between GLEAM ET and ETorig were strong (R2 of 0.81 and 0.73, respectively). A 617 

weak correlation was observed for EBF (R2 = 0.32). The agreement with ETorig was generally 618 

poorer for MOD16 and ALEXI. Neither of these products consistently outperformed the other. 619 

The scatter plots show a clear overestimation of ETorig by MOD16 for ENF and a clear 620 

underestimation for SAV. Although both products showed weaker correlations with ETorig than 621 

GLEAM, this was most pronounced for ALEXI. Also MOD16 and ALEXI had the strongest 622 

correlations for DBF and SAV and the weakest for EBF. When evaluating the products with 623 

ETebc, the regression slopes and intercepts increased, while changes in R2 were generally small 624 

(Figure S1). 625 

 626 

<Figure 4> 627 

 628 

Figure 5 shows the mean R2, RMSE, and PBIAS by land cover type for each of the evaluated 629 

products for ETorig and ETebc. Again, the results for ETorig will be examined first. As already 630 

observed in Figure 4, the mean performance statistics show that the differences between MOD16 631 

C5 and MOD16 C6 are generally smaller than the differences with the other products. One 632 

exception is ENF; this group, however, included a relatively small number of sites and site years 633 

(Table 3), which may have affected the comparisons. Figure 5 confirms the superior performance 634 

of GLEAM. Overall, GLEAM had the strongest correlations, the lowest RMSEs, and the 635 

smallest PBIAS values. In agreement with the graphical analysis, neither MOD16 nor ALEXI 636 

was second best over all land covers. Both GLEAM and MOD16 tended to overestimate ETorig 637 
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for forest vegetation and underestimate ETorig for non-forest vegetation; however, biases were 638 

smaller for GLEAM. ALEXI tended to overestimate ETorig for all land cover types. The variation 639 

in PBIAS across land cover types was smaller for GLEAM and ALEXI than for MOD16. As 640 

seen in the scatter plots, ALEXI had the weakest correlations with ETorig. All ET products had 641 

the strongest correlations for DBF and SAV and the weakest for EBF. 642 

 643 

<Figure 5> 644 

 645 

As expected, PBIAS shifted to more negative values when the products were evaluated with 646 

ETebc (Figure 5). Depending on whether PBIAS decreased or increased, the corresponding 647 

RMSE became smaller or larger (although not for all products; see below). The use of ETebc 648 

generally had little effect on the correlations (as also seen in the scatter plots). For GLEAM, 649 

PBIAS values were negative for all land cover types when using ETebc and were generally 650 

greater in absolute terms than when using ETorig. As a result, the RMSEs were larger (and closer 651 

to those of the other products) when using ETebc than when using ETorig. For MOD16, PBIAS 652 

values were also negative for most land cover types when using ETebc. The corresponding 653 

RMSEs were either somewhat larger (e.g., SAV, GRA) or smaller (e.g., EBF, ENF) than when 654 

using ETorig. In the case of ALEXI, PBIAS values decreased for all land cover types except SAV. 655 

However, only in the case of EBF this was accompanied by a decrease in RMSE. For ENF, DBF 656 

and GRA, the RMSE actually increased. A partial explanation for this is the tendency of ALEXI 657 

to overestimate low ETebc and underestimate high ETebc (DBF, GRA; Figure S1). 658 

Figure 6 shows the IPE scores for the different ET products by land cover type as obtained using 659 

ETorig or ETebc for evaluation. The IPE scores confirm that GLEAM ET best matched ETorig 660 

across all land cover types. The IPE scores also support the earlier observations that: i) the 661 
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differences in performance between the two MOD16 collections were generally smaller than the 662 

differences with the other products; and ii) neither MOD16 nor ALEXI consistently 663 

outperformed the other. Figure 6 shows that the IPE values of the products converged when 664 

using ETebc for evaluation. This largely reflects the changes in PBIAS and RMSE mentioned 665 

above. When using ETebc there is no product that stands out in terms of both small PBIAS and 666 

high R2 across all land cover types. 667 

 668 

<Figure 6> 669 

 670 

Figure 7 compares the seasonal trends in ET from the products with those from the observations 671 

by land cover type by hemisphere. Note that these curves were calculated using the common 672 

reference dataset. Only curves calculated with data from at least two sites are shown. Clear 673 

differences in the seasonality and timing of rainfall can be observed. In both hemispheres, ET of 674 

EBF was characterized by weak seasonality, with constant high values throughout the year. Yet, 675 

MOD16 C5 seemed to capture the small variations in ET quite well. This was also the case for 676 

GLEAM, except during the wet season in the southern hemisphere when it showed a strong 677 

positive bias. A closer look at the data showed that this involved the two Brazilian rainforests 678 

(Table 2; Figure 1). Similarly, ALEXI had a strong positive bias at the end of the dry season in 679 

the southern hemisphere. This could be traced mainly to EBF in northeastern Australia (Table 2; 680 

Figure 1). For ENF, all products seemed to represent the observed seasonal trend in ET fairly 681 

well. For DBF, GLEAM closely followed the observed seasonal trend in ET. MOD16 had a 682 

negative bias during the dry season. Conversely, ALEXI had a positive bias during the transition 683 

from the wet to dry season. For SAV and GRA, both GLEAM and MOD16 had a strong negative 684 

bias during the dry season. Conversely, ALEXI seemed to have a positive bias during the dry 685 
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period in these cover types. 686 

 687 

<Figure 7> 688 

 689 

3.3. Evaluation of ET products by climate zone 690 

The performance of the ET products was also examined across four main climate zones (Table 691 

3). For each climate zone, an average evaporative fraction (EF) was calculated from the site-692 

specific values in Table 2, yielding (ranked from wet to dry): 0.73 ± 0.04 (SD) for Af, Am 693 

(tropical wet); 0.60 ± 0.10 for C (mild temperate); 0.50 ± 0.11 for Aw (tropical savanna); and 694 

0.35 ± 0.11 for B (dry). The tropical wet climate zone included mainly EBF sites (seven in total; 695 

Table 3). The mild temperate climate zone included all ENF sites and for the rest mainly EBF 696 

sites. The savanna and dry climate zones included mostly SAV, DBF, and GRA sites. The results 697 

of this analysis were presented in the same way as in the previous section, i.e., scatter plots 698 

(Figures 8 and S2), average performance statistics (R2, RMSE, PBIAS; Figure 9), heatmaps of 699 

IPE scores (Figure 6), and average seasonal trends in ET (Figure 10). 700 

The comparisons by climate zone confirmed many of the findings in the previous section. Again, 701 

the differences in performance between the two MOD16 ET collections were usually smaller 702 

than the differences with the other products (Figures 8 and 9). Furthermore, the performance and 703 

ranking of the products depended on whether ETorig or ETebc was used for evaluation. When 704 

using ETorig, GLEAM again showed the strongest correlations and best agreement (i.e., closeness 705 

to observations) (Figures 8 and 9). As a result, GLEAM had the smallest RMSEs and best IPE 706 

scores across all climate zones (Figures 9 and 6, respectively). Again, neither MOD16 nor 707 

ALEXI performed consistently better than the other. That is, MOD16 showed better agreement 708 

with ETorig for the Aw climate zone, whereas ALEXI gave better results for the B and C climate 709 
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zones (as summarized by the IPE scores in Figure 6). Finally, there was no clear ranking among 710 

the products when ETebc was used for evaluation (Figure 6). This mainly reflected the 711 

underestimation of GLEAM ET with respect to ETebc, leading to higher (i.e., more negative) 712 

PBIAS values and larger RMSEs than when using ETorig (Figure 9). For MOD16, PBIAS and 713 

RMSE values both decreased (e.g., C climate zone) and increased (Aw climate zone). For 714 

ALEXI, PBIAS decreased to values close to zero (C, Aw, B); however, instead of decreasing, the 715 

corresponding RMSEs increased. The use of ETebc generally had little effect on the correlations 716 

(Figures 8, S2, and 9). 717 

 718 

<Figure 8> 719 

 720 

<Figure 9> 721 

 722 

All products had the weakest correlations in the wet tropical climate zone and the strongest in the 723 

tropical savanna and dry climate zones (Figure 9). This is consistent with the results in Section 724 

3.2 (weakest correlations for EBF and strongest correlations for SAV and DBF). Overall, ALEXI 725 

had again the weakest correlations. The biases of MOD16 ET varied markedly across climate 726 

zones (Figure 9). When compared with ETorig, MOD16 tended to overestimate ET in the wet 727 

tropical and mild temperate climate zones and underestimate ET in the dry climate zone. This 728 

result is consistent with the positive biases observed in Figure 5 for forest vegetation (dominating 729 

the wet tropical and mild temperate climate zones) and the negative biases for non-forest 730 

vegetation (dominating the dry climate zone). Biases in GLEAM showed the same tendency but 731 

were generally much smaller in size. For ALEXI, the bias with respect to ETorig was practically 732 

zero in the wet tropical climate zone but positive in the other climate zones. 733 
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The seasonal trend analysis (Figure 10) revealed the same patterns as found earlier in Section 734 

3.2, again reflecting the close correspondence between climate and vegetation. For the tropical 735 

wet climate zone, MOD16 C5 ET closely followed the observed seasonal changes in ET. This 736 

was also the case for GLEAM, except for the positive bias during the wet season in the southern 737 

hemisphere (traced back mainly to the Brazilian rainforests; Section 3.2). The positive bias of 738 

ALEXI ET at the end of the dry season in the southern hemisphere can also be observed again 739 

(traced back mainly to EBF in northeastern Australia; Section 3.2). In addition, ALEXI ET 740 

showed large, seemingly erratic, variations in the northern hemisphere. For the mild temperate 741 

climate zone, all products represented the observed seasonal trend in ET fairly well. For the 742 

tropical savanna climate, both MOD16 and GLEAM had a strong negative bias during the dry 743 

season, which was also observed in the plots for GRA and SAV in Figure 7. The positive bias for 744 

ALEXI during the dry period can also be observed again. For the dry climate zone, GLEAM ET 745 

closely followed the observed seasonal trend in ET. ALEXI had again a positive bias during the 746 

dry period. MOD16 had a strong negative bias during the wet season in the southern hemisphere. 747 

 748 

<Figure 10> 749 

 750 

3.4. Sensitivity to the choice of reference dataset 751 

The IPE scores based on the common reference dataset (Figure S3) show similar results to those 752 

obtained using all data (Figure 6, ETorig). For both the comparisons by land cover type and 753 

climate zone, GLEAM ET generally showed the best agreement with ETorig. Furthermore, the 754 

differences among the two MOD16 collections and ALEXI were generally too small to identify a 755 

second best performing product. Differences in ranking results between the two approaches were 756 

observed only for MOD16 and ALEXI (Figure 6). 757 
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 758 

3.5. Product performance versus VMI 759 

Figure 11 shows binned scatter plots between the performance metrics (R2, RMSE, PBIAS) and 760 

the vegetation match index for the different products. In addition, the regression lines and the p-761 

values indicating the statistical significance of the regression slopes are shown. The VMIs for 762 

each individual site are given in Table S2. The average VMI was 0.77 ± 0.41 for MOD16, 0.71 ± 763 

0.40 for ALEXI, and 0.51 ± 0.23 for GLEAM. These results indicate a decreasing vegetation-764 

match between pixel and site with increasing pixel size, although the VMIs of GLEAM and the 765 

other products cannot be directly compared as they are based on different data. For none of the 766 

products there was an improvement in performance (i.e., increasing R2 or decreasing RMSE or 767 

PBIAS) with increasing VMI (Figure 11). Moreover, for none of the regressions the slope was 768 

statistically significant. 769 

 770 

<Figure 11> 771 

 772 

3.6. Latitudinal comparison of product performance 773 

Figure 12 shows zonal averages (southern and northern low latitudes and northern middle 774 

latitudes) of the performance metrics grouped by forest and non-forest vegetation for MOD16 775 

and GLEAM and ALEXI. The averages were calculated using evaluation results from this study 776 

and from the literature (Tables S2 and S4). For ALEXI, no data on NRMSE and PBIAS were 777 

available for the northern middle latitudes (Table 4). Figure 12 should be interpreted with 778 

caution because the number of evaluation results (NER) available varied considerably among 779 

latitudinal zones, products, and vegetation categories (Table 4). In the case of forest vegetation, 780 

correlations (all products) seem to be weaker while PBIAS and NRMSE scores (MOD16 and 781 
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GLEAM) seem to be better at low latitudes than at northern middle latitudes. Both MOD16 and 782 

GLEAM seem to overestimate ETorig in all latitudinal zones. In contrast, in the case of non-forest 783 

vegetation the performance metrics show no clear variation with latitude. Moreover, both 784 

MOD16 and GLEAM seem to underestimate ETorig in all latitudinal zones. 785 

 786 

<Figure 12> 787 

 788 

4. Discussion 789 

4.1. The effect of the energy balance closure problem on product evaluation results 790 

The average energy balance ratio for the 40 sites in this study (0.83) is nearly identical to that 791 

reported by Stoy et al. (2013) for 173, mainly mid-latitude, FLUXNET sites (0.84). When 792 

grouped by land cover type or climate zone, the ranges of EBR values were fairly small (0.79–793 

0.87 or 0.77–0.85, respectively). A greater range was observed for the 173 FLUXNET sites 794 

grouped by land cover type (0.70–0.94; Table 2 in Stoy et al., 2013). 795 

As mentioned in Section 1, the reasons for the energy balance closure problem and the extent to 796 

which it affects the ET fluxes are not yet clear. Despite being long recognized, the effect of the 797 

energy balance closure problem on the evaluation results of remote sensing-based ET products 798 

has rarely been examined (Michel et al., 2016; Melton et al., 2021). This study found that the 799 

performance and ranking of the evaluated products depended on whether the unadjusted or the 800 

energy balance closure corrected ET fluxes were used. When using ETorig, GLEAM showed the 801 

best overall performance with the strongest correlations and smallest biases. However, when 802 

using ETebc, none of the products was superior to the others. Not surprisingly, the use of ETebc 803 

instead of ETorig affected the product biases more than the correlations. Overall, MOD16 and 804 

GLEAM underestimated ET compared to ETebc. For ALEXI, PBIAS decreased when using ETebc 805 
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instead of ETorig, but the corresponding RMSEs tended to increase rather than decrease. For most 806 

SEB approaches used in the OpenET project, cumulative totals of ET over the growing season or 807 

water year also agreed better with ETebc than with ETorig (Melton et al., 2021). 808 

Both MOD16 and GLEAM include parameters that were calibrated using field observations of 809 

ET. MOD16 was calibrated using ET obtained from eddy covariance-based estimates of water 810 

use efficiency (WUE) and MODIS-based gross primary production (GPP), with WUE being 811 

calculated as the ratio between GPP and ET fluxes not corrected for energy balance closure (Mu 812 

et al., 2011). The use of ETorig could possibly explain the negative bias of MOD16 with respect 813 

to ETebc (Michel et al., 2016). However, the GPP fluxes may have been underestimated for the 814 

same reason as ETorig (Foken et al., 2011). In that case, the estimated WUE would not (or only 815 

partly) be affected. In GLEAM, fixed values are used for the Priestley-Taylor coefficient for 816 

short (α = 1.26) and tall (α = 0.97) vegetation (Martens et al., 2017). These values are averages 817 

of α values published in the literature, which in turn were obtained by comparing field 818 

measurements of ET under well-watered conditions with potential ET. Some of the α values 819 

were derived with ETorig, but others were obtained using ET estimates based on other methods, 820 

such as the weighing lysimeter and bowen ratio energy balance techniques (see references cited 821 

in Martens et al., 2017). Hence, also the negative bias error of GLEAM with respect to ETebc 822 

cannot be directly linked to calibration with ETorig. ALEXI ET had smaller PBIAS when using 823 

ETebc than when using ETorig. In contrast to the other models, ALEXI is not calibrated with field 824 

data. However, no conclusions can be drawn from this observation without a better 825 

understanding of the effect of the energy balance closure problem on ETorig. In addition, the 826 

RMSEs of ALEXI tended to increase rather than decrease when using ETebc. 827 

The literature review showed that most studies evaluated the products using ETorig (Table S4). It 828 

is recommended to use both ETorig and ETebc as long as the effect of the energy balance closure 829 
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problem on ETorig is not clear.  The remainder of the discussion will focus on the results obtained 830 

with ETorig to facilitate comparisons with the literature. 831 

 832 

4.2. Relative performance of the evaluated products 833 

Similar results were obtained when grouping the data by land cover type or climate zone, 834 

showing the close relationship between the two (see, for example, Cui et al., 2021). Therefore, 835 

the results of these two analyses will be discussed together and interchangeably. As explained in 836 

Section 1, a distinction should be made between product and model evaluation studies. The 837 

former evaluate the published ET products while the latter evaluate the performance of the 838 

underlying models using a common input dataset. Because modeled ET is sensitive to the input 839 

data, the results of the model evaluation studies do not necessarily apply to the final ET products 840 

(see Section 1 for references). 841 

Overall, GLEAM had the best performance across different land cover types and climate zones 842 

in the low latitudes; neither MOD16 nor ALEXI could be identified as the second best 843 

performing product. These results were obtained regardless of whether the comparisons were 844 

made using all data or a common reference dataset. There are very few product evaluation 845 

studies that have compared the performance of the products assessed in this study. Khan et al. 846 

(2018, 2020) compared the performance of GLEAM and MOD16 at nine and five eddy 847 

covariance sites, respectively; in both studies, about one third of sites were located in the low 848 

latitudes and about two thirds in the middle latitudes (see also Table S4). Khan et al. (2018) used 849 

ETorig to evaluate the products, while Khan et al. (2020) used ETebc. Consistent with the results of 850 

this study, Khan et al. (2018) found that GLEAM generally corresponded better with ETorig than 851 

MOD16. Also when using ETebc, Khan et al. (2020) found that GLEAM outperformed MOD16 852 

(as opposed to this study where differences were small when using ETebc). In the absence of 853 
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other comparative studies, the compilation of product evaluation results for the latitudinal 854 

analysis (Figure 12, Table S4) allows for an indirect comparison of product performance. 855 

Focusing only on the results for the northern middle latitudes (to exclude the evaluation data 856 

from this study), the overall better match of GLEAM with ETorig as compared to MOD16 is also 857 

evident from the studies included in this analysis (see Table S4 for references). The stronger 858 

correlations of GLEAM as compared to ALEXI are also noticeable when comparing the R2 859 

values from studies that evaluated these products separately. 860 

An overall better performance of GLEAM as compared to MOD16 was also observed in the 861 

model evaluation studies by McCabe et al. (2016) and Michel et al. (2016). GLEAM also 862 

performed better than the surface energy balance approach evaluated in these studies (i.e., the 863 

SEBS model of Su, 2002). Similarly, Vinukollu et al. (2011a) obtained better performance 864 

results for a Priestley-Taylor approach developed by NASA’s Jet Propulsion Laboratory (PT-865 

JPL; Fisher et al., 2008) than for MOD16 and SEBS. However, all these studies concluded that 866 

no single model was superior in all cases. The same conclusion was reached in a recent model 867 

evaluation study for South America (Melo et al., 2021). Such a conclusion is not supported by 868 

the results of this study as GLEAM performed better than MOD16 and ALEXI in all land cover 869 

types and climate zones. It is not known whether this is a feature of the low latitudes (i.e., the 870 

other studies focused mainly on the middle latitudes), whether it is related to the differences 871 

between product and model evaluation studies discussed earlier, or whether it is a result specific 872 

to the products studied here. 873 

All products had the weakest correlations in the wet tropical climate zone (dominated by EBF) 874 

and the strongest in the tropical savanna and dry climate zones (dominated by DBF and SAV). 875 

For the most part this reflects differences in seasonality (i.e., the greater the variation in ET, the 876 

stronger the correlations; Miralles et al., 2011; Yilmaz et al., 2014) rather than differences related 877 
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to the performance of the products. ALEXI generally had the weakest correlations of all 878 

products. Comparing the R2 values from the studies used for the latitudinal analysis shows values 879 

for ALEXI between those of MOD16 and GLEAM (northern middle latitudes, Figure 12). 880 

Although this is an indirect comparison (because it involves studies that evaluated the products 881 

separately), it suggests that the low correlations observed in this study for ALEXI are not a 882 

general feature of the product. A known challenge for thermal-based approaches is the filtering 883 

of cloud-contaminated data and the resulting gaps between successful retrievals. Failure to detect 884 

cloud-contaminated data can lead to large errors in ALEXI ET estimates (Anderson et al., 2007; 885 

Yilmaz et al., 2014). The uncertainty in gap-filled ALEXI ET can be twice as large as that in ET 886 

generated by the algorithm under clear-sky conditions (Anderson et al., 2007). These cloud-887 

related problems could be responsible for the weak correlations of ALEXI, but that still does not 888 

explain the difference with the northern middle latitudes where the data are also affected by 889 

clouds. A possible approach to solving these problems is to use cloud-tolerant microwave-based 890 

land surface temperature in ALEXI (Holmes et al., 2018). Finally, Holmes et al. (2018) found 891 

that averaging 0.05° ALEXI ET estimates to 0.25° spatial resolution generally improved 892 

correlations with flux tower data. They attributed this to the presence of noise in the MODIS 893 

land surface temperature data that outweighed the benefits of the higher resolution compared to a 894 

0.25° average. However, the overall effect reported in that study is too small to explain the 895 

differences in correlation with the other products observed here. More work is needed to 896 

understand the reasons for the low correlations of ALEXI observed at the low-latitude sites 897 

studied here. 898 

Both MOD16 and GLEAM had a positive bias for forest vegetation and a negative bias for non-899 

forest vegetation. No such land cover type-dependent biases were observed for ALEXI. The 900 

biases of MOD16 and GLEAM are also evident from the evaluation results of other studies 901 
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(northern middle latitudes, Figure 12). Both Kun Zhang et al. (2019) and Brust et al. (2021) 902 

showed that the biases in MOD16 can be significantly reduced when calibrating the algorithm 903 

with more and a greater diversity of sites than used in the original calibration. Brust et al. (2021) 904 

found that the accuracy of MOD16 can also be improved by including the effect of soil moisture 905 

on ET. Although the apparent vegetation type-dependent biases were less pronounced in 906 

GLEAM, more work is needed to understand the causes. In a model evaluation study, Miralles et 907 

al. (2016) found the opposite pattern, i.e., MOD16 and GLEAM underestimated ET (determined 908 

from rainfall and streamflow data) in wet regions (dominated by forest vegetation) and 909 

overestimated ET in dry regions (dominated by non-forest vegetation types). A similar pattern 910 

was observed in the model evaluation study by Michel et al. (2016) (using ETorig as reference 911 

data). In the model evaluation study for South America, GLEAM underestimated ET in both wet 912 

and dry regions (Melo et al., 2021). The biases of MOD16 were small in that study. This shows 913 

again that the results of model evaluation studies do not necessarily apply to the actual ET 914 

products. 915 

None of the products were able to correctly represent the seasonal trend in ET in all land cover 916 

types and climate zones. Detailed analyses such as this one can help identify the causes of the 917 

biases discussed above. For example, the negative biases of MOD16 and GLEAM in GRA and 918 

SAV seemed to occur mainly during the dry season. This may indicate an overestimation of the 919 

effect of water stress on ET. In contrast, ALEXI seemed to overestimate ET during the dry 920 

season. In some cases, the differences between the product-based and the observed trends could 921 

be traced to individual sites. The overestimation of ET of Brazilian rainforest by GLEAM during 922 

the wet season was also observed by Chen et al. (2022). These authors suggested the lack of an 923 

atmospheric moisture control on transpiration as a possible cause of this overestimation. It is 924 

likely that the erratic variation observed in the ALEXI data for the tropical wet sites was caused 925 
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by the cloud-related problems discussed above. However, to correctly identify possible seasonal 926 

biases, a more comprehensive analysis that includes more sites and site years is needed. 927 

The results showed that the differences between the MOD16 C5 and C6 products were generally 928 

smaller than the differences with the other products. Differences between C5 and C6 were to be 929 

expected because of differences in input data and spatial resolutions (Mu et al., 2013; Running et 930 

al., 2019). The differences persisted when using the common reference dataset (Figure S3). 931 

Future work can focus on quantifying the level of consistency between these two collections. 932 

 933 

4.3. Latitudinal comparison of product performance 934 

The literature review revealed that remote sensing-based ET products have been evaluated 935 

primarily in the northern middle latitudes. The bias is the result of geographic differences in the 936 

availability of eddy covariance data due to uneven distribution of flux towers (see, for example, 937 

Schimel et al., 2015) and regional differences in data sharing (Villareal and Vargas, 2021). With 938 

the results of this study, the availability of evaluation data for the low latitudes was significantly 939 

improved. This allowed a comparison of product performance across latitudes. The results of this 940 

analysis should be interpreted with caution, however, because the number of evaluation results 941 

available varied considerably among latitudes, products, and vegetation categories (Table 4). 942 

Smaller normalized RMSEs and smaller PBIAS values suggest better performance of MOD16 943 

and GLEAM for low-latitude forests than for northern mid-latitude forests. The weaker 944 

correlations at low latitudes are thought to be the result of differences in seasonality rather than 945 

differences in performance (see below). The similarity between the latitudinal trends in NRMSE 946 

and PBIAS of MOD16 and GLEAM is striking considering the different approaches, forcing 947 

data, and resolutions of the underlying models. More work is needed to understand the causes of 948 

the apparent latitudinal dependence of these products. In the case of non-forest vegetation, none 949 
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of the performance metrics showed a clear trend with latitude. Noteworthy is that both MOD16 950 

and GLEAM seem to overestimate ET of forest vegetation and underestimate ET of non-forest 951 

vegetation in all latitudinal bands (see also discussion above). 952 

A limitation of the current analysis is that regional differences were not detected because of the 953 

broad zonal bands used. For example, NRMSEs were considerably larger for seasonally dry DBF 954 

(0.36 and 0.84 for GLEAM and MOD16, respectively; data not shown) than for wet tropical EBF 955 

(0.27 and 0.46, respectively). Similarly, Vinukollu et al. (2011b) and Miralles et al. (2016) found 956 

higher relative uncertainties for the subtropics than for the tropics. In these studies, relative 957 

uncertainty was estimated from the spread between different model outputs. 958 

The weaker correlations for low-latitude forests are most likely explained by the small seasonal 959 

variation in ET of EBF. The seasonal variation in ET of temperate forests is much greater due to 960 

stronger seasonal variations in radiation and temperature (Baldocchi and Ryu, 2011). Again, 961 

however, differences among forests in the low latitudes were large. For example, the R2 values 962 

for DBF were about twice as high as those for EBF (Figure 5). There were no clear latitudinal 963 

differences in R2 for non-forest vegetation. At low latitudes, non-forest vegetation occurs mainly 964 

in regions with high seasonality of rainfall (e.g., savanna regions) and thus large variations in 965 

ET. Likewise, temperate non-forest vegetation types such as grass and crops show large 966 

variations in ET due to seasonal variation in radiation and temperature (e.g., Monteith and Moss, 967 

1977). 968 

 969 

4.4. Product performance versus vegetation-match between pixel and site 970 

The linear regression analyses across all 40 sites showed that there was no relationship between 971 

the product evaluation results and the vegetation-match between pixel and site. Indirect evidence 972 

for this was also provided by the finding that the product with the largest pixel size and the 973 
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lowest average VMI (GLEAM) performed best overall. Similar results were obtained by 974 

Hobeichi et al. (2018) and Jiménez et al. (2018). Hobeichi et al. (2018) investigated the effect of 975 

a vegetation mismatch between pixel and site on the performance of a merged ET product. For 976 

this they divided the eddy covariance sites in two groups, those for which the IGBP land cover 977 

type was the same as that of the pixel and those for which it was not. They used MODIS land 978 

cover data at the same spatial resolution (0.5°) as the merged ET product. No clear differences in 979 

the performance of the product were observed between the two groups of sites. Jiménez et al. 980 

(2018) investigated the effect of a vegetation mismatch between pixel and site on the 981 

performance of the GLEAM, PT-JPL, and MOD16 algorithms. The models were run with a 982 

common input dataset at a spatial resolution of 0.25°. For all three models a single vegetation 983 

match index was used (called homogeneity index). This index was calculated using MODIS 984 

IGBP land cover data (MCD12Q1) and MODIS vegetation cover data (MOD44B). Also in their 985 

study, no significant relationships were found between model performance and the homogeneity 986 

index. A challenge is to correctly define the vegetation match index (Hobeichi et al., 2018). In 987 

this study, only two vegetation categories were considered (forest and non-forest vegetation), as 988 

the land cover type-dependent parameters in MOD16 and ALEXI can be broadly grouped into 989 

these two categories (and GLEAM only distinguishes between these two categories). In the other 990 

studies, a match was only obtained if the specific IGBP land cover type corresponded. This may 991 

be too stringent if the parameters are similar among certain cover types. Understanding the 992 

sensitivity of the model outputs to the land cover type-specific parametrizations can help 993 

determine which of these approaches is more adequate. Nevertheless, the results obtained so far 994 

suggest that errors other than those caused by a vegetation mismatch between pixel and site are 995 

more important (Jiménez et al., 2018). 996 

 997 
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5. Conclusions 998 

There is a geographical bias in the availability of evaluation data for remote sensing-based ET 999 

products in favor of the northern middle latitudes. To address this bias, three products (GLEAM, 1000 

MOD16, ALEXI) were evaluated at 40 eddy covariance sites in the low latitudes. From MOD16, 1001 

the discontinued collection 5 (C5) and the latest collection (C6) were evaluated. Two potential 1002 

problems need to be considered when using eddy covariance observations of ET as reference 1003 

data. First, eddy covariance data suffer from uncertainties related to the energy balance closure 1004 

problem. Second, scale differences and classification errors can lead to a mismatch in vegetation 1005 

between pixel and site (which in turn can complicate the comparisons). Because of the 1006 

geographical bias in evaluation studies, it is unknown whether the products perform equally well 1007 

at all latitudes. 1008 

The differences between MOD16 C5 and C6 were generally smaller than the differences with the 1009 

other products. More work is needed, however, to determine the degree of consistency between 1010 

the two collections. 1011 

Performance and ranking of the evaluated products depended on whether or not the eddy 1012 

covariance ET data were corrected for the lack of energy balance closure. When using the 1013 

unadjusted fluxes (ETorig), GLEAM showed the best overall performance across the studied land 1014 

cover types and climate zones, with the strongest correlations and smallest biases. Neither 1015 

MOD16 nor ALEXI consistently outperformed the other. When using the corrected fluxes 1016 

(ETebc), there was no product that stood out in terms of both low bias and strong correlations. 1017 

The uncertainty associated with the energy balance closure problem affected the product biases 1018 

more than the correlations. Most product evaluation studies use ETorig as reference data. Use of 1019 

both ETorig and ETebc is recommended until a better understanding of the effect of the energy 1020 

balance closure problem on ET is obtained. 1021 
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Few studies have compared the performance of the products examined here. However, a 1022 

comparison of results from studies that evaluated these products separately seems to confirm that 1023 

GLEAM generally outperforms the other products (when using ETorig as reference data). 1024 

Latitudinal dependence of product performance was examined using the results of this study and 1025 

those published in the literature. The comparison suggests that MOD16 and GLEAM perform 1026 

better for low-latitude forests than for northern mid-latitude forests. However, regional 1027 

differences, such as between the tropics and subtropics, can be large and were not detected 1028 

because of the broad zonal bands used in this analysis. In the case of non-forest vegetation, the 1029 

products show no clear latitudinal differences in performance. 1030 

No relationship was found between the product evaluation results and the degree of match 1031 

between the vegetation at the flux tower site and that detected in the model pixel. More work is 1032 

needed to understand the effect of a vegetation mismatch between pixel and site on product 1033 

performance. 1034 
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1 

Fig. 1. Map showing the geographic location of the 40 eddy covariance sites used in the evaluation, 1 

zoomed in for Mexico and northern Australia. The numbers identify the sites in Table 2. 2 

 3 

Fig. 2. Scatter plots of daytime sums of sensible heat flux (H) and evapotranspiration (ETorig) versus 4 

available energy (Rn−G−S; all terms in units of millimetres) for different land cover types for the eddy 5 

covariance sites used in the evaluation. Shown are the regression slope (value before the slash), the 6 

intercept (value after the slash), the coefficient of determination (R2), the energy balance ratio (EBR), 7 

the linear regression line (solid red line), and the 1:1 line (dashed line). 8 

 9 

Fig. 3. Scatter plots of daytime sums of sensible heat flux (H) and evapotranspiration (ETorig) versus 10 

available energy (Rn−G−S; all terms in units of millimetres) for different climate zones for the eddy 11 

covariance sites used in the evaluation. Shown are the regression slope (value before the slash), the 12 

intercept (value after the slash), the coefficient of determination (R2), the energy balance ratio (EBR), 13 

the linear regression line (solid red line), and the 1:1 line (dashed line). 14 

 15 

Fig. 4. Unadjusted eddy covariance ET observations (ETorig) versus remote sensing-based ET for each 16 

land cover type for each of the evaluated products. Shown are the regression slope (value before the 17 

slash), the intercept (value after the slash), the coefficient of determination (R2), the linear regression 18 

line (solid red line), and the 1:1 line (dashed line). 19 

 20 

Fig. 5. Mean performance statistics (R2, RMSE, PBIAS) by land cover type for each of the evaluated 21 

products for the unadjusted eddy covariance ET observations (ETorig) and those corrected for the lack 22 

of energy balance closure (ETebc). 23 

 24 



2 

Fig. 6. Heat maps of the Ideal Point Error (IPE) for each of the evaluated products for each of the 25 

comparisons by land cover type and climate zone for the unadjusted eddy covariance ET observations 26 

(ETorig) and those corrected for the lack of energy balance closure (ETebc). The IPE values are shown on 27 

the plot. The lower the IPE, the better the relative performance of the product. Blue/red colors indicate 28 

best/worst IPE scores. The asterisks in the heatmap for ETorig indicate where the ranking of a product 29 

differed from that based on the IPE scores for the common reference dataset (Figure S3; Section 2.2.4). 30 

 31 

Fig. 7. Average monthly ET for the four ET products together with the average monthly unadjusted ET 32 

observations (ETorig) and those corrected for the lack of energy balance closure (ETebc) for different 33 

land cover types in the northern and southern hemispheres. Curves were calculated using the common 34 

reference dataset. Only land cover-hemisphere combinations for which data from at least two sites were 35 

available are shown. The number of sites in each land cover-hemisphere combination is given between 36 

parentheses. The error band represents the standard deviation of the mean monthly ETorig at the 37 

different sites. 38 

 39 

Fig. 8. Unadjusted eddy covariance ET observations (ETorig) versus remote sensing-based ET for each 40 

climate zone for each of the evaluated products. Shown are the regression slope (value before the 41 

slash), the intercept (value after the slash), the coefficient of determination (R2), the linear regression 42 

line (solid red line), and the 1:1 line (dashed line). 43 

 44 

Fig. 9. Mean performance statistics (R2, RMSE, PBIAS) by climate zone for each of the evaluated 45 

products for the unadjusted eddy covariance ET observations (ETorig) and those corrected for the lack 46 

of energy balance closure (ETebc). 47 

 48 



3 

Fig. 10. Average monthly ET for the four ET products together with the average monthly unadjusted 49 

ET observations (ETorig) and those corrected for the lack of energy balance closure (ETebc) for different 50 

climate zones in the northern and southern hemispheres. Curves were calculated using the common 51 

reference dataset. Only climate zone-hemisphere combinations for which data from at least two sites 52 

were available are shown. The number of sites in each climate zone-hemisphere combination is given 53 

between parentheses. The error band represents the standard deviation of the mean monthly ETorig at 54 

the different sites. 55 

 56 

Fig. 11. Binned scatter plots between the performance metrics (R2, RMSE, PBIAS) and the vegetation 57 

match index for each of the evaluated products. Shown are the regression lines and the p-values 58 

indicating the statistical significance of the regression slopes. 59 

 60 

Fig. 12. Zonal averages (southern and northern low latitudes and northern middle latitudes) of the 61 

performance metrics grouped by forest and non-forest vegetation for MOD16 and GLEAM (R2, 62 

NRMSE, PBIAS) and ALEXI (only R2). Averages were calculated using evaluation results from this 63 

study and from the literature. See Section 2.4 for further details. 64 

 65 

 66 
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Table 1. General characteristics of the remote sensing-based ET products evaluated in this study. 1 

 GLEAM v3.3a MOD16 C5 MOD16 C6 ALEXI 
Spatial 
resolution 

0.25° 1 km 500 m 0.05° 

Temporal 
resolution 

daily 8-day 8-day daily 

Temporal 
coverage 

1980–2018 2000–2014 2000–present 2002–2019 

Principle Priestley-Taylor Penman-Monteith Penman-Monteith Two-source 
energy balance 

Public 
access 

yes yes yes no 

References Miralles et al. 
(2011); Martens 
et al. (2017) 

Mu et al. (2011, 
2013) 

Mu et al. (2011); 
Running et al. 
(2019) 

Anderson et al. 
(1997, 2007, 
2011); Hain and 
Anderson (2007) 
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Table 3. Number of eddy covariance sites and site years (between parentheses) available in the 7 

complete dataset for each product by land cover type and climate zone. Note that the number of 8 

site years corresponds to the length of the flux tower records. Actual data availability was lower 9 

due to, for example, missing or erroneous data. 10 

  GLEAM MOD16 C5 MOD16 C6 ALEXI 

Land cover type EBF 9 (49) 11 (47) 12 (67) 8 (47) 

 ENF 4 (7) 3 (6) 4 (7) 4 (7) 

 DBF 6 (23) 5 (18) 8 (27) 8 (27) 

 SAV 7 (33) 7 (33) 7 (33) 7 (33) 

 GRA 7 (28) 8 (29) 8 (31) 8 (31) 

      

Climate zone Af, Am 8 (42) 9 (46) 9 (55) 7 (39) 

 Aw 8 (37) 10 (43) 12 (46) 11 (45) 

 C 7 (19) 7 (15) 8 (24) 8 (24) 

 B 10 (42) 9 (33) 11 (45) 10 (42) 
 11 
  12 



5 

Table 4. Number of evaluation results (NER) from this study and from the literature, broken down 13 

into results for R2, NRMSE and PBIAS, and grouped by latitudinal zone, ET product and 14 

vegetation category (see Section 2.4 for further explanation). NA is not Not Available. 15 

  MOD16 GLEAM ALEXI 

  Forest Non-forest Forest Non-forest Forest Non-forest 

 R2 19 30 2 9 27 26 

30° N–60° N NRMSE 11 23 2 9 NA NA 

 PBIAS 11 23 2 9 NA NA 

        

 R2 15 9 16 4 14 5 

0°–30° N NRMSE 13 9 16 4 14 4 

 PBIAS 13 9 16 4 14 4 

        

 R2 9 16 8 11 6 19 

0°–30° S NRMSE 8 16 8 11 6 12 

 PBIAS 8 16 8 11 6 12 
 16 
 17 


